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Legged robots are a type of mobile robot which use articulated limbs, such as leg mechanisms,
to provide locomotion.

Quadruped robots
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Train in simulation, then transfer to the
real-world using sim-to-real techniques
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SIM-TO-REAL

Generalization
Simulation — Reality

~ * The physical robot and its model in the
simulator differ significantly

« Real-world terrains vary considerably

« The simulator fails to accurately capture
the physics of the real world
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For quadruped robots
To solve generalization problem, the authors proposed

RAPID MOTOR ADAPTATION

Learned entirely in simulation (why?) without using any domain knowledge

Deploy without fine-tuning
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RAPID MOTOR ADAPTATION

ocky area next to river bed;
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Phase 1: Jointly train policy = and environmental factor encoder u via Reinforcement Learning in simulation

a, = (X, Qp_1,Z¢) = m(xe, Qr—q, t(€¢))

1
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Phase 1: Jointly train policy = and environmental factor encoder u via Reinforcement Learning in simulation

T-1
J(m) = IET~p(T|TL’) [Z ytrt]
t=0

where 7 = {(xy, a,,1y), (x1,a4,77), ... } 1s the trajectory of the agent when executing policy 7, y is the
hyperparameter, which is set to 0.998 according to the supplementary.

- 1) Forward: min(v, 0.35)
2) Lateral Movement and Rotation: —||v}||* — [|w?_,[|*
3) Work: —|71" - (q* — q*71)|

More in di .
(More in discussion) 4) Ground Impact: —||f* — ft=1|2

Follow a designed curriculum

: : : 5) Smoothness: —||7¢ — 7!~ 1|2 Penalize for jerky and
The reward function r; is the weighted sum of < 6) Action Magnitude: —||a‘[|? nefficient motions
Bioenergetics-inspired, learn walking policies 7) Joint Speed: _H thQ
without using any reference demonstrations i L : 9
by minimizing work and ground impact. 8) Orientation: —||67; pitch I
9) Z Acceleration: —||v¢||?

. 10) Foot Slip: —||diag(gt) : Vft||2
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How TO DEPLOY
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However, environmental factors are not available when deploying.

£
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Phase 1 i
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The task of System Identification is Very Hard!!

Estimate

Unknown

(Mass )

coM €t
Friction
Terrain Height

\ Motor Strength)

é; | —>| Env Factor Encoder (u)
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ADAPTATION MODULE

Instead of system identification, directly estimate the extrinsics.

1
1
I
Key Insight: Estimate extrinsics :
from history. y

\ 4

Xt) At—1

Control
Policy ()

A 4

Xt—51, At—51

(XX )
\ 4

Adaptation Module (¢) F—| Z;

Xt_1,qr_1 F—> extrinsics
Estimated Online
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Phase 2: Train adaptation module ¢ via Supervised Learning in simulation, k = 50 (0.5s) in experiments

Phase 2 D : Trainable Modules

Xt-51, At—51

\ 4

Zt = Q(Xe—kt—1, At—k:t—1)

Extrinsics from phase 1

Xt)Ar—1

A 4

Adaptation Module (¢) —>

zt | z; = u(er)
A
Supervised
Control
— Policy ()
Zt >
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Phase 1 Randomly initialize the base policy T;
Randomly initialize the environmental factor encoder
w; Empty replay buffer D;;

for 0 < itr < N;;, do

for 0 <1 < Ngpy do

X, eo < envs[i].reset();

for 0 <t<T do

2 + pler);

a; < 7T($t, at—1, Zt);

Ti41, €441, Tt < envs[i].step(a;);

Store ((x¢, €), as, Tt, (Te41,€41)) in Dy;

end

end
Update 7 and p using PPO [48];
Empty Dy;

end

Phase 2 Randomly initialize the adaptation module ¢
parameterized by 64; Empty mini-batch Dy;

for

end

0 <itr < N2 do

for 0 <i < Ngpy do

xo, eg ¢ envs[z].reset();

for 0 <t<T do

Ze < O(Te—k:kr Op—k—1:5—1)5

2y < p(er);

at  m(x¢, Qr—1,%¢);
Ti+1,€¢41,_ < envs[z].step(a;);
Store (Z;, z;) in Dy;

end

end
Op < 04 — )\9¢V9¢#env o 12 = 1%
Empty Ds;
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Deployment: The adaption module and the control policy run asynchronously.
control policy uses most recent Z;

e -
1
1
|
Deployment i
X, Ay b
G Control
SR Policy ()
. Adaptation Module (¢) F—| 2, |—] 100Hz
Xe_q, Qg1 R 10Hz
asynchronous

Intuition: Z; changes relatively infrequently in the real-world.
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Decoupling Design

\ 4

Control
Policy ()

\ 4

A 4

Control

Xt) At—1
Xt—51, At-51 >
: Adaptation Module (¢) F—| Z;
Xt—1,At—1 [
10Hz
Why decoupling? :
« Unnatural gaits and poor Xt) At—1
performance in simulation.
« Can only run at 1t0Hz on the on- Xp_cq,Qi_sq
board processor. :
« Asynchronous design is critical for :
a seamless deployment, without Xe—1,qp—1

needing calibration.

RMA

\ 4

Policy ()
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A 4

_—
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Environmental Variation

Parameters Training Range Testing Range
Friction [0.05, 4.5] [0.04, 6.0]
K, [50, 60] [45, 65]
Ky [0.4, 0.8] [0.3, 0.9]
Payload (Kg) [0, 6] [0, 7]
Center of Mass (cm) [-0.15, 0.15] [-0.18, 0.18]
Motor Strength [0.90, 1.10] [0.88, 1.22]
Re-sample Probability 0.004 0.01

TABLE I: Ranges of the environmental parameters.
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Baselines
A1 Controller: Default controller

* Robustness through Domain Randomization (Robust): The base policy is trained without z, to be robust
to the variations in the training range

« Expert Adaptation Policy (Expert): In simulation, we can use the true value of the extrinsics vector z;.
This is an upper bound to the performance of RMA.

- RMA w/o0 Adaptation: Run adaptation module for the first timestamp and then freeze it.
« System Identification: Directly predict the environmental factor e®.

« Advantage Weighted Regression for Domain Adaptation (AWR): Optimize z¢ offline using AWR by
using real-world rollouts of the policy in the testing environment.
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Rapid Motor Adaptation for
Legged Robots

Ashish Kumar Zipeng Fu Deepak Pathak Jitendra Malik
UC Berkeley CMU CMU UC Berkeley/FAIR

Robotics: Science and Systems 2021
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Gait pattern

Torque of knee Rapid MOtOr AdaptatiOn fOr
Legged Robots

Components
of extrinsics

Ashish Kumar Zipeng Fu Deepak Pathak Jitendra Malik
UC Berkeley CMU CMU UC Berkeley/FAIR

Robotics: Science and Systems 2021
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Results in simulation

Success (%) TTF Reward Distance (m) Samples Torque Smoothness Ground Impact

Robust [52, 40] 62.4 0.80 4.62 1.13 0 527.59 122.50 4.20
SysID [57] 56.5 0.74 4.82 117 0 565.85 149.75 4.03
AWR [41] 41.7 0.65 4.17 0:95 40k 599.71 162.60 4.02
RMA w/o Adapt 52.1 0.75 4.72 1.15 0 524.18 106.25 4.55
RMA 135 0.85 5:22 1.34 0 500.00 92.85 4.27
Expert 76.2 0.86 9.23 1.35 0 485.07 85.56 3.90

TABLE II: Simulation Testing Results: We compare the performance of our method to baseline methods in Our
train and test settings are listed in Table I. We resample the environment parameters within an episode with a re-sampling
probability of 0.01 per step during testing. Baselines and metrics are defined in Section V. The numbers reported are averaged
over 3 randomly initialized policies and 1000 episodes per random initialization. RMA beats the performance of all the baselines,
with only a slight degradation in performance compared to the Expert.
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The reward function 7, is the weighted sum of <
[20, 21, 0.002, 0.02, 0.001, 0.07, 0.002, 1.5, 2.0, 0.8]

1) Forward: min(v, 0.35)

2) Lateral Movement and Rotation: —||v}||* — |lw!_,[|?
3) Work: —|71" - (q¢ — qt71)|

4) Ground Impact: —||f? — f?—1||2

5) Smoothness: —||7¢ — 7t~ 1|2

6) Action Magnitude: —||at||?

7) Joint Speed: —||¢t||?

8) Orientation: —||0%,,, ;. cpl”

9) Z Acceleration: —||vt |2

. 10) Foot Slip: —||diag(gt) . Vft||2

If naively train the agent with the above reward function, it learns to stay in place because of the

penalty terms on the movement of the joints.

To prevent this collapse, the training starts with very small penalty coefficients, and then gradually
increase the strength of these coefficients using a fixed curriculum.
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@83_13
For the training curriculum, ...

I believe this is an effective method to maintain the reward function without having the collapse. However, I wonder if there
are better ways to define the reward function or training curriculum, so that the agent is more "motivated" to move.

@ One Reply of 83_13

In [1], instead of varying the rewards, the researchers varied the simulation itself to accommodate the robot's current skill
level. But from what I remember, this involved hand-designing a measure of "difficulty", which likely took a lot of effort
compared to implementing a scaling reward function.

@83_15
One thought on this work: the reward function seems highly hand-crafted. I wonder if the authors tried simpler reward
functions and did not see good performance?

In general, it seems like there is no good way to provide general enough rewards (from a human perspective) for these types of
task-specific RL problems. I wonder if over time we will develop models that can for example take natural language instructions
and learn behaviors that satisfy said instructions. Curiosity-based learning seems to work to some extent, but without any
specific reward you might end up with a robot that's really good at doing backflips instead of one that can walk.

[1] Lee J, Hwangbo J, Wellhausen L, et al. Learning quadrupedal locomotion over challenging terrain[J]. Science robotics, 2020, 5(47): eabc5986. 23
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THANKS!



