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Motivation

 Today’s machine learning accomplishes numerous challenging tasks

* Specialists

* Learn one task in one environment from scratch
* Take long to master new tasks!
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Atari locomotion
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Motivation

* Humans are generalists that learn and adapt quickly

 We’re able to
* Learn new skills
* Adapt to new environment
* Recognize new objects

* |n afew shots
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Motivation

With past experiences and prior knowledges, we figure out how to
learn more efficiently

* Meta-learning: learning to learn

* How do we equip a ML model with such capability?

@ . Recognize
Recognize New animal
dog
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How does meta-learning work?
An example

Given 1 example of 5 classes: Classify new examples
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How does meta-learning work?
An example

training
classes

meta-training

meta-testing  Tioqt
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Can replace image classification with regression, skill learning, language generation and etc.
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Problem setup | Meta Learning

Given data from I, ..., I, solve new task T tegt More quickly / proficiently / stably

Key assumption: meta-training tasks and meta-test task drawn i.i.d. from same task distribution
971,...,9'n~p(9'),9'j~p(9')

Like before, tasks must share structure.
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Comparison to supervised learning

Supervised Learning:

Inputs: X\ Output;ry Data: {(X, Y)z}
Y = g¢(x)

Meta Supervised Learning:

Inputs: DT xS Outputs: ytS Data: {Dz}
{(Xay)lzK} y' = fe(ptr’xtS) Dz’ . {(X7 Y)J}

Why is this view useful?
Reduces the meta-learning problem to the design & optimization of f.
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Prior works

* Learning an update function or update rule

* LSTM optimizer (Learning to learn by gradient descent by gradient descent)
* Meta LSTM optimizer (Optimization as a model for few-shot learning)

 Few shot (or meta) learning for specific tasks
* Generative modeling (Neural Statistician)
* Image classification (Matching Net., Prototypical Net.)

* Reinforcement learning (Benchmarking deep reinforcement learning for
continuous control)

* Memory-augmented model
* Learning an RNN that ingests experience
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MAML | Overview

* Model-agnostic
« Compatible with any model trained with gradient descent

« General

« Applicable to a variety of different learning problems, including
classification, regression, and reinforcement learning.

* Optimization-based
* An explicit optimization procedure is embedded
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MAML | Intuition

 Some internal representations are more transferrable than others.

* Desired model parameter set is 0 such that:
* Applying one (or a small # of) gradient step to 6 on a new task will
produce optimal behavior

* Find B that commonly decreases loss of each task after adaptation.

— meta-learning

---- |learning/adaptation
9 parameter vector 9 g/adap
being meta-learned v£3
¢>I< optimal parameter r VL, .¢*
¢ vector for task i VLI .~ 3
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MAML | Objective

/pre—trained parameters
Fine-tuning ¢ ¢— 0 — avgﬁ(g’ Dtr)

. training data
[test-time] g

for new task

Meta-learning mgﬂ tzk:. £(9 — av0£(97 D:,’:r)a Dfs)

Key idea: Over many tasks, learn parameter vector 8 that transfers via fine-tuning
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MAML | Algorithm

1. Sample task 7;  (or mini batch of tasks)
2. Sample disjoint datasets DI, D** from D;
3. Optimize ¢; + 0 — aVoL(0, D)

4. Update 6 using VyL(¢p;, D)
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MAML | Second-order gradient

0 0—BVe » Lr(fo) (Recall: 0 = 0 — aVeLT.(fo))
Ti~p(T)
=0-B Y VoLt (fa) ( £ is differentiable)
Ti~p(T)
=0-8 Y (Veb))Ve Lr.(fo)
Ti~p(T)

=60-_ S: (d — avgﬁﬂ-(fe))lvegﬁﬂ (for)
Ti~p(T)  Calculation of Hessian matrix is required.
— MAML suggest 1st order approximation.
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MAML | Second-order gradient

0« 0-BVe Y Lr(fo) (Recall: 0, = 0 — aVo LT, (fo))
Ti~p(T)
=0—8 Y VoLt (fs) ( £ is differentiable)
Ti~p(T)
=0-8 ), (Vebi)Vo LT,(fo)
Ti~p(T)

=60-p Z (- av3£’n(f0))lvogﬁﬂ (for)
T:~pP(T)  |n 1st order approximation,
we regard this as identity matrix /.
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Experiments

e Supervised regression
* Supervised classification

* Reinforcement Learning
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Few-shot regression

Sinusoid function:
« Amplitude (A) and phase (¢) are varied between tasks
« Ain[0.1,0.5]
« ¢¢in[O, m]
e xin[-5.0,5.0]
Loss function: Mean Squared Error (MSE)
Regressor: 2 hidden layers with 40 units and RelLU
Training
» Use only 1 gradient step for learner
« K =5 or 10 example (5-shot learning or 10-shot learning)
 Fixed step size (a=0.01) for Adam optimizer.
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Few-shot regression

[MAML] [Pretraining + Fine-tuning]

The red line is ground truth.
Fit this sine function with only few (10) samples.
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Few-shot regression

[MAML] [Pretraining + Fine-tuning]

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Above plots are the pre-trained function of two models.
(The prediction of meta-parameter of MAML,
The prediction of co-learned parameter of vanilla multi-task learning)
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Few-shot regression

[MAML] [Pretraining + Fine-tuning]

After 1 gradient step update.
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Few-shot regression

[MAML] [Pretraining + Fine-tuning]

After 10 gradient step update.
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MAML only requires 1 gradient step

—e— MAML (ours)

S 3, -
o - a- pretrained, step=0.02
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number of gradient steps

Vanilla pretrained model adapted slowly,
but, the MAML method quickly adapted even in one gradient step.
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Performance of meta model

MSE Comparison during meta-training » The performance of the-meta

- parameters was not improved
301 \/\\[\\/\/\J\M/‘\/\/\/\/\/\N\//\JW\/\ much in training.
25

§20{ | e | ® However, the performance of
15{ | the single gradient updated
parameters
=l = started on meta-parameters

improved as training progressed.

T T T T T T T T
0 10000 20000 30000 40000 50000 60000 70000
Iters
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Few-shot classification

« Omniglot (Lake et al., 2012)
« 50 different alphabets, 1623 characters.
» 20 instances for each characters were drawn by 20 different people.
» 1200 for training, 423 for test.

« Mini-lmagenet (Ravi & Larochelle, 2017)
« Classes for each set: train=64, validation=12, test=24.
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Few-shot classification

MAML outperforms methods that are specially designed for this task

5-way Accuracy 20-way Accuracy
Omniglot (Lake et al., 2011) 1-shot 5-shot 1-shot 5-shot
MANN, no conv (Santoro et al., 2016) 82.8% 94.9% - -
MAML, no conv (ours) 89.7+1.1% | 97.5+0.6% - -
Siamese nets (Koch, 2015) 97.3% 98.4% 88.2% 97.0%
matching nets (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%
neural statistician (Edwards & Storkey, 2017) 98.1% 99.5% 93.2% 98.1%
memory mod. (Kaiser et al., 2017) 98.4% 99.6% 95.0% 98.6%
MAML (ours) 98.7+0.4% | 99.9+0.1% | 95.8 +0.3% | 98.9 +£0.2%

5-way Accuracy
Minilmagenet (Ravi & Larochelle, 2017) 1-shot 5-shot

fine-tuning baseline

28.86 + 0.54%

49.79 + 0.79%

nearest neighbor baseline

41.08 £ 0.70%

51.04 £ 0.65%

matching nets (Vinyals et al., 2016)

43.56 + 0.84%

55.31 £ 0.73%

meta-learner LSTM (Ravi & Larochelle, 2017)

43.44 +0.77%

60.60 + 0.71%

MADML, first order approx. (ours)

48.07 +1.75%

63.15 +0.91%

MAML (ours)

48.70 + 1.84%

63.11 +0.92%
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Reinforcement learning

* rllab benchmark suite
» Neural network policy with two hidden layers of size 100 with ReLU

« Gradients updates are computed using vanilla policy gradient
(REINFORCE)
and trust-region policy (TRPO) optimization as meta-optimizer.

« Comparison
» Pretraining one policy on all of the tasks and fine-tuning
« Training a policy from randomly initialized weights
« Oracle policy
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Reinforcement learning

« 2d navigation

. . . 0.6 MAML
5  ssbontiobol 20 navigation pre-update
T —e— MAML (ours) 1 0.4 — 3 steps
@ --=-- pretrained 03 % goal position
87 AR random 0.2
S 10l e manta 4 0.1
c 10 oacle g — o
B __________ -0.1
9 —————— -0.2
N~ -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
D [ R A .
& - 3 U o pretrained
% —-102 L 0.5
0 1 o2 3 o
number of gradient steps o
0.2
num. grad steps 0 1 ) 3 01 pre-update
context vector | —42.42 | —13.90 | —5.17 | —3.18 moi] === SSeps
MAML (ours) | —40.41 | —11.68 | —3.33 | —3.23 1}k % goal position
—OA—ZOAS -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
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Reinforcement learning

» Locomotion
» High-dimensional locomotion tasks with the MuJoCo simulator

half-cheetah, goal velocity half-cheetah, forward/backward ant, goal velocity ant, forward/backward
— 120 [—

=
g —— MAML (ours)
(] --=-- pretrained
(=]
g -------- random
& —=- oracle

0 1 2 3 0 1 2 3 0 1 2 3l|o 1 2

number of gradient steps number of gradient steps number of gradient steps number of gradient steps

num. grad steps 0 1 2 3
context vector | —40.49 | —44.08 | —38.27 | —42.50
MAML (ours) | —50.69 | 293.19 | 313.48 | 315.65
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Conclusion

1. MAML is a meta learning technique that reuses past experiences to
achieve fast adaptation on new tasks.

2. It's simple, model-agnostic, and generally applicable to many tasks
such as classification, regression and RL.

3. It can be viewed from:

1. Feature learning standpoint: building an internal representation that is
broadly suitable for many tasks

2. Dynamical system standpoint: Maximizing the sensitivity of loss function
with respect to the parameters.
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Discussion

* Multi-task Learning vs Meta Learning.
* Why don’t we learn a single set of weights that are applicable to many tasks?

* Assumption of Meta Learning.

* Meta Learning assumes the tasks during training and test are drawn from the
same distribution. But in reality, it’s inevitable that we encounter tasks that
are out-of-distribution. In this case, is MAML still going to work?

* Continuous setting
e MAML assumes access to an offline training dataset
* What if the training data come in sequentially?
 How to fight against catastrophic forgetting?
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