The developing infant creates a curriculum
for statistical learning
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Researchers thus:
- test learning mechanisms
- develop machinery that uses
statistical regularities
- expect this to work




Visual Processing vs. Visual Development

- “The study of vision must therefore include not only the study of how to extract
from images the various aspects of the world that are useful to us, but also an
inquiry into the nature of the internal representations by which we capture this
information [...]”

— David Marr (1982)

- “All statistical learning depends on both the internal machinery that does the
learning and the on which that machinery operates.”
— Smith et al. (2018)



The analogy of Simon’s Ant

The complexity of an ant’s path is a combination of its simplistic navigation and the
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Sensors are:
- attached to the body
- develop over time
- used to center align
visual information

Data is:
- determined by baby/
infant position
- only a partial scene
- curriculum-based
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What can infants see?




Environment Landscape

1-3 months:
- limited mobility
- faces
- ceiling
- rolling over
- reaching

8-10 months
- crawling
- touching

12-18 months old

- Walklng . 12-18 month olds
- manipulating
- using
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Environment Landscape

Gate 1:
- Visual ability
- Physical ability

Gate 2:
- Walking
- Focusing beyond
some number of ft
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Environment Landscape
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limited visual acuity
can do little

what'’s in front of their
face

(normally caregiver
face)

close and frontal
views

15 min of face / every
hour

see further, and move
to see far object up
close

crawling creates
dynamic visual input
and optic flow

manipulating for more
views of the same
object

needs to sit up to see
social partners or
objects

— — — —— ———

INFANT

Zmo-|lyr

walking

rarely sees other’s
faces

other’s hands provide
manual examples

6 min of face / every
hour
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Timing Matters | Congenital Cataracts and Facial Processing

Cataract

Normal Clouded



Timing Matters | Configural Facial Processing




Timing Matters | Configural Facial Processing




Who is this?




Who is this?

Bestselling author of Awakenings and A Leg to Stand On

OLIVER SACKS

The

MAN

Who

MISTOOK
HIS WIFE
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HAT

and Other Clinical Tales

Tsightful, compassionate, moving. .. the lucidity and power of agified wrier.

and power of a g
— Joha C. Marshall, The New York Times Book Review

Feature Based Processing

“He recognized a portrait of Einstein because he
picked up the characteristic hair and moustache”
— Oliver Sacks

Configural Processing

Recognizing faces based on relations between
features; location and spacing.

Source: Sacks, FreePNG, Maurer et al. 2002



Configural Face Processing and Coherence
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The Weak Coherence Account: Detail-focused Cognitive Style
in Autism Spectrum Disorders

Francesca Happé' and Uta Frith®

“Weak central coherence” refers to the detail-focused processing style proposed to
characterisc autism spectrum disorders (ASD). The original suggestion of @ core deficit in
central processing resulting in failure to extract global form/meaning, has been challenged in
three ways. First, it may represent an outcome of superiority in local processing. Second, it
may be a processing bias, rather than deficit. Third, weak coherence may occur alongside,
rather than explain, deficits in social cognition. A review of over 50 empirical studies of
coherence suggests robust findings of local bias in ASD, with mixed findings regarding weak
global processing. Local bias appears not to be a mere side-effect of executive dysfunction, and
may be independent of theory of mind deficits. Possible computational and neural models are
discussed.

Atypical development of configural face recognition
in children with autism, Down syndrome and
Williams syndrome

D. Dimitriou,' H. C. Leonard,’ A. Karmiloff-Smith,? M. H. Johnson? & M. S. C. Thomas?

\ Institute of Education, Department of Psychology and Human Development, University of London, London, UK
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Counter | The Molyneaux Problem

- “Would a blind person, on regaining sight, be able to
immediately visually recognize an object previously
known only by touch?”

- Test this ability in 8-17 year children with congenital
cataracts.

- Results:

- No immediate transfer;
- Transfer developed in 5 days!!

namre .
neuroscience

The newly sighted fail to match
seen with felt

Richard Held', Yuri Ostrovsky', Beatrice de Gelder?,
Tapan Gandhi®, Suma Ganesh®, Umang Mathur* & Pawan Sinha'

Would a blind subject, on regaining sight, be able to
immediately visually recognize an object previously known

only by touch? We addressed this question, first formulated

by Molyneux three centuries ago, by working with treatable,
congenitally blind individuals. We tested their ability to visually
match an object to a haptically sensed sample after sight
restoration. We found a lack of immediate transfer,

but such cross-modal mappings developed rapidly.

Could we restore the facial abilities through late retraining or do we

lose it after the critical period?



Limited data and heavy tails!

- Early experience is highly limited!
- Achild typically only a few

environments and mostly 2-3 people.

- Very skewed data!

How do kids learn from this kind of data?

Source: Pintrest



Long-tail distributions are real and difficult!

10°
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Number of instances
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Sorted category index
(b) The number of instances per category (on 5k
images) reveals the long tail with few examples.
Orange dots: categories in common with COCO.

Source: LVIS dataset



Infants focus on important objects!

(a) Frequency of objects in head camera images (b) Example images
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Limited data and heavy tails!

- 3 months of development may not

seem long, but this is a critical period
- 15 min/hr x 12 hr/day: 270 hrs of faces.

- Sampling is selective: few objects
appear but they appear frequently.

- Are kids learning common objects or
sampling learnable objects?

Proportion of Frames
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Skewed data and amazing generalization .. how?

- 2yo can generalize a single instance to
a full category ... 1-shot learning!

- Three interrelated hypotheses:
- Consistency;
- Bootstrapping;
- Desirable difficulty.

single instance of that category. For example, if a 2-year-old child encounters their very first
tractor — say, a green John Deere working in a field — while hearing its name, the child is
likely from that point forward to recognize all variety of tractors as tractors — red Massey-
Fergusons, rusty antique tractors, ride-on mowers — but not backhoes or trucks [48 — 50].



Three Hypotheses |

- The world will provide a set of repeating and consistent items, the infant learns to
differentiate between them and slowly grows their classifier.

Mom Grandma

) Consistency

Led e
RAIILS

Mom




Three Hypotheses |

- Rare items will occur with common items. Knowing the common items helps scaffold
and structure the learning of rare items.

Table Milk Book

Bowl Table




Three Hypotheses | Desirable Difficulty

- Difficult environments help you learn more robustly
- While the infant might only encounter one instance, it can learn a more robust
model of it by differentiating it from all the clutter.




Where do we go now?

- Current approaches are too static:

Same task,
Same dataset,
Same underlying algorithm!

- How can we take a developmental approach to statistical learning?



Cognition, 48 (1993) 71-99 71

Learning and development in neural
networks: the importance of starting small

- Early work has shown that:

- Models can benefit from learning from a growing corpus;

Jeffrey L. Elman

- Learning can improve when networks reconfigure or grow! _—

It is a striking fact that in humans the greatest learming occurs precisely at that point
in time - childhood - when the most dramatic maturational changes also occur.
This report describes possible synergistic interactions between maturational change
and the ability to learn a complex domain (language), as investigated in con-
nectionisi networks. The networks are trained to process complex sentences
involving relative clauses, number agreement, and several types of verb argument
structure. Training fails in the case of networks which are fully formed and
‘adultlike’ in their capacity. Training succeeds only when networks begin with
limited working memory and gradually ‘mature’ to the adult state. This result
suggests that rather than being a limitation, developmental restrictions on resources
may constitute a necessary prerequisite for mastering certain complex domains.
Specifically, successful learning may depend on starting small.

constant during learning. Plunkett and Marchman (1990) have shown that while
the basic influences of type/token frequency and phonological predictability are
similar to the condition of non-incremental learning, better overall learning is
achieved when the training corpus for a connectionist model is allowed slowly to
grow in size. We might also ask what the consequences are when the learning
mechanism itself is changing. Allowing networks to reconfigure dynamically or
acquire additional nodes has been shown to facilitate learning (Ash, 1989;
Fahlman & Lebiere, 1990; Shultz & Schmidt, 1991).



ere do we go now? Curriculum Learning

Maybe we can change the data distribution as we
learn?
Captures the idea of changing the data distribution.

Curriculum Learning

Yoshua Bengio!
Jérome Louradour'?
Ronan Collobert?
Jason Weston®
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RONAN@COLLOBERT.COM
JASONW@NEC-LABS.COM

(1) U. MONTREAL, P.O. Box 6128, MONTREAL, CANADA (2) A2IA SA, 40B1S FABERT, PARIS, FRANCE
(3) NEC LABORATORIES AMERICA, 4 INDEPENDENCE WAY, PRINCETON, NJ, USA

Abstract

Humans and animals learn much better when
the examples are not randomly presented but
organized in a meaningful order which illus-
trates gradually more concepts, and gradu-
ally more complex ones. Here, we formal-
ize such training strategies in the context
of machine learning, and call them “curricu-
lum learning”. In the context of recent re-
search studying the difficulty of training in
the presence of non-convex training criteria
(for deep deterministic and stochastic neu-
ral networks), we explore curriculum learn-
ing in various set-ups. The experiments show

that signifi in

tion can be achieved. We hypothesize that
curriculum learning has both an effect on the
speed of convergence of the training process
to a minimum and, in the case of non- X
criteria, on the quality of the local minima
obtained: curriculum learning can be seen
as a particular form of continuation method
(a general strategy for global optimization of
non-convex functions).

1. Introduction

Humans need about two decades to be trained as
fully functional adults of our society. That training
is highly organized, based on an education system and
a curriculum which introduces different concepts at
different times, exploiting previously learned concepts
to ease the learning of new abstractions. By choos-
ing which examples to present and in which order to
present them to the learning system, one can guide

Appearing in Proceedings of the 26" International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s) /owner(s).

training and remarkably increase the speed at which
learning can occur. This idea is routinely exploited in
animal training where it is called shaping (Skinner,
1958; Peterson, 2004; Krueger & Dayan, 2009).

Previous research (Elman, 1993; Rohde & Plaut, 1999;
Krueger & Dayan, 2009) at the intersection of cog
tive science and machine learning has raised the follow-
ing question: can machine learning algorithms benefit
from a similar training strategy? The idea of training a
learning machine with a curriculum can be traced back
at least to Elman (1993). The basic idea is to start
small, learn easier aspects of the task or easier sub-
tasks, and then gradually increase the difficulty level.
The experimental results, based on learning a simple
grammar with a recurrent network (Elman, 1993), sug-
gested that successful learning of grammatical struc-
ture depends, not on innate knowledge of grammar,
but on starting with a limited architecture that is at
first quite restricted in complexity, but then expands
its resources gradually as it learns. Such conclusions
are i for devel 1 p v, because
they illustrate the adaptive value of starting, as hu-
man infants do, with a simpler initial state, and then
building on that to develop more and more sophi
ticated representations of structure. Elman (1993)
makes the statement that this strategy could make
it possible for humans to learn what might otherwise
prove to be unlearnable. However, these conclusions
have been seriously questioned in Rohde and Plaut
(1999). The question of guiding learning of a recurrent
neural network for learning a simple language and in-
creasing its capacity along the way was recently revis-
ited from the cognitive perspective (Krueger & Dayan,
2009), providing evidence for faster convergence using
a shaping procedure. Similar ideas were also explored
in robotics (Sanger, 1994), by gradually making the
learning task more difficult.

We want to clarify when and why a curriculum or



Where do we go now? Active Learning

- How can we choose the samples we learn from?

Figure 1: Infants spend years worth of time playing with objects in a seemingly random manner.
They might use this experience to learn a model of physics relating their actions with the resulting
motion of objects. Inspired by this hypothesis, we let a robot interact with objects by randomly
poking them. The robot pokes objects and records the visual state before (left) and after (right) the
poke. The triplet of before image, after image and the applied poke is used to train a neural network
(center) for learning the mapping between actions and the accompanying change in visual state. We
show that this learn model can be used to push objects into a desired configuration.

Queries and Concept Learning
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Abstract. We consider the problem of using queries to learn an unknown concept.
Several types of queries are described and studied: membership, equivalence, subset, su-

perset, disjointness, and exkh iveness queries. E: les are given of efficient learning
methods using various subsets of these queries for formal domains, including the regular
languages, restricted classes of context-free 1 the pattern 1 and re-

stricted types of propositional formulas. Some general lower bound techniques are given.
Equivalence queries are compared with Valiant’s criterion of probably approximately
correct identification under random sampling.

1. Introduction

A successful learning component in an expert system will probably rely
heavily on queries to its instructors. For example, Sammut and Banerji’s
(1986) system uses queries about specific examples as part of its strategy
for efficiently learning a target concept. Shapiro’s (1981, 1982, 1983) Algo-
rithmic Debugging System uses a variety of types of queries to the user to
pinpoint errors in Prolog programs. In this paper we use a formal frame-
work to study the power of several types of queries for concept-learning
tasks.



Infant’s visual world is very different from a CNN
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Some approaches build on this observation!

Figure 1. Internet vision versus robotic vision. Pictures taken
by humans (top row) (and uploaded on the web) are the output of
visual perception of a well-trained agent, the human photographer.

3D GRU memory

3D MaskRCNN
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Figure 2. Geometry-aware Recurrent Neural Networks
(GRNNs) integrate visual information over time in a 3D
geometrically-consistent deep feature memory of the visual scene.
At each frame, RGB images are unprojected into corresponding
3D feature tensors, which are oriented to the coordinate frame of
the memory map built thus far (2nd row). A 3D convolutional
GRU memory is then updated using the egomotion-stabilized fea-
tures as input.

Source: Fish Tung et al. (CVPR 2019)



Datasets that focus on Ego-centric Motion
X Qo . 1 )

Source: Ego4D



What are the relevant questions to us?

- Do we need to rethink our architectures?

- Do machines need developmental learning?

- What does development look like for a
machine?

- Are critical periods a function of learning or

human learning?
- Does omitting a critical period risk catastrophic
forgetting in a critical domain?

Outstanding questions

How can we experimentally test whether and how the structures found in
first-person recordings of infant visual environments provide the required
curriculum for infant learning?

What are the real-time properties of data used for learning that change both
over developmental time and over the learners” real time activities? How do
they interact with potentially changing or different learning mechanisms?

Does the order of developmentally segregated data sets — such as first faces
and then objects matter to developmental outcomes? Do early face
experiences support later visual development in other domains, in object
perception, in letter recognition?

If sensitive periods are formed in part by the closing of sensory-motor gates
on critical experiences, can a sensitive period for learning be re-opened by re-
opening those sensory-motor gates?

What role do disruptions in the real-world data for learning play in the
cognitive developmental trajectories of children with developmental
disorders? This will shed light on the cognitive developmental disorders that
are characterized by atypical patterns of sensory-motor development.




