
RMA: RAPIDMOTOR ADAPTATION FOR
LEGGED ROBOTS

Ashish Kumar, Zipeng Fu, Deepak Pathak, Jitendra Malik

Youren Zhang | yourenz@umich.edu

Presented by



1

LEGGED ROBOTS

Legged robots are a type of mobile robot which use articulated limbs, such as leg mechanisms, 
to provide locomotion. 

RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

Quadruped robots



RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS 2

CONTROLLER

Traditional
Methods

Learning-based
Methods

• Require considerable expertise on
the part of the human designer

• Train in simulation, then transfer to the
real-world using sim-to-real techniques



3RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

SIM-TO-REAL

Simulation Reality

Generalization
• The physical robot and its model in the 

simulator differ significantly
• Real-world terrains vary considerably
• The simulator fails to accurately capture 

the physics of the real world



4RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

RAPIDMOTOR ADAPTATION
Learned entirely in simulation (why?) without using any domain knowledge

To solve generalization problem, the authors proposed

RAPIDMOTOR ADAPTATION

Deploywithout fine-tuning

For quadruped robots



5RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

RAPIDMOTOR ADAPTATION



6RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

TRAIN IN SIMULATION

Phase 1: Jointly train policy 𝜋 and environmental factor encoder 𝜇 via Reinforcement Learning in simulation

𝑎! = 𝜋 𝑥! , 𝑎!"#, 𝑧! = 𝜋(𝑥! , 𝑎!"#, 𝜇(𝑒!))

Control 
Policy (𝜋) 𝑎!

𝑥! , 𝑎!"#

𝑧!Env Factor Encoder (𝜇)

Mass
COM
Friction
Terrain Height
Motor Strength

𝑒!

extrinsics

: Trainable ModulesPhase 1



7RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

Phase 1: Jointly train policy 𝜋 and environmental factor encoder 𝜇 via Reinforcement Learning in simulation

TRAIN IN SIMULATION

𝐽 𝜋 = 𝔼$~&($|)) -
!+,

-"#

𝛾!𝑟!

where 𝜏 = 𝑥,, 𝑎. , 𝑟, , 𝑥#, 𝑎#, 𝑟# , … is the trajectory of the agent when executing policy 𝜋, 𝛾 is the 
hyperparameter, which is set to 0.998 according to the supplementary.

The reward function 𝑟! is the weighted sum of
Bioenergetics-inspired, learn walking policies
without using any reference demonstrations
by minimizing work and ground impact.

Penalize for jerky and
inefficient motions

(More in discussion)
Follow a designed curriculum



8RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

HOW TO DEPLOY

Control 
Policy (𝜋) 𝑎!

𝑥! , 𝑎!"#

𝑧!Env Factor Encoder (𝜇)

Mass
COM
Friction
Terrain Height
Motor Strength

𝑒!

extrinsics

Phase 1

However, environmental factors are not available when deploying.

Not available



9RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

The task of System Identification

𝑧̂!Env Factor Encoder (𝜇)

Mass
COM
Friction
Terrain Height
Motor Strength

𝑒!

extrinsics

Estimate

𝑒̂!

is Very Hard!!

Unknown

HOW TO DEPLOY



10RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

ADAPTATIONMODULE

Control 
Policy (𝜋) 𝑎!

𝑥! , 𝑎!"#

𝑧̂!
extrinsics

Instead of system identification, directly estimate the extrinsics.

Estimated Online

Adaptation Module (𝜙)

𝑥!"/#, 𝑎!"/#

𝑥!"#, 𝑎!"#

…

Key Insight: Estimate extrinsics
from history.

How to train adaptation module?



11RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

TRAINING ADAPTATION MODULE

Control 
Policy (𝜋)

𝑥! , 𝑎!"#

𝑧̂!Adaptation Module (𝜙)

𝑥!"/#, 𝑎!"/#

𝑥!"#, 𝑎!"#

… 𝑎!

Physics Simulation

Phase 2 : Trainable Modules Supervised

𝑧!

Phase 2: Train adaptation module 𝜙 via Supervised Learning in simulation, 𝑘 = 50 (0.5s) in experiments

𝑧̂! = 𝜙(𝑥!"0:!"#, 𝑎!"0:!"#)

Extrinsics from phase 1 𝑧! = 𝜇(𝑒!)

1-D CNN for capturing temporal correlations



12RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

TRAINING SCHEME

Control 
Policy (𝜋)

𝑥! , 𝑎!"#

𝑧!Env Factor Encoder (𝜇)

Mass
COM
Friction
Terrain Height
Motor Strength

𝑒!

: Trainable ModulesPhase 1

Control 
Policy (𝜋)

𝑥! , 𝑎!"#

𝑧̂!Adaptation Module (𝜙)

𝑥!"/#, 𝑎!"/#

𝑥!"#, 𝑎!"#

…

𝑎!

Physics Simulation

Phase 2 : Trainable Modules

Supervised 
Learning



13RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

TRAINING ALGORITHM



14RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

DEPLOY INREAL-WORLD

Control 
Policy (𝜋)

𝑥! , 𝑎!"#

𝑧̂!Adaptation Module (𝜙)

𝑥!"/#, 𝑎!"/#

𝑥!"#, 𝑎!"#

… 𝑎!

Deployment

10Hz
100Hz

asynchronous

Deployment: The adaption module and the control policy run asynchronously.
control policy uses most recent 𝑧̂!

Intuition: 𝑧̂! changes relatively infrequently in the real-world.



15RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

NECESSITY OF ADAPTATIONMODULE

Control 
Policy (𝜋)

𝑥! , 𝑎!"#

𝑥!"/#, 𝑎!"/#

𝑥!"#, 𝑎!"#

…

Control 
Policy (𝜋)

𝑥! , 𝑎!"#

𝑧̂!Adaptation Module (𝜙)

𝑥!"/#, 𝑎!"/#

𝑥!"#, 𝑎!"#

… 𝑎!

Why decoupling?
• Unnatural gaits and poor

performance in simulation.
• Can only run at 10Hz on the on-

board processor.
• Asynchronous design is critical for

a seamless deployment, without
needing calibration.

Decoupling Design

10Hz 100Hz

10Hz



16RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

EXPERIMENT

Environmental Variation



17RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

EXPERIMENT

Baselines

• A1 Controller: Default controller

• Robustness through Domain Randomization (Robust): The base policy is trained without 𝑧! to be robust 
to the variations in the training range

• Expert Adaptation Policy (Expert): In simulation, we can use the true value of the extrinsics vector 𝑧!. 
This is an upper bound to the performance of RMA.

• RMA w/o Adaptation: Run adaptation module for the first timestamp and then freeze it.

• System Identification: Directly predict the environmental factor 𝑒! .

• Advantage Weighted Regression for Domain Adaptation (AWR): Optimize 𝑧! offline using AWR by 
using real-world rollouts of the policy in the testing environment.



18RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

EXPERIMENT



19RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

EXPERIMENT



20RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

EXPERIMENT

Gait pattern

Torque of knee

Components
of extrinsics



21RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

EXPERIMENT

Results in simulation



22RMA: RAPIDMOTOR ADAPTATION FOR LEGGED ROBOTS

DISCUSSION

The reward function 𝑟! is the weighted sum of

If naively train the agent with the above reward function, it learns to stay in place because of the 
penalty terms on the movement of the joints.

To prevent this collapse, the training starts with very small penalty coefficients, and then gradually
increase the strength of these coefficients using a fixed curriculum.

[20, 21, 0.002, 0.02, 0.001, 0.07, 0.002, 1.5, 2.0, 0.8]



23

DISCUSSION

@83_f3
For the training curriculum, …

I believe this is an effective method to maintain the reward function without having the collapse. However, I wonder if there
are better ways to define the reward function or training curriculum, so that the agent is more "motivated" to move.

@ One Reply of 83_f3
In [1], instead of varying the rewards, the researchers varied the simulation itself to accommodate the robot's current skill
level. But from what I remember, this involved hand-designing a measure of "difficulty", which likely took a lot of effort
compared to implementing a scaling reward function.

[1] Lee J, Hwangbo J, Wellhausen L, et al. Learning quadrupedal locomotion over challenging terrain[J]. Science robotics, 2020, 5(47): eabc5986.

@83_f5
One thought on this work: the reward function seems highly hand-crafted. I wonder if the authors tried simpler reward
functions and did not see good performance?

In general, it seems like there is no good way to provide general enough rewards (from a human perspective) for these types of 
task-specific RL problems. I wonder if over time we will develop models that can for example take natural language instructions 
and learn behaviors that satisfy said instructions. Curiosity-based learning seems to work to some extent, but without any 
specific reward you might end up with a robot that's really good at doing backflips instead of one that can walk.



THANKS!


