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e Allows access to some of the most
challenging terrain on earth

» Conventional methods struggle in = prosttiren e | Froes vonsnion
unexpected/challenging S LOSENE L e I R
environments:

1. Rely heavily on exteroceptive
sensors (i.e. camera, LiDaR)

2. Many use carefully-tuned, complex
state machines which do not
generalize to unexpected conditions




A Novel Proprioceptive Model

* Train a controller on simulated data using only proprioceptive
measurements (joint encoders and IMU)

* Requires several additional ingredients to learn robustness
1. TCN model: use history of proprioceptive states

2. Privileged learning: pure RL learning approach has sparse rewards, use
teacher-student model

3. Automated learning curriculum: adaptively synthesizes terrain for medium
difficulty during training
* These ideas produce a highly-robust controller, which they
demonstrate can operate successfully in zero-shot generalization tests
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* Each leg moves based on periodic leg phase (f, = 1.25 Hz)
* Each leg has a periodic leg phase variable ¢p; € [0,27) defined at every time step t

¢ = (¢io + (fo + fi)t)(mod 2m)

 Step 1 (neural network policy): model outputs f; and target foot position residuals
(Ary, r) for each foot

e Step 2 (motion generation): each FTG takes periodic phase variable and gives and
outputs a target foot position, F(¢;) = R3, the foot targets computed as,

rr,r = F(¢y) + Arg,p

» Step 3 (motion tracking): predicted targets realized as actual joint movements via an IK
model and PD joint controllers
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* Ouputs 16-dimensional action vector,

Foot-ground friction coefficients
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Student Policy

e Student policy learns by imitating teacher
policy

* Based on the idea that the latent
representation of the priviledged

information can be recovered from
proprioceptive measurements

* Only has access to proprioceptive
measurements (over last 2 seconds)

H = {ht—la R ht—N—l}

* Training by minimizing supervised learning
objective )
L= (dt(ot,a:t) — a,t(ot,I-I))z + (l_t(Ot, {Ift) — lt(H))

A Policy training

Step 1. Teacher policy training RL algorithm a:::::

I- """"""""" e —_——— =
v ; Policy
Privileged N L robot state 0; gradient
Information I e mmmm e

- contact states | || TT— |MLPE /00T |
- contact forces MLP -

- terrain profile Byl encoder |/~

- friction coeff.

- disturbances

: |
Step2. Student policy training lImitate
e D, TS action
' Proprioceptive Ot --..
i history [ TCN g
H e Y encoder
oA
beme e memmmemememmmmmemememmemeeeeeeeemmme—————————

Save proprioceptive measurements every 0.02 s




Adaptive Terrain Curriculum

* While training using simulation, use a training curriculum that gradually exposes the agent to
increasingly more difficult terrain

* Instead of measuring the reward function to measure difficulty, compute the traversability of a
given terrain, which they define as the success rate of traversing a terrain

* Three terrain types (hills, steps, stairs) each parameterized by ¢, goal is to pick parameter that
gives middle-range traversability, i.e., challenging but still traversable

* Successful traverse is defined as,

'U(St, at, 3t+1) — {

* Traversability is then defined as,

Tr(CTaﬂ-) — ]EENW{’U(St7 Aty St+1 | CT)} < [OO? 10]

1 if vp(84+1) > 0.2
0 if wvp(se+1) < 0.2V termination
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Adaptive Terrain Curriculum

* The goal is to find terrain parameters that Amplitude=2.0 Amplitude=2.0 Amplitude=0.5 Amplitude=2.0
. . ops Traversability= 0.91 Traversability= 0.56 Traversability= 0.67 Traversability=0.15
give mid-range traversability

Terrain desirability computed from 1000 samples
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Summary of Learning Framework

A Policy training

Step 1. Teacher policy training
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B Automatic terrain curriculum
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Summary of Results
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Emergent Behavior

* Analyze behavior by trying to reconstructing
privileged from output of TCN in student
policy with a trained decoder

* Minimized with CE and Gaussian log- Y == =
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Discussion

Motivated by @76_f1 and responses:
The teacher-student learning framework learned through “cheating”.

* The idea of training a student to imitate a teacher is a clever way to
“distill” the teacher policy into a student policy which does not have
access to the same information. Are there any alternative ways to
“distill” this information or conduct teacher-student learning? (for
example, maybe use reconstruction of privileged information as input
or something?)

* It is very similar to how children learn by imitation. Are there any
other improvements to this learning system that might also be
inspired by human behavior?



Discussion Cont.

Also motivated by @76 _f1, @76_f5 and responses:

* The author acknowledges that a blind, proprioceptive controller isn’t
susceptible to some of the issues with exteroceptive measurements,
it is still “inherently limited” (it could easily walk off a cliff). How could
a hybrid model be designed that incorporated both proprioceptive
and exteroceptive measurements?

e Can we really trust this type of controller for this reason?
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