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Abstract

Affordance1 modeling plays an important role in visual
understanding. In this paper, we aim to predict affordances
of 3D indoor scenes, specifically what human poses are af-
forded by a given indoor environment, such as sitting on
a chair or standing on the floor. In order to predict valid
affordances and learn possible 3D human poses in indoor
scenes, we need to understand the semantic and geometric
structure of a scene as well as its potential interactions with
a human. To learn such a model, a large-scale dataset of
3D indoor affordances is required. In this work, we build
a fully automatic 3D pose synthesizer that fuses seman-
tic knowledge from a large number of 2D poses extracted
from TV shows as well as 3D geometric knowledge from
voxel representations of indoor scenes. With the data cre-
ated by the synthesizer, we introduce a 3D pose generative
model to predict semantically plausible and physically fea-
sible human poses within a given scene (provided as a sin-
gle RGB, RGB-D, or depth image). We demonstrate that our
human affordance prediction method consistently outper-
forms existing state-of-the-art methods. The project web-
site can be found at https://sites.google.com/
view/3d-affordance-cvpr19.

1. Introduction
There is a long history of studies on functional reason-

ing of objects and scenes. Instead of focusing on the se-
mantics of objects and scenes, Gibson proposes the idea of
affordances [5], which can be seen as the “opportunities for
interactions” with the environment.

To infer the affordances of objects and scenes, re-
searchers have studied the explicit modeling of physical in-
teractions and contacts between human and the 3D scene
through simulations [35, 23, 7]. For example, Zhu et al. [35]
explicitly model sitting styles by inferring the forces and

∗This work is completed during an internship at NVIDIA.
1Affordances are opportunities for interactions in a scene or environ-

ment. It represents what interactions an environment could provide for
humans, e.g., a chair provides the opportunity to sit.
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Figure 1. Overview of the proposed method. Our method con-
tains two stages. First, we propose a fully-automatic 3D pose syn-
thesizer, which can synthesize an infinite number of 3D poses for
indoor scenes (see Section 3). We illustrate synthesized pose sam-
ples in the light blue box. Second, we learn an end-to-end 3D
affordance prediction model by jointly learning the distribution of
locations and 3D poses (see Section 4). We show generated poses
in the light orange box. Zoom-in to see details.

pressures from the interaction between humans and objects
in a scene. However, explicit modeling suffers from the
problem of generalization for other types of poses. To tackle
the problem of generalization, researchers have proposed to
directly infer affordances in a data-driven manner [4, 3, 27].
Specifically, Wang et al. [27] design a method to collect
human-scene interactions by processing video frames of
various TV shows and train CNNs for affordance reason-
ing. Though the method is able to generate semantically
plausible human poses aligned with scene images, it is not
able to follow the geometry of the 3D world and often pro-
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duces results violating physics (e.g., first row in Fig. 10) due
to a lack of 3D geometric information of the scenes (as the
data consists only of video frames and 2D poses).

In this paper, our goal is to learn a model that is able
to generate 3D human poses that not only follow natural
human behaviors (e.g., humans should sit rather than stand
on a chair), but also are physically feasible (e.g., humans
should not collide with objects). To achieve this goal, we
need to synthesize an appropriate dataset containing hu-
man poses in various indoor scenes. We first train a 2D
pose prediction model using an existing real-world video
dataset [27]. The trained model is then adapted to the in-
door images in the SUNCG dataset [26, 30], which con-
tains complete 3D annotations, e.g., camera parameters and
3D geometry (we use a voxel representation). Since there
exist well-defined links between the 2D images and the 3D
world, given these annotations, we can map the generated
2D poses into the 3D world. We further adjust these mapped
poses in 3D voxel space to make sure they are physically
feasible (no intersections with objects and well supported
by surrounding furniture). Our dataset synthesis approach
is fully automatic and can synthesize numerous, diverse
“ground-truth” poses in different locations.

Given this large amount of data, we are able to train an
affordance prediction model, which aims to generate 3D
human poses given a single scene image. We model the
pose distributions conditioned on the scene context, where
the pose distributions are factorized into the distributions
of (a) pose pelvis joint locations, and (b) pose appearance
on top of sampled locations. We name them the where and
what modules, respectively. The two modules are jointly
trained using the pose pelvis joint locations as a differen-
tiable bridge. Essentially, we propose a geometry-aware
discriminator to encourage the model to better understand
the geometry of the scene (see Fig. 4 (b)), even through a
single RGB image. We evaluate the plausibility of our gen-
erated 3D poses via user study as well as a trained classifier
that aims to score the “authenticity” of generated poses. We
also map generated poses back to the 3D voxel space to
evaluate their physical correctness in the 3D world.

Our main contributions can be summarized as:

• We propose an efficient, fully-automatic 3D human
pose synthesizer that leverages the pose distributions
learned from the 2D world, and the physical feasibility
extracted from the 3D world.

• We develop a generative model for 3D affordance pre-
diction which generates plausible human poses with
full 3D information, from a single scene image.

• We set a new benchmark for large-scale human-centric
affordance prediction on the SUNCG dataset by lever-
aging the human pose synthesizer and the pose gener-
ator.

2. Related Work
Scene understanding. In recent years, much progress has
been made [28, 1, 31] in the field of semantic scene un-
derstanding thanks to large-scale labeled datasets [33, 18].
A few methods [6, 29, 19] aim to specially model human-
scene interactions. However, they focus on detecting
human-object interactions rather than explicitly reasoning
about object functionality in a scene.
Object functionality reasoning. For deeper reasoning of
objects in a scene beyond the conventional scene under-
standing techniques, several approaches [7, 35, 32, 36] re-
visit the principle of affordance [5] via explicitly modeling
the functionality of objects in a scene. For instance, Grabner
et al. [7] propose to detect a chair by considering its func-
tionality (i.e. examining whether an imaginary human can
sit on the object). Zhu et al. [36] recognize tools and infer
their functionality by analyzing RGB-D videos. However,
these methods are hard to generalize to real-world scenarios
because they rely heavily on complete 3D geometry infor-
mation of a scene.
Human affordance prediction. Other than explicitly mod-
eling object functionality, several recent algorithms [15, 2,
34, 14] exploit human affordance in a data-driven manner.
Gupta et al. [8] manually associate human actions with ex-
emplar poses and search feasible locations for those actions
in a scene by performing 3D correlation between poses and
scene voxels. Fouhey et al. [3] propose to estimate human-
scene interactions and scene geometry by observing human
actions in time-lapse sequences. Roy and Todorovic [24]
predict affordance segmentation maps for specific actions
from single images by predicting and fusing mid-level vi-
sual cues. Wang et al. [27] collect human-scene and human-
object interactions by scanning through millions of video
frames in different TV series and train CNNs for human af-
fordance reasoning, which partly motivated our work. How-
ever, the data collection process still requires manual ef-
fort, and can only collect limited training examples (∼20K).
Without sufficient data and geometric knowledge of scenes,
it is hard for CNNs to follow the geometric constraints of a
scene, leading to results that often violate the physics.
Instance placement in a scene. Our affordance predic-
tion method which puts humans into feasible locations in
a scene can be seen as an instance placement task. Several
recent approaches [17, 21, 16] focus on predicting either
location or appearance of an instance in a scene. For ex-
ample, Lin et al. [17] propose to insert objects into feasible
locations in a scene. However, this method requires a user
provided template as the instance. Ouyang et al. [21] utilize
a Generative Adversarial Network to in-paint pedestrians at
given locations in a scene. Closest to our work, Lee [16]
jointly model a context-aware distribution of the location
and shape of object instances given a scene. Nevertheless,
their method focuses on inserting instances in 2D images



and does not consider any physical feasibility in 3D scenes.

3. 3D Pose Synthesis
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Figure 2. Pose synthesis. (a) Input image. (b) Location heat map.
The blue and red regions denote the areas suitable for standing and
sitting. (c) Generated pose. (d) Corresponding pose in the voxel.
(e) Adjusted pose in voxel. (f) Mapping from image to voxel.

Collecting a large-scale dataset of human poses with 3D
scene annotations is currently a tedious task [22]. In this
section, we show how to automatically synthesize “ground-
truth” 3D human poses in various indoor scenes. To en-
sure the correctness of generated poses, we take two fac-
tors into account: (i) semantic plausibility; the synthesized
poses should follow natural human behaviours in typical in-
door environments, and (ii) physical correctness; the human
poses should not collide with objects in a scene or float in
the air. To satisfy constraint (i), we learn a 2D human pose
generative model that encodes the natural human pose dis-
tributions from existing 2D examples [27] (see Fig. 2(a) to
(c) and Section 3.1). Then, given the camera parameters,
we map the generated poses into the 3D world represented
as voxels. (see Fig. 2(f)) and Section 3.2). Finally, we intro-
duce an efficient way to adjust the poses in the 3D scene to
satisfy constraint (ii) (see Fig. 2(d) to (e) and Section 3.3).

Overall, we use our pose synthesizer to produce around
1.5 million “ground-truth” poses, which are then used in
Section 4. Fig. 1 (light blue box) shows samples of poses
obtained by our pose synthesizer in 3D space and their pro-
jections onto 2D images.

3.1. Affordance Prediction in 2D Scene Images

We synthesize 3D human poses by first generating poses
in 2D images, then projecting them into the 3D world
as shown in Fig. 2. To this end, we utilize the Sitcom
dataset [27] which contains pose samples captured from sit-
com videos and train a human pose prediction model. Then
we adapt the trained model onto the SUNCG images to gen-
erate poses that follow natural human behaviors. The work
by Wang et al. [27] only focuses on predicting the most
plausible human pose at a feasible location in 2D scene im-
ages. However, the annotations of such feasible locations
are not available in the SUNCG dataset. Therefore, we need
to learn a network that predicts locations to put humans in a
scene, before utilizing the method in [27] to generate human
poses at each predicted location.

We represent each pose location by its pelvis joint coor-
dinates. A typical technique [24] for predicting human pose
locations is to learn a pixel-wise probability map of a scene.
However, the existing 2D pose annotations are highly sparse
(typically only a few poses per scene). To address this issue,
we augment the annotation from a single point to a local
square patch, assuming the nearby area can afford the same
pose. Furthermore, Wang et al. [27] cluster all poses into
30 clusters according to their gestures and feed the cluster
center corresponding to each pose as a condition to their
pose prediction model. Thus to utilize their pose predic-
tion model, we not only need to find feasible locations for
human poses, but also predict the most likely pose class at
each predicted location.

To this end, for each location that has a pose annotation,
we use a 31-dimensional binary vector to represent the cor-
responding pose class. Locations without pose annotations
are labeled as background (the 31st class). This results in a
31× h×w pose location map as the ground truch heatmap
for each scene, where h and w are the height and width of
the scene image. We learn a CNN that takes a scene image
as input and predicts the corresponding heat map. During
the testing process, we sample from the heat map and out-
put both locations possible for human poses as well as the
most likely pose class at these locations.

Since our ultimate goal is to generate 3D poses, we first
map 2D pose annotations in the Sitcom dataset to 3D poses
in the Human3.6M dataset [11] and then train the pose gen-
eration model in [27] to generate 3D poses. Detailed map-
ping process can be found in the appendix. In this way, we
extend the pose prediction in [27] from generating 2D poses
in given ground truth locations, to generating 3D poses at
sampled locations. Fig. 2(b) and (c) illustrate location heat
maps and poses predicted by our model respectively.

To narrow the domain gap between the SUNCG and the
Sitcom dataset, we perform domain adaptation [10] when
applying the trained model onto the SUNCG images, via
matching the second-order statistics of image features for
both location and pose prediction models. More details
about the domain adaptation can be found in the appendix.

3.2. Mapping Poses into 3D Scenes

Mapping a pixel from the image coordinates to the 3D
world requires its depth value and the camera parameters.
Unfortunately, depth values are not known for the gener-
ated human poses. However, we circumvent this problem
by estimating these depth values from the known real-world
distribution of human heights. We sample the height of a
human for standing pose from N (1.65, 0.1), and for sitting
pose from N (1.20, 0.1). Given the sampled human height
in 3D world, we can estimate the depth d of each pose by
d = H×f

Hp×r32
, where Hp is the pose height at pixel coor-

dinate system, H is the sampled human height mentioned
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Figure 3. Affordance adjustment. (a) Generated pose by the
model described in Section 3.1. (b) Corresponding pose in the
voxel space. (c) A scene voxel. (d) The surface of a bed (colored
in red) detected by a 3D Gaussian kernel. (e) Positive responses in-
dicating locations suitable for the given sitting pose (colored red).
(f) Adjusted pose at the location with the highest positive response.

above, f is focal length and r32 is a specific parameter in
camera extrinsic matrix. A detailed derivation is available
in the appendix. Fig. 2(f) illustrates the mapping process.
We take the resulting pose depth as the depth of the pelvis
joint and calculate the depths of other joints by their offsets
w.r.t. the pelvis joint. Then, we map each joint into the 3D
world using intrinsic and extrinsic camera matrices.

3.3. Affordance Constraint in the 3D World
Since the pose prediction model is trained with only 2D

information, a plausible generated pose may not be physi-
cally feasible when mapped to 3D, e.g., the pose collides
with the bed as exemplified in Fig. 2(d). Therefore, we
adjust it locally to make the pose physically feasible. For
example, we can adjust pose locations to avoid collision as
shown in Fig. 2(e), or adjust a sitting pose right onto the
surface of a bed as shown in Fig. 3(f).

The method by Gupta et al. [8] manually associates each
action with an exemplar pose and searches locations valid
for the pose by satisfying the free space constraint and the
support constraint. However, such a manual solution is not
feasible in our case since our poses are generated, rather
than selected from a set of fixed poses. We explain next how
to extend the method in [8] to search for locations satisfying
both constraints in an efficient and fully-automatic manner.
Free space constraint. The free space constraint states that
no human body parts can intersect with any object in the
scene, such as furniture or walls. To satisfy this constraint,
we perform a 3D correlation between poses and a voxel rep-
resentation of the scene. We denote the voxelized 3D pose
as p, with all voxel valued as one. We binarized the original
voxel (Fig. 3(c)) with the free space as zero, and the occu-
pied ones as one, denoted as Vf . The free space constraint
is satisfied in the locations where Rf below a threshold Tf :

Rf = p ∗ Vf (1)

where ∗ indicates a 3D correlation operation. Necessary
contacts between human and objects (e.g., a human touches
the chair when sitting, or the floor when standing) should be
considered. Thus we mask out these body parts that have to

contact with objects, including thigh and pelvis for sitting
poses and feet for standing poses, when performing the 3D
correlation.
Support constraint. The support constraint states that the
human pose should be supported by a surface of surround-
ing objects (e.g., floor, bed). We search locations that sat-
isfy this constraint by performing two 3D correlations. The
first correlation is performed between scene voxels Vs and
a 3D Gaussian kernel to detect voxel cells on the surfaces
of affordable objects (e.g., the bed in Fig. 3(d)). The Vs is
produced by marking all voxels of affordable objects (chair,
sofa, floor etc.) to zero, and the other voxels (including
unoccupied voxels or objects that can not support a human
pose) to one. After correlating with a 3D Gaussian kernel,
all voxels except voxels on the boundaries will be either
zero or one. Masking them out would leave us only vox-
els on affordable objects boundaries. We further mask out
boundary voxels that do not have an upward surface normal.

Next, we perform another 3D correlation between poses
and the object surfaces (see Fig. 3(e)) and take the location
with the maximum correlation score as the optimal loca-
tion for putting the pose (see Fig. 3(f)). Similar to the free
space constraint discussed above, we denote the voxelized
3D human pose and pre-processed affordable object bound-
ary voxel as p and Vs, the Gaussian kernel as G, then the
support constraint Rs can be expressed as:

Rs = p ∗ (G ∗ Vs) (2)

We adjust a pose to the “best location” where the person can
comfortably lay or sit with maximal contacting area with
the support surface. The location can be explicitly obtained
through localizing at the point with max (Rs). Note that
poses are adjusted in a local region to preserve the seman-
tic information. Poses that do not find a valid location are
discarded, i.e., the support constraint is satisfied in the loca-
tions where max (Rs) is above a threshold Ts.

4. 3D Affordance Generative Model
In this section, we show how to generate 3D human

poses conditioned on a single scene image using the synthe-
sized data described in Section 3. Generating human poses
in 3D scenes requires modeling the joint distribution of hu-
man scale, pose, location and interactions with objects in
3D, which is very challenging. A typical solution is to use
a single network to model the joint distribution of pose lo-
cations and gestures. This approach, however, will result
in a huge solution space and poor performance, as analysed
in Section 5.3. In contrast, we break it down to two jointly
learned sub-tasks, where the generative model for each sub-
task is much easier to learn, To be specific, we first predict
the plausible locations in a scene (see the where module in
Fig. 1 and Fig. 4 (a)) and then predict the suitable human
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Figure 4. Overview of the 3D affordance learning model. (a) Our end-to-end framework consists of a where (Section 4.1) and a what
(Section 4.2) component for pose location and gesture prediction respectively. (b) Detailed illustration of our adversarial training (blue
block in (a), detailed in Section 4.3). Grey blocks convert joint coordinates and depth to a “depth heat map”, which are pretrained and fixed
when jointly training the where and the what module. Blocks with same color share parameters.

poses that are aligned with their surrounding context (see
the what module in Fig. 1 and Fig. 4 (a)) of the predicted
locations. Both modules are jointly trained using the pose
location as a differentiable link, which allows the two mod-
ules to mutually benefit from each other, as well as from the
discriminator described in Section 4.3.

We take two factors into consideration when designing
both the where and the what modules. First, both mod-
ules should be able to understand the semantics of scene
context to generate poses that follow natural human behav-
iors (e.g., sit rather than stand on a sofa). To this end, we
model the distributions of pose locations and gestures by
two VAEs conditioned on the scene context. We explain
them in detail in Section 4.1 and Section 4.2 respectively.
Second, both modules should be able to hallucinate 3D ge-
ometry of the scene to generate poses that obey physical
rules in a scene (e.g., poses should be well supported by
objects rather than float in the air). To achieve this goal,
we introduce a geometry-aware discriminator that further
regularizes the two modules to generate physically correct
poses, which we discuss in Section 4.3. Fig. 4 illustrates the
complete pipeline of our pose prediction model.

4.1. The Where Module: Pose Locations Prediction

Given a scene image I , we build a where VAE to en-
code pose location in the 3D scene, by simultaneously re-
constructing pose pelvis joint coordinates (x, y) and depth
d, as well as the most likely pose class pc at the predicted
location. The standard variational equality is represented
as:

logP (Y |I)−KL(Q(z|Y, I)||P (z|Y, I)) (3)
= Ez∼Q(logP (Y |z, I))−KL(Q(z|Y, I)||P (z|I))

P (z|I) and Q(z|Y, I) are two normal distributions N (0, 1)
and N (µ(Y, I), σ(Y, I)) and KL represents the Kullback-
Leibler divergence.

The pose class pc provides a clue for the likely pose ap-
pearance (e.g., sitting or standing), which can be obtained

by assigning each pose to one of the 30 pose clusters de-
scribed in [27]. Note that [27] uses an one-hot vector to
represent the pose class, which does not consider the sim-
ilarities of different pose typologies between classes. Here
we directly represent pc by the normalized center pose of
each cluster so that similar pose classes also have similar
representations, i.e., each pc ∈ R3×17 (each pose contains
17 joints).
The structure of the where module. As illustrated in Fig. 4
(a), the encoder extracts image features using an 18 layer
ResNet [9] and concatenates them with the location features
and pose class features extracted by two fully connected
layers. The final concatenated feature is then fed into four
fully connected layers to predict µ(Y, I) and σ(Y, I) for dis-
tribution Q. The decoder takes a latent variable z sampled
from Q and the scene context features shared with the en-
coder to predict {x, y, d, pc}. Because it is challenging for
the model to associate numerical coordinates with the ex-
act location in the image, we predict a heat map in the de-
coder to indicate possible locations for a pose and adopt one
Differentiable Spatial to Numerical Transform (DSNT) [20]
layer to convert the heat map to pose location coordinates.
The objectives of the where module. We use three losses
in training the where module. First, we minimize the Eu-
clidean distance on the estimated pose class, depth and
pelvis coordinates by Lmse = ‖Y ∗ − Y ‖. Second, we
minimize the KL-divergence between the estimated distri-
bution Q and the normal distribution N (0, 1) by Lkld =
KL[Q(z|µ(Y, I), σ(Y, I))||N (0, 1)]. In addition, to bet-
ter associate predicted pelvis joint depth and pixel coordi-
nates, we minimize the Euclidean distance between ground
truth and predicted pelvis coordinates under the world co-
ordinate system using camera parameters for each scene.
We refer this loss as geometry loss and represent it as
Lgeo = ‖MeMi[x

∗, y∗, d∗]−MeMi[x, y, d]‖, where Me

and Mi are camera extrinsic and intrinsic matrices. Our fi-
nal objective is:

L = λmseLmse + λkldLkld + λgeoLgeo, (4)

where λmse, λkld, λgeo are the weights that balance the



Figure 5. Sampled locations by the “where” module. In each
scene, we show 30 locations sampled by our “where” module. For
visualization purpose, we color pelvis joint locations for standing
poses and sitting poses red and green respectively.

three objective terms.
We visualize the sampled locations conditioned on each

scene image in Fig. 5. As shown in this figure, our “where”
module (a) understands the scene and predicts reasonable
locations for sitting poses around an affordable object or
locations on correct height for standing poses. (b) generates
multiple locations given a single scene image.

4.2. The What Module: Pose Gestures Prediction
The what module takes pelvis joint coordinates (x, y),

depth d and pose class pc predicted by the where module as
well as a scene image I as inputs, and learns to predict co-
ordinates and depth of each joint in p ∈ R3×17, so that the
generated pose p can align well with its surrounding con-
text. In other words, the what module needs to understand
the scene context, and be able to sample poses conditioned
on it. Similarly, we model the pose appearance distribution
with a conditional VAE, which is represented as:

log(P (S|R, I))−KL(Q(z|S,R, I)||P (z|S,R, I)) (5)

= Ez∼Q(logP (P |z,R, I))−KL(Q(z|S,R, I)||P (z|R, I)),

where S represents the coordinates and depth {x, y, d} for
each joint, R denotes {x, y, d, pc} predicted by the where
module. Other symbols follow those in Section 4.1.
The structure and objectives of the what module. Our
what module shares similar structure as the where module
(Fig. 4), except that the inputs are pose location, scene con-
text and pose class, and the outputs are the coordinates and
depth for each joint.

Similar to the where module, the what module contains
three losses: a Euclidean loss on estimated joint coordi-
nates and depth Lmse = ‖S∗ − S‖, a KL-divergence loss
Lkld = KL[Q(z|µ(R, I), σ(R, I))||N (0, 1)], and a geom-
etry loss Lgeo =

∥∥MeMi[x
∗
j , y

∗
j , d

∗
j ]−MeMi[xj , yj , dj ]

∥∥,
where [xj , yj , dj ] are pixel coordinates and depth for joint j.
While our goal is to model the shape of poses through mod-
eling the joint distribution of joints S, the final objective is
same as in Equation 4.

4.3. The Geometry-Aware Discriminator

In this work, we aim to generate poses in 3D scenes that
follow physical rules in the scene, which requires our model

to properly hallucinate the 3D scene geometry merely from
a 2D image. To this end, in addition to including the
depth value of each pose during training, we introduce a
geometry-aware discriminator that further regularizes the
where and what module simultaneously to generate poses
that obey geometry rules in the scene.

As shown in Fig. 4(b), the discriminator takes generated
poses and scene depth images as inputs and learns to dis-
criminate between geometrically feasible (real) vs. unfeasi-
ble (fake) pairs. However, it is challenging for the discrimi-
nator to associate the discrete depth value of each joint to a
scene depth map (i.e., the depth of each point between two
connected joints is not modeled). Thus we first train a net-
work which converts coordinates and depth of each joint to
a “depth heat map” (Fig. 4(b)), where each pixel is either
the depth of a point between two joints or −1 for back-
ground pixels. Details about the network are available in
the appendix. We then feed this “depth heat map” together
with the scene depth image into the discriminator. Our final
adversarial objective is:

Ladv(G,D) =Ec,pr [logD(F (pr), c)]+

Ec,pz [log (1−D(F (pz), c))]
(6)

where G and D represent the pose prediction model and
the discriminator model, F represents a pre-trained CNN
that converts joint coordinates and depth to the “depth heat
map” described above, pr and pz denote ground truth and
generated poses, c denotes the depth image of the scene.

We note that both the geometry-aware discriminator as
well as the geometrically feasible/unfeasible labels are uti-
lized only during training. During testing, only the the part
shown in Fig. 4(a) is needed to support single image con-
ditioned generation, which makes the algorithm easy to be
adapted to many application scenarios.

5. Experimental Results
In this section, we first introduce the details of our syn-

thesized dataset and the quantitative evaluation metrics in
Section 5.1. Then, we present the experimental results of
our affordance prediction model in Section 5.2, as well as
the ablation studies to understand how the main modules of
the proposed algorithm contribute in Section 5.3. Finally,
we compare the proposed method with the state-of-the-art
affordance prediction method [27] in Section 5.4.

5.1. Dataset Synthesis and Evaluation Metrics

Dataset synthesis. As described in Section 3, we use the
Sitcom dataset [27] for pose prediction in images and map
the generated poses into the scene voxels in the SUNCG
dataset [30, 26] for 3D pose affordance correction. In total,
we apply the synthesizer to generate 1.5 million poses in
13, 774 SUNCG scenes. We use 13, 074 scenes for training
and 700 scenes for evaluation.



Figure 6. Generated poses by our model. The three rows show generated poses by models that take a RGB, RGB-D or depth map as
input. For each scene, the first column illustrates pose projections in 2D scene images, and the last two columns illustrate poses in scene
voxels visualized from different views.
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Figure 7. Semantic plausibility evaluation. (a) User study re-
sults. Each subject is asked to select the more reasonable pose
through pairwise comparisons. The number indicates the percent-
age of preference on that comparison pair. “GT” means ground
truth poses. (b) Manually annotated negative pose samples that
are either impossible (column 1) or uncommon (column 2) in an
indoor environment.

Quantitative evaluation metrics. The primary goal of this
paper is to model 3D human affordance by generating hu-
man poses that are semantically plausible and physically
feasible in a given scene. The semantic plausibility de-
scribes how reasonable a generated pose looks in an indoor
environment. We design two ways to evaluate it.

First, we train a pose authenticity classifier to determine
whether a generated pose is plausible. To train the classi-
fier, we collect the ground truth poses from our synthesizer
in Section 3 as positive samples, and manually annotate the
negative samples following [27]. As shown in Fig. 7(b),
the negative pose samples are either impossible or uncom-
mon to appear in an indoor environment. In total, we col-
lect 18, 000 pose samples in different scenes for training,
and 1, 400 pose samples for evaluation. Both the training
and the testing dataset contain an equal number of positive
and negative poses. Our trained pose authenticity classi-
fier achieves a classification accuracy as high as 86% on the
testing dataset, and is ready to be used to test the plausibility
of a pose, i.e., to check if a pose looks like a natural human

pose in the given scene context. We define the ratio of poses
that are classified as positive by the pose authenticity clas-
sifier as “semantic score”. High semantic scores indicate
that the model is able to understand the scene semantics to
generate plausible poses in an indoor environment.

Second, we conduct a user study to let humans to deter-
mine how authentic the generated poses look like. Given
a pair of poses sampled from ground truth poses and gen-
erated poses, either by the baseline method [27] or our
method, in the same scene, a user is asked to select the pose
that is more reasonable in an indoor environment. Fig. 8
shows the instructions and web UI. Note that since we fo-
cus on visual plausibility, both the generated/ground truth
poses and the scenes for user study are projected and dis-
played as 2D images, which can be compared with [27].

Instructions
In this survey, we would like to estimate whether generated
poses in a scene are reasonable by different methods. For fair
comparison, we do not show occlusion in the user study.
Thus the circled pose looks unreasonable (left), but they are
CORRECT when shown with occlusion (right).

what we show in the user study what the pose actually is

Figure 8. User study instructions and interface. (Left) Instruc-
tions, (Right) User interface.

Finally, to check if a generated pose violates the geomet-
ric rules in a scene, we map it into the corresponding scene
voxel, and check if the pose satisfies the free space con-
straint and support constraint as discussed in Section 3.3.
We re-utilize the constraints as our evaluation criteria, by
defining the ratio of poses that satisfy both constraints as
geometry score. To be specific, for a standing pose, it sat-
isfies the support constraint if the feet of the pose is within
8 voxel units (each voxel unit is 0.02 meter) of the floor.
For a sitting pose, it satisfies the support constraint if there



is an affordable surface (with Ts >= 100 as discussed in
Section 3.3) within 8 voxel units of the pose. Furthermore,
a pose that intersects less than or equal to 5 voxels (i.e.
Tf <= 5) is considered satisfying the free space constraint.
High geometry scores indicate that the model can halluci-
nate the 3D geometry and obey the geometry rules in the
scene.

5.2. 3D Affordance Prediction

We visualize the generated poses by our where and what
module with different input modalities in Fig. 6. We present
quantitative evaluations in Table 1. For each model, we
generate 3, 500 poses and calculate the semantic as well as
geometry score over these poses. Note that the previous
work [27] only focuses on predicting pose gestures at given
locations. For a fair comparison, we combine the location
heat map prediction model introduced in section 3.1, with
the pose generator from [27] as our baseline model. Fur-
thermore, since the baseline model is not able to predict the
pose depth values, to calculate the geometry score described
in Section 5.1, we adopt the strategy as introduced in Sec-
tion 3.2 to estimate the pose depth and map the poses into
the 3D scene.

Even with a single RGB image as input, our method
achieves 19.47% higher semantic score, and 19.02% higher
geometry score than the baseline model (see Table 1(b) and
(c)). The results indicate that our model is able to under-
stand both the context and moreover, the geometry of a
scene. In addition, we generate 50 poses in different scenes
and conduct the user study discussed in Section 5.1. In to-
tal, we collect 400 votes from 20 users and present the result
in Fig. 7(a). According to the user study result, the poses
generated by our method are not only more reasonable than
poses predicted by the baseline method, but also indistin-
guishable from the ground truth poses.

Furthermore, we show that our pose prediction model
can be further improved by including depth information of
the scene. Specifically, we train two variants of our model
that take a RGB-D or a depth map as input and present their
performance in Table 1. From this table, we can see that in-
cluding depth information of the scene constantly improve
the geometry score of the pose prediction model under dif-
ferent experimental settings. Similar observations can also
be found in Fig. 6, where the sitting pose generated by the
model that takes a RGB image as input floats above the sofa
(column 3, row 1), while the sitting pose generated by the
model that takes a RGB-D or depth map as input aligns well
with the sofa (column 3, row 2 and 3).

5.3. Ablation Studies

A single model for affordance learning. We conduct a
baseline method to show that a single, straightforward gen-
erative network does not work for modeling complex joint
distributions – we use a single VAE to encode 2D scene,

close far& − 0.5 & − 0.25 & + 0.25 & + 0.5

Figure 9. Depth interpolation. In the first scene (top row), closer
poses are smaller than farther poses. In the second scene (bottom
row), the generated poses change from standing to sitting when
depth varies from d− 0.5 to d+0.5, which corresponds well with
the sofa in the back of the scene.

pose locations and gestures, where all the other settings re-
main the same. We obtain semantic and geometry scores
of 76.23 and 52.94 when taking RGB images as inputs (Ta-
ble 1 (b)), which are much worse than the proposed method
(Table 1 (c)).
Joint training. First, we evaluate our model without joint
training the where and what module. Table 1(c) vs. (e)
shows the significant contribution of joint training for the
semantic score. Without it, the semantic score reduces by
8.06% when taking a RGB image as input. We observe that
although the model without joint training present higher ge-
ometry score, many of the generated locations have wrong
depth values, which lead to unreasonably small poses that
do not collide with other objects.

Adversarial training. Hallucinating 3D geometry purely
based on 2D information is a challenging task. Thus we
propose to use a geometry-aware discriminator which con-
ditions on the depth map of a scene and learns to discrimi-
nate generated poses from “ground truth” poses (see Section
4.3). Table 1(c) vs. (d) shows the effectiveness of adversar-
ial training. With adversarial training, our model is able to
generate poses that better obey the rules of geometry in a
scene (higher geometry score).

Geometry loss. A pose that looks plausible in a 2D con-
text may still violate the rules of geometry when mapped
into the 3D scene. Thus, to encourage our model to gen-
erate poses that are consistent with the geometry of the 3D
world, we minimize the Euclidean distance between pre-
dicted poses and ground truth poses in the world coordinate
space. Table 1(c) vs. (f) demonstrates the contribution of
the geometry loss. Without it, the geometry score drops by
4.59% when taking a RGB image as input.

5.4. Comparison with State-of-the-Art

In this section, we follow the experimental settings by
Wang et al. [27] and only focus on pose generation at given
locations, i.e., the what module. To have a fair compar-
ison, we train a what module that takes the same inputs
as [27], i.e., the 2D pelvis coordinates (x, y) and predicts



Table 1. Quantitative evaluation of our affordance prediction model. We show comparisons of our model with three different input
modalities against the baseline model described in Section 5.2 in (b) and (c). Additionally, we show the performance of different variants
of our model in (d) to (f) as discussed in Section 5.3.

.
(a) Metric (b) Baseline (c) Ours (d) Ours w/o adversarial (e) Ours w/o joint training (f) Ours w/o geometry loss

RGB RGB-D Depth RGB RGB-D Depth RGB RGB-D Depth RGB RGB-D Depth
semantic score 72.53 91.69 91.14 89.86 90.17 91.6 89.31 83.34 81.40 77.09 89.74 88.40 88.11
geometry score 23.25 66.40 71.17 72.11 62.71 72.00 70.91 46.46 71.37 60.83 56.11 66.40 63.77

Table 2. Quantitative evaluation of the what module. We show
comparisons between the baseline model [27] and our model with
three different input modalities.

Model Baseline Ours
RGB RGB-D Depth

semantic score 91.29 91.43 91.86 90.86
geometry score 56.29 78.43 82.00 84.00

Figure 10. Pose generation at given locations. We show poses
generated by the baseline method [27] (top row) and our method
(bottom row) at given locations. The first column shows pose pro-
jections in scene images, and the last two columns show generated
poses in 3D voxels visualized from two different views.

the coordinates as well as depth for each joint. We train
the model in [27] on the SUNCG dataset with the synthe-
sized poses for the ease of comparison. This model takes the
2D pelvis coordinates (x, y) as our model but only predicts
2D coordinates of each joint. Table 2 shows the quantita-
tive scores of these two models. Note that we use similar
method to calculate geometry score for the baseline method
discussed in Section 5.2. As shown in the table, our model
achieves 6.66% higher geometry score, indicating that our
model performs favorably in generating poses that obey the
physical rules in the scene. The same observation can also
be found in Fig. 10. Though given the same location, both
the poses generated by our model and the baseline model
appear plausible in the 2D image, only our generated pose
is geometrically valid when mapped into the 3D scene.

A 2D coordinate (x, y) in a 2D scene image may cor-
respond to multiple locations in the 3D scene with different
depth values. A model that is able to hallucinate the geome-
try of a scene should be able to predict different poses at the
same (x, y) location with different depth values. To inspect
whether such geometry knowledge has been learned by our
what module properly, we train another model that only de-
pends on 3D pose locations and scene images. We partic-
ularly remove the pose class pc in order to eliminate any
clue that may indicate the geometrical information. Other

Figure 11. Failure cases. (Top) Semantic failure: failing to predict
socially acceptable poses. (Bottom) Geometric failure: incorrectly
hallucinating geometric information of the scene.

settings are the same as the what model described in Sec-
tion 5.2. During testing, we fix pelvis coordinates and the
input scene image while interpolating depth between d−0.5
to d+ 0.5, where d is the ground truth pelvis depth. As we
can see in Fig. 9, our model is able to generate poses with
different scales and actions that well align with the scene
according to different depth values, indicating its ability to
hallucinate the 3D geometry of a scene properly.

5.5. Failure Cases

Fig. 11 shows some failure cases. We mainly have two
types of failure cases: (a) generated poses do not align well
with the semantic context due to wrong semantic under-
standing of the scene (e.g., mistakenly sitting on the cab-
inet) (b) generated poses do not obey geometric rules (e.g.,
colliding with the objects in a scene). These are caused by a
failure of object functionality understanding or 3D geome-
try hallucination based on 2D information, i.e., reasoning,
which is an interesting open problem for future research.

6. Conclusion

In this work, we propose to predict where and what
human poses can be put in 3D scenes using a two stage
pipeline. We develop a 3D pose synthesizer that can pro-
duce millions of ground truth poses in 3D scenes automat-
ically by fusing semantic and geometric knowledge from
the Sitcom dataset [27] and a 3D scene dataset [26, 30].
Then we learn an end-to-end generative model that pre-
dicts both locations and gestures of human poses that are
semantically plausible and geometrically feasible. Exper-
imental results demonstrate the effectiveness of our pro-
posed method against the stage-of-the-art human affordance
prediction method.
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A. From 2D Pose to 3D Pose (Section 3.1)

pelvis joint

(a) (b)

2D pose from Sitcom Mapped 3D poses 
in Human3.6M

view 1 view 2

Figure 12. (a) We represent each pose using the coordinates of 17
joints. We represent the pose location using the coordinates of the
pelvis joint (green dot). (b) We map each 2D pose from [27] to
a 3D pose in the Human3.6M dataset [12]. The last two columns
show corresponding 3D pose of the 2D pose in column 1 visual-
ized from two different views.

As discussed in Section 3.1, we map 2D poses anno-
tated by Wang et al. [27] to 3D poses in the Human3.6M
dataset [11]. This is carried out by first rotating each 3D
pose by θ radian uniformly sampled from [−π, π], then pro-
jecting it onto the xy plane. For each 2D pose, we search
for its nearest neighbor with minimal Euclidean distance
among all projected 2D poses and take the corresponding
3D pose as its 3D mapping. Fig. 12(b) shows examples of
mapped 3D poses of 2D poses.

In this work, we represent pose location using the pelvis
joint coordinates as shown in Fig. 12(a). For pose gesture
representation, we use 17 joint coordinates, resulting a 34
dimensional vector for 2D poses and a 51 dimensional vec-
tor for 3D poses.

B. Mapping Poses into 3D Scenes (Section 3.2)
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Figure 13. (a) Mapping from pixel coordinate system to world co-
ordinate system. (b) Illustrations of human height Hp in pixel
coordinates, “highest joint” and “lowest joint” in the pose. (c) Il-
lustrations of human height in world coordinate system.

We present more details of how to estimate the depth
of a pose (denoted as d), given the generated human pose
on the image and the approximated human height in the
real world, as described in Section 3.2. We sample human

heightH in the real world from a Gaussian distribution, i.e.,
N (1.65, 0.1) for standing poses andN (1.20, 0.1) for sitting
poses. We denote the 2D coordinates of the “highest joint”
(usually the head joint) and the “lowest joint” (usually the
one of the foot joint) as (uh, vh) and (ul, vl) as shown in
Fig. 13. In addition, we denote camera intrinsic matrix Mi

and extrinsic matrix Me as:

Mi =

f 0 ox
0 f oy
0 0 1

 Me =

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 (7)

The world coordinates of joint (uh, vh) is calculated by:

Xh

Yh

Zh

 =

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



xch

ych
d
1

 (8)

where (xch, ych, d, 1) is the camera coordinate of (uh, vh),
which is calculated by:

xch =
(uh − ox)d

f
, ych =

(vh − oy)d
f

(9)

From (8) we have Zh = r31xcl + r32ycl + r33d+ t1. Sim-
ilarly, we have the Z coordinate Zl = r31xcl + r32ycl +
r33d + t1 to represent the “lowest joint”. Given the hu-
man height H in real world, we have H = Zh − Zl =
r31(xch−ycl)+r32(ych−ycl). By substituting (9) into this
equation, we haveH = r31d

f (uh−ul)+ r32d
f (vh−vl). Note

that (uh−ul) and (vh−vl) are the pose heightHp and width
Wp in the pixel coordinate system as shown in Figure 12(b),
thus we can calculate pose depth by d = H×f

r31×Wp+r32×Hp
.

Specifically, for the SUNCG dataset [30, 26], r32 = 0 for
all scenes, we simplify the depth estimation equation above
as d = H×f

r32×Hp
, as concluded in Section 3.2.

C. Location Prediction in 2D Scene Images
(Section 3.1)

R
esN

et
18 convolution

deconvolution

Figure 14. Architecture of the location prediction model. The en-
coder is a 18-layer ResNet [9] without the last two fully connected
layers. The decoder is a 11-layer CNN with an extra Softmax layer
at the end to normalized the generated heat map.

Fig. 14 illustrates the structure of our 2D pelvis location
prediction model, as discussed in Section 3.1. Fig. 17 shows
predicted heat maps and poses for the Sitcom [27] and the
SUNCG dataset. We train the heat map prediction model
for 5, 000 iterations using the Adam [13] solver. For data



augmentation, we randomly crop a 384 × 384 patch from
a 448 × 448 image, we set batch size to 100 and learning
rate to 0.001. For pose generation at given locations, we use
the same model as [27]. Note that instead of predicting 2D
poses, we directly predict 3D poses obtained via 2D to 3D
pose mapping, as described in Appendix A and Section 3.1.

D. More Details for 3D Pose Prediction (Sec-
tion 4)

The where and what modules. We first train the where
and what module discussed in Section 4.1 and 4.2 for 80000
iterations using the Adam [13] solver. Specifically, we set
the batch size as 100 and the learning rate as 0.0001. Then,
we connect the two modules and jointly finetune them with
the geometry-aware discriminator, as introduced in Sec-
tion 4.3, for another 50000 iterations. We adopt the similar
training strategy as Lee et al. [16] and only use the discrim-
inator to regularize an unsupervised path for both modules,
i.e., the discriminator is used to regularize the distributions
of generated poses that coming from the random noises, in-
stead of interacting with the VAE block in a direct man-
ner. We observe that such network architecture brings sig-
nificant improvement to the generated results. Fig. 18 (a)
shows the detailed structure of our supervised and unsuper-
vised path and Fig. 18 (b), (c) shows the detailed structure
of our where and what module.

Geometry-aware discriminator. As discussed in Sec-
tion 4.3, we propose a geometry-aware discriminator to fur-
ther regularize the generator to generate poses that obey the
rules of geometry in a scene. However, it is challenging
for the discriminator to associate joint coordinates, i.e., a
3-dimensional tensor, with the image. Therefore, we first
train a CNN to convert the coordinates and depth of joints,
into a “depth heat map” that has the same dimension as the
input image. Fig. 18(d) illustrates the structure of this CNN.
We train the CNN for 5000 iterations using the Adam [13]
solver with a learning rate of 0.0002. Fig. 18(e) further
shows the detailed structure of our geometry-aware discrim-
inator.

E. Additional Experimental Results
We show synthesized poses in scene images and voxels

in Fig. 15. More results of generated poses in images and
scene voxels are shown in Fig. 16. Note that in this work
we use the SUNCG-PBR dataset by Sengupta et al. [25].
Despite noise introduced by the rendering process, our pose
prediction model is still able to predict plausible poses.



Figure 15. Samples of synthesized poses. (Top) Sample poses shown in 3D scene geometry, and (Bottom) rendered images of the corre-
sponding scenes. Note that the generated poses contain information about occlusion in the scene.

Figure 16. Generated poses by our pose prediction model. We show generated poses in images (first column) and voxels visualized from
two different views (last two columns) for each scene. Poses are generated by our model which takes a single depth image as input.

Figure 17. Predicted pose location heat maps and sampled poses. First three columns show results on Sitcom and last three columns show
results on SUNCG. For visualization purpose, we summarize area suitable for sitting pose location (shown as red area), area suitable for
standing pose location (shown as blue) as well as area not suitable for any human poses (shown as light yellow) in predicted heat maps.
All poses shown in the bottom row are projections of 3D poses generated by our model.



!

!"#$ %$ &' $ !(

#" $%" $&" $!(")

)encoder de
co

de
r encoder de

co
de

r

*+
,
-.$/0

*+
,
-.$/0

de
co

de
r

*+,-1$20 #" $%" $&" $!("

de
co

de
r

*+,-1$20

supervised path

unsupervised path
3
4
5
6real

fake

3789
3:;5 3:;5

3789

(d) The CNN converts the joint coordinates and depth to a “depth 
heat map”.

concat real/fake?

(e) The structure of the geometry-aware discriminator.
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(c) Detailed illustration of the what module.

Figure 18. Detailed structure of each block in our pose prediction model. We show the overview of our pose prediction model, including
the supervised and unsupervised path explained in Appendix D in Fig. (a). Detailed structure of each block is illustrated in (b), (c), (d) and
(e) respectively, same blocks are filled with same background color.


