
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Visual Foresight: Model-Based Deep
Reinforcement Learning for Vision-Based

Robotic Control
Frederik Ebert*, Chelsea Finn*, Sudeep Dasari, Annie Xie, Alex Lee, Sergey Levine

Abstract—Deep reinforcement learning (RL) algorithms can learn complex robotic skills from raw sensory inputs, but have yet to
achieve the kind of broad generalization and applicability demonstrated by deep learning methods in supervised domains. We present
a deep RL method that is practical for real-world robotics tasks, such as robotic manipulation, and generalizes effectively to
never-before-seen tasks and objects. In these settings, ground truth reward signals are typically unavailable, and we therefore propose
a self-supervised model-based approach, where a predictive model learns to directly predict the future from raw sensory readings,
such as camera images. At test time, we explore three distinct goal specification methods: designated pixels, where a user specifies
desired object manipulation tasks by selecting particular pixels in an image and corresponding goal positions, goal images, where the
desired goal state is specified with an image, and image classifiers, which define spaces of goal states. Our deep predictive models are
trained using data collected autonomously and continuously by a robot interacting with hundreds of objects, without human
supervision. We demonstrate that visual MPC can generalize to never-before-seen objects—both rigid and deformable—and solve a
range of user-defined object manipulation tasks using the same model.

Index Terms—Deep Reinforcement Learning, Video Prediction, Robotic Manipulation, Model Predictive Control

F

Figure 1: Our approach trains a single model from unsupervised interaction that generalizes to a wide range of tasks and
objects, while allowing flexibility in goal specification and both rigid and deformable objects not seen during training.
Each row shows an example trajectory. From left to right, we show the task definition, the video predictions for the
planned actions, and the actual executions. Tasks can be defined as (top) moving pixels corresponding to objects, (bottom
left) providing a goal image, or (bottom right) providing a few example goals. Best viewed in PDF.

1 INTRODUCTION

Humans are faced with a stream of high-dimensional
sensory inputs and minimal external supervision, and yet,
are able to learn a range of complex, generalizable skills
and behaviors. While there has been significant progress
in developing deep reinforcement learning algorithms that
learn complex skills and scale to high-dimensional obser-
vation spaces, such as pixels [1], [2], [3], [4], learning be-
haviors that generalize to new tasks and objects remains
an open problem. The key to generalization is diversity.
When deployed in a narrow, closed-world environment, a
reinforcement learning algorithm will recover skills that are
successful only in a narrow range of settings. Learning skills
in diverse environments, such as the real world, presents a
number of significant challenges: external reward feedback
is extremely sparse or non-existent, and the agent has only

• The first two authors contributed equally.

Manuscript received 11/22/2018

indirect access to the state of the world through its senses,
which, in the case of a robot, might correspond to cameras
and joint encoders.

We approach the problem of learning generalizable be-
havior in the real world from the standpoint of sensory
prediction. Prediction is often considered a fundamental
component of intelligence [5]. Through prediction, it is
possible to learn useful concepts about the world even from
a raw stream of sensory observations, such as images from
a camera. If we predict raw sensory observations directly,
we do not need to assume availability of low-dimensional
state information or an extrinsic reward signal. Image ob-
servations are both information-rich and high-dimensional,
presenting both an opportunity and a challenge. Future
observations provide a substantial amount of supervisory
information for a machine learning algorithm. However, the
predictive model must have the capacity to predict these
high-dimensional observations, and the control algorithm

ar
X

iv
:1

81
2.

00
56

8v
1

 [
cs

.R
O

]
 3

 D
ec

 2
01

8

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

must be able to use such a model to effectively select actions
to accomplish human-specified goals. Examples of such
goals are shown in figure 1.

We study control via prediction in the context of robotic
manipulation, formulating a model-based reinforcement
learning approach centered around prediction of raw sen-
sory observations. One of the biggest challenges in learning-
based robotic manipulation is generalization: how can we
learn models that are useful not just for a narrow range of
tasks seen during training, but that can be used to perform
new tasks with new objects that were not seen previously?
Collecting a training dataset that is sufficiently rich and
diverse is often challenging in highly-structured robotics ex-
periments, which depend on human intervention for reward
signals, resets, and safety constraints. We instead set up a
minimally structured robotic control domain, where data is
collected by the robot via unsupervised interaction with a
wide range of objects, making it practical to collect large
amounts of interaction data. The robot collects a stream
of raw sensory observations (image pixels), without any
reward signal at training time, and without the ability to
reset the environment between episodes. This setting is both
realistic and necessary for studying RL in diverse real-world
environments, as it enables automated and unattended col-
lection of diverse interaction experience. Since the training
setting affords no readily accessible reward signal, learning
by prediction presents an appealing option: the supervision
signal for prediction is always available even in the stream
of unsupervised experience. We therefore propose to learn
action-conditioned predictive models directly on raw pixel
observations, and show that they can be used to accomplish
a range of pixel-based manipulation tasks on a real robot in
the physical world at test-time.

The main contributions of this work are as follows.
We present visual MPC, a general framework for deep re-
inforcement learning with sensory prediction models that
is suitable for learning behaviors in diverse, open-world
environments (see figure 2). We describe deep neural net-
work architectures that are effective for predicting pixel-
level observations amid occlusions and with novel objects.
Unlike low-dimensional representations of state, specifying
and evaluating the reward from pixel predictions at test-
time is nontrivial: we present several practical methods
for specifying and evaluating progress towards the goal—
including distances to goal pixel positions, registration to
goal images, and success classifiers—and compare their
effectiveness and use-cases. Finally, our evaluation shows
how these components can be combined to enable a real
robot to perform a range of object manipulation tasks from
raw pixel observations. Our experiments include manipu-
lation of previously unseen objects, handling multiple ob-
jects, pushing objects around obstructions, handling clutter,
manipulating deformable objects such as cloth, recovering
from large perturbations, and grasping and maneuvering
objects to user-specified locations in 3D-space. Our results
represent a significant advance in the generality of skills that
can be acquired by a real robot operating on raw pixel values
using a single model.

This article combines and extends material from several
prior conference papers [6], [7], [8], [9], presenting them in
the context of a unified system. We include additional ex-

Figure 2: Overview of visual MPC. (top) At training time,
interaction data is collected autonomously and used to train
a video-prediction model. (bottom) At test time, this model
is used for sampling-based planning. In this work we discuss
three different choices for the planning objective.

periments, including cloth manipulation and placing tasks,
a quantitative multi-task experiment assessing the perfor-
mance of our method on a wide range of distinct tasks
with a single model, as well as a comprehensive, open-
sourced simulation environment to facilitate future research
and better reproducibility. The code and videos can be found
on the project webpage1.

2 RELATED WORK

Model-based reinforcement learning. Learning a model to
predict the future, and then using this model to act, falls
under the general umbrella of model-based reinforcement
learning. Model-based RL algorithms are generally known
to be more efficient than model-free methods [10], and
have been used with both low-dimensional [11] and high-
dimensional [12] model classes. However, model-based RL
methods that directly operate on raw image frames have not
been studied as extensively. Several algorithms have been
proposed for simple, synthetic images [13] and video game
environments [14], [15], [16], but have not been evaluated
on generalization or in the real world, while other work
has also studied model-based RL for individual robotic
skills [17], [18], [19]. In contrast to these works, we place
special emphasis on generalization, studying how predictive
models can enable a real robot to manipulate previously
unseen objects and solve new tasks. Several prior works
have also sought to learn inverse models that map from
pairs of observations to actions, which can then be used
greedily to carry out short-horizon tasks [20], [21]. However,
such methods do not directly construct longer-term plans,
relying instead on greedy execution. In contrast, our method
learns a forward model, which can be used to plan out a
sequence of actions to achieve a user-specified goal.
Self-supervised robotic learning. A number of recent
works have studied self-supervised robotic learning, where
large-scale unattended data collection is used to learn in-
dividual skills such as grasping [22], [23], [24], [25], push-
grasp synergies [26], or obstacle avoidance [27], [28]. In

1. For videos & code: https://sites.google.com/view/visualforesight

https://sites.google.com/view/visualforesight

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

contrast to these methods, our approach learns predictive
models that can be used to perform a variety of manipu-
lation skills, and does not require a success measure, event
indicator, or reward function during data collection.
Sensory prediction models. We propose to leverage sen-
sory prediction models, such as video-prediction models, to
enable large-scale self-supervised learning of robotic skills.
Prior work on action-conditioned video prediction has stud-
ied predicting synthetic video game images [16], [29], 3D
point clouds [19], and real-world images [30], [31], [32],
using both direct autoregressive frame prediction [31], [32],
[33] and latent variable models [34], [35]. Several works have
sought to use more complex distributions for future images,
for example by using pixel autoregressive models [32], [36].
While this often produces sharp predictions, the resulting
models are extremely demanding computationally. Video
prediction without actions has been studied for unstruc-
tured videos [33], [37], [38] and driving [39], [40]. In this
work, we extend video prediction methods that are based on
predicting a transformation from the previous image [31],
[40].

3 OVERVIEW

In this section, we summarize our visual model-predictive
control (MPC) method, which is a model-based reinforce-
ment learning approach to end-to-end learning of robotic
manipulation skills. Our method, outlined in Figure 2,
consists of three phases: unsupervised data collection, pre-
dictive model training, and planning-based control via the
model at test-time.
Unsupervised data collection: At training time, data is col-
lected autonomously by applying random actions sampled
from a pre-specified distribution. It is important that this
distribution allows the robot to visit parts of the state space
that are relevant for solving the intended tasks. For some
tasks, uniform random actions are sufficient, while for oth-
ers, the design of the exploration strategy takes additional
care, as detailed in Sections 7 and 9.4.
Model training: Also during training time, we train a video
prediction model on the collected data. The model takes as
input an image of the current timestep and a sequence of
actions, and generates the corresponding sequence of future
frames. This model is described in Section 4.
Test time control: At test time, we use a sampling-based,
gradient free optimization procedure, similar to a shooting
method [41], to find the sequence of actions that minimizes
a cost function. Further details, including the motivation for
this type of optimizer, can be found in Section 6.

Depending on how the goal is specified, we use one of
the following three cost functions. When the goal is pro-
vided by clicking on an object and a desired goal-position, a
pixel-distance cost-function, detailed in Section 5.1, evaluates
how far the designated pixel is from the goal pixels. We can
specify the goal more precisely by providing a goal image
in addition to the pixel positions and make use of image-to-
image registration to compute a cost function, as discussed
in Section 5.2. Finally, we show that we can specify more
conceptual tasks by providing one or several examples of
success and employing a classifier-based cost function as
detailed in Section 5.3. The strengths and weaknesses of

Transformations

True Images

LSTM-States

Actions

Predicted Images

Time

Figure 3: Computation graph of the video-prediction model.
Time goes from left to right, at are the actions, ht are the hidden
states in the recurrent neural network, F̂t+1←t is a 2D-warping
field, It are real images, and Ît are predicted images, L is a
pairwise training-loss.

different costs functions and trade-offs between them are
discussed in Section 5.4.

The model is used to plan T steps into the future,
and the first action of the action sequence that attained
lowest cost, is executed. In order to correct for mistakes
made by the model, the actions are iteratively replanned
at each real-world time step2 τ ∈ {0, ..., τmax} following
the framework of model-predictive control (MPC). In the
following sections, we explain the video-prediction model,
the planning cost function, and the trajectory optimizer.

4 VIDEO PREDICTION FOR CONTROL

In visual MPC, we use a transformation-based video predic-
tion architecture, first proposed by Finn et al. [31]. The ad-
vantage of using transformation-based models over a model
that directly generates pixels is two-fold: (1) prediction is
easier, since the appearance of objects and the background
scene can be reused from previous frames and (2) the trans-
formations can be leveraged to obtain predictions about
where pixels will move, a property that is used in several of
our planning cost function formulations. The model, which
is implemented as a recurrent neural network (RNN) gθ
parameterized by θ, has a hidden state ht and takes in a
previous image and an action at each step of the rollout.
Future images Ît+1 are generated by warping the previous
generated image Ît or the previous true image It, when
available, according to a 2-dimensional flow field F̂t+1←t. A
simplified illustration of model’s structure is given in figure
3. It is also summarized in the following two equations:

[ht+1, F̂t+1←t] = gθ(at, ht, It) (1)

Ît+1 = F̂t+1←t � Ît (2)

Here, the bilinear sampling operator � interpolates the pixel
values bilinearly with respect to a location (x, y) and its
four neighbouring pixels in the image, similar to [42]. Note

2. With real-world step we mean timestep of the real-world as op-
posed to predicted timesteps.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Actions

5x5

48x64x16
48x64x3

24x32x32

3x3

12x16x64

3x3

6x8x128

3x3

48x64x2

Flow Field

Compositing
Masks

24x32x32

3x3

12x16x64

3x3

tile

skip

Transformation
6x8x5

3x3

48x64x2

Convolution+
Bilinear Upsampling

Conv-LSTM

3x3

Convolution+
Bilinear Downsampling

Figure 4: Forward pass through the recurrent SNA model. The
red arrow indicates where the image from the first time step
I0 is concatenated with the transformed images F̂t+1←t � Ît
multiplying each channel with a separate mask to produce the
predicted frame for step t+ 1.

that, as shown in figure 3, at the first time-step the real
image is transformed, whereas at later timesteps previously
generated images are transformed in order to generate
multi-frame predictions. The model is trained with gradient
descent on a `2 image reconstruction loss, denoted by L in
figure 3. A forward pass of the RNN is illustrated in figure
4. We use a series of stacked convolutional LSTMs and stan-
dard convolutional layers interleaved with average-pooling
and upsampling layers. The result of this computation is the
2 dimensional flow-field F̂t+1←t which is used to transform
a current image It or Ît. More details on the architecture are
provided in Appendix A.
Predicting pixel motion. When using visual MPC with a
cost-function based on start and goal pixel positions, we
require a model that can effectively predict the 2D mo-
tion of the user-selected start pixels d(1)0 , . . . , d

(P)
0 up to T

steps into the future3. More details about the cost functions
are provided in section 5. Since the model we employ
is transformation-based, this motion prediction capability
emerges automatically, and therefore no external pixel mo-
tion supervision is required. To predict the future positions
of the designated pixel d, the same transformations used
to transform the images are applied to the distribution
over designated pixel locations. The warping transforma-
tion F̂t+1←t can be interpreted as a stochastic transition
operator allowing us to make probabilistic predictions about
future locations of individual pixels:

P̂t+1 = F̂t+1←t � P̂t (3)

Here, Pt is a distribution over image locations which has
the same spatial dimension as the image. For simplicity
in notation, we will use a single designated pixel moving
forward, but using multiple is straightforward. At the first
time step, the distribution P̂0 is defined as 1 at the position
of the user-selected designated pixel and zero elsewhere.
The distribution P̂t+1 is normalized at each prediction step.

Since this basic model, referred to as dynamic neural
advection (DNA), predicts images only based on the pre-
vious image, it is unable to recover shapes (e.g., objects)
after they have been occluded, for example by the robot

3. Note that when using a classifier-based cost function, we do not
require the model to output transformations.

arm. Hence, this model is only suitable for planning motions
where the user-selected pixels are not occluded during the
manipulation, limiting its use in cluttered environments
or with multiple selected pixels. In the next section, we
introduce an enhanced model, which lifts this limitation by
employing temporal skip connections.
Skip connection neural advection model. To enable ef-
fective tracking of objects through occlusions, we can add
temporal skip connections to the model: we now transform
pixels not only from the previously generated image Ît,
but from all previous images Î1, ...Ît, including the context
image I0, which is a real image. All these transformed
images can be combined to a form the predicted image
Ît+1 by taking a weighted sum over all transformed images,
where the weights are given by masks Mt with the same
size as the image and a single channel:

Ît+1 = M0(F̂t+1←0 � It) +
τ∑
j=1

Mj(F̂t+1←j � Îj). (4)

We refer to this model as the skip connection neural advection
model (SNA), since it handles occlusions by using temporal
skip connections such that when a pixel is occluded, e.g.,
by the robot arm or by another object, it can still reappear
later in the sequence. Transforming from all previous images
comes with increased computational cost, since the number
of masks and transformations scales with the number of
time-steps τ . However, we found that in practice a greatly
simplified version of this model, where transformations are
applied only to the previous image and the first image of the
sequence I0, works equally well. Moreover we found that
transforming the first image of the sequence is not necessary,
as the model uses these pixels primarily to generate the
image background. Therefore, we can use the first image
directly, without transformation. More details can be found
in the appendix A and [7].

5 PLANNING COST FUNCTIONS

In this section, we discuss how to specify and evaluate goals
for planning. One naı̈ve approach is to use pixel-wise error,
such as `2 error, between a goal image and the predicted image.
However there is a severe issue with this approach: large
objects in the image, i.e. the arm and shadows, dominate
such a cost; therefore a common failure mode occurs when
the planner matches the arm position with its position in
the goal image, disregarding smaller objects. This failure
motivates our use of more sophisticated mechanisms for
specifying goals, which we discuss next.

5.1 Pixel Distance Cost
A convenient way to define a robot task is by choosing one
or more designated pixels in the robot’s camera view and
choosing a destination where each pixel should be moved.
For example, the user might select a pixel on an object and
ask the robot to move it 10 cm to the left. This type of
objective is general, in that it can define any object relocation
task on the viewing plane. Further, success can be measured
quantitatively, as detailed in section 9. Given a distribution
over pixel positions P0, our model predicts distributions
over its positions Pt at time t ∈ {1, . . . , T}. One way of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

𝐼"𝐼# 𝐼$

𝐼%$

…

𝐼%#

…

𝐹'#←" 𝐹'$←"

𝐼"
Figure 5: Closed loop control is achieved by registering the
current image It globally to the first frame I0 and the goal
image Ig . In this example registration to I0 succeeds while
registration to Ig fails since the object in Ig is too far away.

defining the cost per time-step ct is by using the expected
Euclidean distance to the goal point dg , which is straight-
forward to calculate from Pt and g, as follows:

c =
∑

t=1,...,T

ct =
∑

t=1,...,T

Ed̂t∼Pt

[
‖d̂t − dg‖2

]
(5)

The per time-step costs ct are summed together giving
the overall planing objective c. The expected distance to
the goal provides a smooth planning objective and enables
longer-horizon tasks, since this cost function encourages
movement of the designated objects into the right direction
for each step of the execution, regardless of whether the
goal-position can be reached within T time steps or not.
This cost also makes use of the uncertainty estimates of
the predictor when computing the expected distance to
the goal. For multi-objective tasks with multiple designated
pixels d(i) the costs are summed to together, and optionally
weighted according to a scheme discussed in subsection 5.2.

5.2 Registration-Based Cost

We now propose an improvement over using pixel dis-
tances. When using pixel distance cost functions, it is neces-
sary to know the current location of the object, d(1)0 , . . . , d

(P)
0

at each replanning step, so that the model can predict the
positions of this pixel from the current step forward. To
update the belief of where the target object currently is,
we propose to register the current image to the start and
optionally also to a goal image, where the designated pixels
are marked by the user. Adding a goal image can make
visual MPC more precise, since when the target object is
close to the goal position, registration to the goal-image
greatly improves the position estimate of the designated
pixel. Crucially, the registration method we introduce is self-
supervised, using the same exact data for training the video
prediction model and for training the registration model.
This allows both models to continuously improve as the
robot collects more data.
Test time procedure. We will first describe the registration
scheme at test time (see Figure 6(a)). We separately register
the current image It to the start image I0 and to the goal
image Ig by passing it into the registration network R, im-
plemented as a fully-convolutional neural network. The reg-
istration network produces a flow map F̂0←t ∈ RH×W×2, a

𝐹"#←%

𝐼%

𝐼#

𝑅

𝐹"#←%

𝐼%

𝐼#

𝑅

(a) Testing usage.

𝐹"#$%←%𝐼#

𝐹"#←#$%𝐼#$%

𝐼(#$%

𝐼(#

𝐼#$%

𝐼#

shared

loss

loss𝑅

𝑅

(b) Training usage.

Figure 6: (a) At test time the registration network registers
the current image It to the start image I0 (top) and goal
image Ig (bottom), inferring the flow-fields F̂0←t and F̂g←t. (b)
The registration network is trained by warping images from
randomly selected timesteps along a trajectory to each other.

vector field with the same size as the image, that describes
the relative motion for every pixel between the two frames.

F̂0←t = R(It, I0) F̂g←t = R(It, Ig) (6)

The flow map F̂0←t can be used to warp the image of the
current time step t to the start image I0, and F̂g←t can be
used to warp from It to Ig (see Figure 5 for an illustration).
There is no difference to the warping operation used in the
video prediction model, explained in section 4, equation 2:

Î0 = F̂0←t � It Îg = F̂g←t � It (7)

In essence for a current image F̂0←t puts It in correspon-
dence with I0, and F̂g←t puts It in correspondence with
Ig . The motivation for registering to both I0 and Ig is to
increase accuracy and robustness. In principle, registering to
either I0 or Ig is sufficient. While the registration network is
trained to perform a global registration between the images,
we only evaluate it at the points d0 and dg chosen by the
user. This results in a cost function that ignores distractors.
The flow map produced by the registration network is used
to find the pixel locations corresponding to d0 and dg in the
current frame:

d̂0,t = d0 + F̂0←t(d0) d̂g,t = dg + F̂g←t(dg) (8)

For simplicity, we describe the case with a single des-
ignated pixel. In practice, instead of a single flow vector
F̂0←t(d0) and F̂g←t(dg), we consider a neighborhood of
flow-vectors around d0 and dg and take the median in the
x and y directions, making the registration more stable.
Figure 7 visualizes an example tracking result while the
gripper is moving an object.
Registration-based pixel distance cost. Registration can fail
when distances between objects in the images are large.
During a motion, the registration to the first image typically
becomes harder, while the registration to the goal image
becomes easier. We propose a mechanism that estimates
which image is registered correctly, allowing us to utilize
only the successful registration for evaluating the planning
cost. This mechanism gives a high weight λi to pixel dis-
tance costs ci associated with a designated pixel d̂i,t that
is tracked successfully and a low, ideally zero, weight to
a designated pixel where the registration is poor. We use
the photometric distance between the true frame and the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Figure 7: Outputs of registration network. The first row shows the timesteps from left to right of a robot picking and moving a
red bowl, the second row shows each image warped to the initial image via registration, and the third row shows the same for the
goal image. A successful registration in this visualization would result in images that closely resemble the start- or goal image. In
the first row, the locations where the designated pixel of the start image d0 and the goal image dg are found are marked with red
and blue crosses, respectively. It can be seen that the registration to the start image (red cross) is failing in the second to last time
step, while the registration to the goal image (blue cross) succeeds for all time steps. The numbers in red, in the upper left corners
indicate the trade off factors λ between the views and are used as weighting factors for the planning cost. (Best viewed in PDF)

warped frame evaluated at d0,i and dg,i as an estimate for
local registration success. A low photometric error indicates
that the registration network predicted a flow vector leading
to a pixel with a similar color, thus indicating warping
success. However this does not necessarily mean that the
flow vector points to the correct location. For example, there
could be several objects with the same color and the network
could simply point to the wrong object. Letting Ii(di) denote
the pixel value in image Ii for position di, and Îi(di)
denote the corresponding pixel in the image warped by the
registration function, we can define the general weighting
factors λi as:

λi =
||Ii(di)− Îi(di)||−12∑N
j ||Ij(dj)− Îj(dj)||

−1
2

. (9)

where Îi = F̂i←t � It. The MPC cost is computed as the
average of the costs ci weighted by λi, where each ci is the
expected distance (see equation 5) between the registered
point d̂i,t and the goal point dg,i. Hence, the cost used for
planning is c =

∑
i λici. In the case of the single view model

and a single designated pixel, the index i iterates over the
start and goal image (and N = 2).

The proposed weighting scheme can also be used with
multiple designated pixels, as used in multi-task settings
and multi-view models, which are explained in section 8.
The index i then also loops over the views and indices of
the designated pixels.
Training procedure. The registration network is trained on
the same data as the video prediction model, but it does not
share parameters with it.4 Our approach is similar to the
optic flow method proposed by [43]. However, unlike this
prior work, our method computes registrations for frames
that might be many time steps apart, and the goal is not to
extract optic flow, but rather to determine correspondences
between potentially distant images. For training, two im-
ages are sampled at random times steps t and t + h along
the trajectory and the images are warped to each other in
both directions.

Ît = F̂t←t+h � It+h Ît+h = F̂t+h←t � It (10)

The network, which outputs F̂t←t+h and F̂t+h←t, see Fig-
ure 6 (b), is trained to minimize the photometric distance

4. In principle, sharing parameters with the video prediction model
might be beneficial, but this is left for future work.

between Ît and It and Ît+h and It+h, in addition to a
smoothness regularizer that penalizes abrupt changes in the
outputted flow-field. The details of this loss function follow
prior work [43]. We found that gradually increasing the tem-
poral distance h between the images during training yielded
better final accuracy, as it creates a learning curriculum. The
temporal distance is linearly increased from 1 step to 8 steps
at 20k SGD steps. In total 60k iterations were taken.

The network R is implemented as a fully convolutional
network taking in two images stacked along the channel di-
mension. First the inputs are passed into three convolutional
layers each followed by a bilinear downsampling operation.
This is passed into three layers of convolution each followed
by a bilinear upsampling operation (all convolutions use
stride 1). By using bilinear sampling for increasing or de-
creasing image sizes we avoid artifacts that are caused by
strided convolutions and deconvolutions.

5.3 Classifier-Based Cost Functions
An alternative way to define the cost function is with a
goal classifier. This type of cost function is particularly well-
suited for tasks that can be completed in multiple ways.
For example, for a task of rearranging a pair objects into
relative positions, i.e. pushing the first object to the left of
the second object, the absolute positions of the objects do
not matter nor does the arm position. A classifier-based cost
function allows the planner to discover any of the possible
goal states.

Unfortunately, a typical image classifier will require a
large amount of labeled examples to learn, and we do
not want to collect large datasets for each and every task.
Instead, we aim to learn a goal classifier from only a few
positive examples, using a meta-learning approach. A few
positive examples of success are easy for people to provide
and are the minimal information needed to convey a goal.

Formally, we consider a goal classifier ŷ = f(o), where
o denotes the image observation, and ŷ ∈ [0, 1] indicates
the predicted probability of the observation being of a
successful outcome of the task. Our objective is to infer a
classifier for a new task Tj from a few positive examples of
success, which are easy for a user to provide and encode
the minimal information needed to convey a task. In other
words, given a dataset D+

j of K examples of successful end
states for a new task Tj : Dj := {(ok, 1)|k = 1...K}j , our
goal is to infer a classifier for task Tj .

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Figure 8: We propose a framework for quickly specifying visual
goals. Our goal classifier is meta-trained with positive and
negative examples for diverse tasks (left), which allows it to
meta-learn that some factors matter for goals (e.g., relative
positions of objects), while some do not (e.g. position of the
arm). At meta-test time, this classifier can learn goals for new
tasks from a few of examples of success (right - the goal is to
place the fork to the right of the plate). The cost can be derived
from the learned goal classifier for use with visual MPC.

Meta-learning for few-shot goal inference. To solve the
above problem, we propose learning a few-shot classifier
that can infer the goal of a new task from a small set of
goal examples, allowing the user to define a task from a few
examples of success. To train the few-shot classifier, we first
collect a dataset of both positive and negative examples for
a wide range of tasks. We then use this data to learn how
to learn goal classifiers from a few positive examples. Our
approach is illustrated in Figure 8.

We build upon model-agnostic meta-learning
(MAML) [44], which learns initial parameters θ for
model f that can efficiently adapt to a new task with one or
a few steps of gradient descent. Grant et al. [45] proposed
an extension of MAML, referred to as concept acquisition
through meta-learning (CAML), for learning to learn new
concepts from positive examples alone. We apply CAML
to the setting of acquiring goal classifiers from positive
examples, using a meta-training data with both positive
and negative examples. The result of the meta-training
procedure is an initial set of parameters that can be used to
learn new goal classifiers at test time.
Test time procedure. At test time, the user provides a
datasetD+

j of K examples of successful end states for a new
task Tj : Dj := {(ok, 1)|k = 1...K}j , which are then used to
infer a task-specific goal classifierCj . In particular, the meta-
learned parameters θ are updated through gradient descent
to adapt to task Tj :

Cj(o) = f(o; θ′j) = f
(
o; θ − α∇θ

∑
(on,yn)∈D+

j

L(yn, f(on; θ)
)

where L is the cross-entropy loss function, α is the
step size, and θ′ denotes the parameters updated through
gradient descent on task Tj .

During planning, the learned classifier Cj takes as input
an image generated by the video prediction model and out-
puts the predicted probability of the goal being achieved for
the task specified by the few examples of success. To convert
this into a cost function, we treat the probability of success
as the planning cost for that observation. To reduce the effect
of false positives and mis-calibrated predictions, we use the

classifier conservatively by thresholding the predictions so
that reward is only given for confident successes. Below this
threshold, we give a reward of 0 and above this threshold,
we provide the predicted probability as the reward.
Training time procedure. During meta-training, we explic-
itly train for the ability to infer goal classifiers for the set of
training tasks, {Ti}. We assume a small dataset Di for each
task Ti, consisting of both positive and negative examples:
Di := {(on, yn)|n = 1...N}i. To learn the initial parameters
θ, we optimize the following objective using Adam [46]:

min
θ

∑
i

∑
(on,yn)∈Dtest

i

L(yn, f(on; θ′i))

In our experiments, our classifier is represented by a con-
volutional neural network, consisting of three convolutional
layers, each followed by layer normalization and a ReLU
non-linearity. After the final convolutional layer, a spatial
soft-argmax operation extracts spatial feature points, which
are then passed through fully-connected layers.

5.4 When to Use Which Cost Function?
We have introduced three different forms of cost function,
pixel distance based cost functions with and without regis-
tration, as well as classifier-based cost functions. Here we
discuss the relative strengths and weaknesses of each.

Pixel distance based cost functions have the advantage
that they allow moving objects precisely to target locations.
They are also easy to specify, without requiring any example
goal images, and therefore provide an easy and fast user
interface. The pixel distance based cost function also has
a high degree of robustness against distractor objects and
clutter, since the optimizer can ignore the values of other
pixels; this is important when targeting diverse real-world
environments. By incorporating an image of the goal, we
can also add a registration mechanism to allow for more
robust closed-loop control, at the cost of a more significant
burden on the user.

The classifier-based cost function allows for solving more
abstract tasks since it can capture invariances, such as
the position of the arm, and settings where the absolute
positions of an object is not relevant, such as positioning
a cup in front of a plate, irrespective of where the plate
is. Providing a few example images takes more effort than
specifying pixel locations but allows a broader range of goal
sets to be specified.

6 TRAJECTORY OPTIMIZER

The role of the optimizer is to find actions sequences a1:T
that minimize the sum of the costs c1:T along the planning
horizon T . We use a simple stochastic optimization proce-
dure for this, based on the cross-entropy method (CEM), a
gradient-free optimization procedure. CEM consists of iter-
atively resampling action sequences and refitting Gaussian
distributions to the actions with the best predicted cost.

Although a variety of trajectory optimization methods
may be suitable, one advantage of the stochastic optimiza-
tion procedure is that it allows us to easily ensure that
actions stay within the distribution of actions the model
encountered during training. This is crucial to ensure that

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 1 Planning in Visual MPC

1: Inputs: Predictive model g, planning cost function c
2: for t = 0...T − 1 do
3: for i = 0...niter − 1 do
4: if i == 0 then
5: Sample M action sequences {a(m)

t:t+H−1} from
N (0, I) or custom sampling distribution

6: else
7: Sample M action sequences a(m)

t:t+H−1 from
N (µ(i),Σ(i))

8: Check if sampled actions are within
admissible range, otherwise resample.

9: Use g to predict future image sequences Î(m)
t:t+H−1

and probability distributions P̂ (m)
t:t+H−1

10: Evaluate action sequences using a cost function c
11: Fit a diagonal Gaussian to the k action samples

with lowest cost, yielding µ(i),Σ(i)

12: Apply first action of best action sequence to robot

the model does not receive out-of-distribution inputs and
makes valid predictions. Algorithm 1 illustrates the plan-
ning process. In practice this can be achieved by defining
admissible ranges for each dimension of the action vector
and rejecting a sample if it is outside of the admissible range.

In the appendix C we present a few improvements to the
CEM optimizer for visual MPC.

7 CUSTOM ACTION SAMPLING DISTRIBUTIONS

When collecting data by sampling from simple distri-
butions, such as a multivariate Gaussian, the skills that
emerged were found to be generally restricted to pushing
and dragging objects. This is because with simple distri-
butions, it is very unlikely to visit states like picking up
and placing of objects or folding cloth. Not only would the
model be imprecise for these kinds of states, but also during
planning it would be unlikely to find action sequences that
grasp an object or fold an item of clothing. We therefore
explore how the sampling distribution used both in data
collection and sampling-based planning can be changed
to visit these, otherwise unlikely, states more frequently,
allowing more complex behavior to emerge.

To allow picking up and placing of objects as well as
folding of cloth to occur more frequently, we incorporate
a simple “reflex” during data collection, where the gripper
automatically closes, when the height of the wrist above
the table is lower than a small threshold. This reflex is
inspired by the palmar reflex observed in infants [47].
With this primitive, when collecting data with rigid objects
about 20% of trajectories included some sort of grasp. For
deformable objects such as towels and cloth, this primitive
helps increasing the likelihood of encountering states where
cloths are folded. We found that the primitive can be slightly
adapted to avoid cloths becoming tangled up. More details
are provided in Appendix B.

It is worth noting that, other than this reflex, no
grasping-specific or folding-specific engineering was ap-
plied to the policy, allowing a joint pushing, grasping and
folding policy to emerge through planning (see figure 16 in

the appendix). In our experiments, we evaluate our method
using data obtained both with and without the grasping
reflex, evaluating both purely non-prehensile and combined
prehensile and non-prehensile manipulation.

8 MULTI-VIEW VISUAL MPC

Webcams

Object Bin

Robot

Viewing
Direction

Figure 9: Robot setup, with 2
standard web-cams arranged at
different viewing angles.

The visual MPC algorithm
as described so far is only
able to solve manipulation
tasks specified in 2D, like
rearranging objects on the
table. However, this can
impose severe limitations;
for example, a task such as
lifting an object to a partic-
ular position in 3D cannot
be fully specified with a
single view, since it would
be ambiguous. We use a
combination of two views,
taken from two cameras arranged appropriately, to jointly
define a 3D task. Figure 9 shows the robot setup, includ-
ing two standard webcams observing the workspace from
different angles. The registration method described in the
previous section is used separately per view to allow for
dynamic retrying and solving temporally extended tasks.
The planning costs from each view are combined using
weighted averaging where the weights are provided by the
registration network (see equation 9). Rows 5 and 6 of figure
12 show a 3D object positioning task, where an object needs
to be positioned at a particular point in 3D space. This task
needs two views to be fully specified.

9 EXPERIMENTAL EVALUATION

In this section we present both qualitative and quantitative
performance evaluations of visual MPC on various manip-
ulation tasks assessing the degree of generalization and
comparing different prediction models and cost functions
and with a hand-crafted baseline. In Figures 1 and 12 we
present a set of qualitative experiments showing that visual
MPC trained fully self-supervised is capable of solving a
wide range of complex tasks. Videos for the qualitative
examples are at the following webpage5. In order to perform
quantitative comparisons, we define a set of tasks where the
robot is required to move object(s) into a goal configuration.
For measuring success, we use a distance-based evaluation
where a human annotates the positions of the objects after
pushing allowing us to compute the remaining distance to
the goal.

9.1 Comparing Video Prediction Architectures

We first aim to answer the question: Does visual MPC
using the occlusion-aware SNA video prediction model that
includes temporal skip connections outperform visual MPC
with the dynamic neural advection model (DNA) [6] without
temporal skip-connections?

5. Videos & code: https://sites.google.com/view/visualforesight/

https://sites.google.com/view/visualforesight/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

moved imp.
± std err. of mean

stationary imp.
± std err. of mean

DNA [6] 0.83 ±0.25 -1.1 ± 0.2
SNA 10.6 ± 0.82 -1.5 ± 0.2

Table 1: Results for multi-objective pushing on 8 object/goal
configurations with 2 seen and 2 novel objects. Values indi-
cate improvement in distance from starting position, higher
is better. Units are pixels in the 64x64 images.

Short Long

Visual MPC + predictor propagation 83% 20%
Visual MPC + OpenCV tracking 83% 45%
Visual MPC + registration network 83% 66%

Table 2: Success rate for long-distance pushing experiment with
20 different object/goal configurations and short-distance ex-
periment with 15 object/goal configurations. Success is defined
as bringing the object closer than 15 pixels to the goal, which
corresponds to around 7.5cm.

To examine whether our skip-connection model (SNA)
helps with handling occlusions, we devised a task that
requires the robot to push one object, while keeping another
object stationary. When the stationary object is in the way,
the robot must move the target object around it. This is
illustrated on the left side of Figure 17 in the appendix.
While pushing the target object, the gripper may occlude
the stationary object, and the task can only be performed
successfully if the model can make accurate predictions
through this occlusion. These tasks are specified by selecting
one starting pixel on the target object, a goal pixel location
for the target object, and commanding the obstacle to remain
stationary by selecting the same pixel on the obstacle for
both start and goal.

We use four different object arrangements with two
training objects and two objects that were not seen during
training. We find that, in most cases, the SNA model is
able to find a valid trajectory, while the DNA model, that
is not able to handle occlusion, is mostly unable to find a
solution. The results of our quantitative comparisons are
shown in Table 1, indicating that temporal skip-connections
indeed help with handling occlusion in combined pushing
and obstacle avoidance tasks.

9.2 Evaluating Registration-Based Cost Functions
In this section we ask: How important is it to update the
model’s belief of where the target objects currently are? We
first provide two qualitative examples: In example (5)-(6)
of Figure 12 the task is to bring the stuffed animal to a
particular location in 3D-space on the other side of the arena.
To test the system’s reaction to perturbations that could
be encountered in open-world settings, during execution
a person knocks the object out of the robot’s hand (in the
3rd frame). The experiment shows that visual MPC is able
to naturally perform a new grasp attempt and bring the
object to the goal. This trajectory is easier to view in the
supplementary video.

In Figure 15 in the appendix, the task is to push the bottle
to the point marked with the green dot. In the beginning of

Figure 10: Object arrangement performance of our goal classi-
fier with distractor objects and with two tasks. The left shows a
subset of the 5 positive examples that are provided for inferring
the goal classifier(s), while the right shows the robot executing
the specified task(s) via visual planning.

the trajectory the object behaves differently than expected,
it moves downwards instead of to the right. However the
system recovers from the initial failure and still pushes the
object to the goal.

The next question we investigate is: How much does
tracking the target object using the learned registration
matter for short horizon versus long horizon tasks? In this
experiment, we disable the gripper control, which requires
the robot to push objects to the target. We compare two vari-
ants of updating the positions of the designated pixel when
using a pixel-distance based cost function. The first is a cost
function that uses our registration-based method, trained in
a fully self-supervised fashion, and the second is with a cost
function that uses off-the shelf tracking from OpenCV [48].
Additionally we compare to visual MPC, which uses the
video-prediction model’s own prior predictions to update
the current position of the designated pixel, rather than
tracking the object with registration or tracking.

We evaluate our method on 20 long-distance and 15
short-distance pushing tasks. For long distance tasks the
initial distance between the object and its goal position is
30cm while for short distance tasks it is 15cm. Table 2 lists
quantitative comparisons showing that on the long distance
experiment visual MPC using the registration-based cost not
only outperforms prior work [7], but also outperforms the
hand-designed, supervised object tracker [48]. By contrast,
for the short distance experiment, all methods perform com-
parably. Thus, theses results demonstrate the importance
of tracking the position of the target object for long-horizon
tasks, while for short-horizon tasks object tracking appears
to be irrelevant.

9.3 Evaluating Classifier-Based Cost Function
The goal of the classifier-based cost function is to provide
an easy way to compute an objective for new tasks from
a few observations of success for that task, so we compare
our approach to alternative and prior methods for doing so
under the same assumptions: pixel distance and latent space
distance. In the latter, we measure the distance between
the current and goal observations in a learned latent space,
obtained by training an autoencoder (DSAE) [17] on the
same data used for our classifier. Since we are considering a
different form of task specification incompatible with user-
specified pixels, we do not compare the classifier-based cost
function to the cost function based on designated pixels.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Figure 11: Quantitative performance of visual planning for
object rearrangement tasks across different goal specification
methods: our meta-learned classifier, DSAE [17], and pixel
error. Where possible, we include break down the cause of
failures into errors caused by inaccurate prediction or planning
and those caused by an inaccurate goal classifier.

To collect data for meta-training the classifier, we ran-
domly select a pair of objects from our set of training
objects, and position them in many different relative po-
sitions, recording the image for each configuration. Each
task corresponds to a particular relative positioning of two
objects, e.g. the first object to the left of the second, and we
construct positive and negative examples for each task by
labeling the aforementioned images. We randomly position
the arm in each image, as it is not a determiner of task
success. A good classifier should ignore the position of the
arm. We also include randomly-positioned distractor objects
in about a third of the collected images.

We evaluate the classifier-based cost function in three
different experimental settings. In the first setting, the goal is
to arrange two objects into a specified relative arrangement.
The second setting is the same, but with distractor objects
present. In the final and most challenging setting, the goal
is to achieve two tasks in sequence. We provide positive
examples for both tasks, infer the classifier for both, perform
MPC for the first task until completion, followed by MPC for
the second task. The arrangements of the evaluation tasks
were chosen among the eight principal directions (N, NE, E,
SE, etc.). To evaluate the ability to generalize to new goals
and settings, we use novel, held-out objects for all of the
task and distractor objects in our evaluation.

We qualitatively visualize the tasks in Figure 10. On
the left, we show a subset of the five images provided to
illustrate the task(s), and on the left, we show the motions
performed by the robot. We see that the robot is able to
execute motions which lead to a correct relative positioning
of the objects. We quantitatively evaluate the three cost
functions across 20 tasks, including 10 unique object pairs.
A task was considered successfully completed if more than
half of the object was correctly positioned relative to the
other. The results, shown in Figure 11, indicate that the
distance-based metrics struggle to infer the goal of the task,
while our approach leads to substantially more successful
behavior on average.

9.4 Evaluating Multi-Task Performance

One of the key motivations for visual MPC is to build a
system that can solve a wide variety of different tasks, in-
volving completely different objects, physics and, objectives.
Examples for tasks that can be solved with visual MPC

are shown in Figure 1 and 12. Task 1 in Figure 1 shows
a “placing task” where an object needs to be grasped and
placed onto a plate while not displacing the plate. Task 2
is an object rearrangement tasks. The example shown in
Task 4 and all examples in Figure 10 show relative object
rearrangement tasks. Examples 5 and 6 show the same 3D
object positioning tasks from different views. In Task 7, the
goal is to move the black object to the goal location while
avoiding the obstacle in the middle which is marked with a
designated- and goal pixel. We also demonstrate that visual
MPC – without modifications to the algorithm – solves tasks
involving deformable objects such as a task where a towel
needs to be wrapped around an object (Task 3), or folding
a pair of shorts (Task 8). To the best of our knowledge
this is the first algorithm for robotic manipulation handling
both rigid and deformable objects. For a full illustration of
each of these tasks, we encourage the reader to watch the
supplementary video.

The generality of visual MPC mainly stems from two
components — the generality of the visual dynamics model
and the generality of the task definition. We found that the
dynamics model often generalizes well to objects outside
of the training set, if they have similar properties to the
objects it was trained with. For example, Task 8 in Figure
12 shows the model predicting a pair of shorts being folded.
We observed that a model, which was only provided videos
of towels during training, generalized to shorts, although
it had never seen them before. In all of the qualitative
examples, the predictions are performed by the same model.
We found that the model sometimes exhibits confusion
about whether an object follows the dynamics of a cloth
or rigid objects, which is likely caused by a lack of training
data in the particular regime. To overcome this issue we add
a binary token to the state vector indicating whether the
object in the bin is hard or soft. We expect that adding more
training data would remove the need for this indicator and
allow the model to infer material properties directly from
images.

The ability to specify tasks in multiple different ways
adds to the flexibility of the proposed system. Using desig-
nated pixels, object positioning tasks can be defined in 3D
space, as shown in Task 1 and 2 in Figure 1 and task 5-6 in
Figure 12. When adding a goal image, the positioning accu-
racy can be improved by utilizing the registration scheme
discussed in Section 5.2. For tasks where we care about
relative rather than absolute positioning, a meta-learned
classifier can be used, as discussed in Section 5.3.

Next, we present a quantitative evaluation to answer
the following question: How does visual MPC compare to
a hand-engineered baseline on a large number of diverse
tasks? For this comparison, we engineered a simple trajec-
tory generator to perform a grasp at the location of the initial
designated pixel, lift the arm, and bring it to the position
of the goal pixel. Camera calibration was performed to
carry out the necessary conversions between image-space
and robot work-space coordinates, which was not required
for our visual MPC method. For simplicity, the baseline
controller executes in open loop. Therefore, to allow for a
fair comparison, visual MPC is also executed open-loop, i.e.
no registration or tracking is used. Altogether we selected 16
tasks, including the qualitative examples presented earlier.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Figure 12: Visual MPC successfully solves a wide variety of tasks including multi-objective tasks, such as placing an object
on a plate (row 5 and 6), object positioning with obstacle avoidance (row 7) and folding shorts (row 8). Zoom in on PDF.

% of Trials with
Final Pixel Distance < 15

Visual MPC 75%
Calibrated Camera Baseline 18.75 %

Table 3: Results for a multi-task experiment of 10 hard object
pushing and grasping tasks, along with 6 cloth folding
tasks, evaluating using a single model. Values indicate the
percentage of trials that ended with the object pixel closer
than 15 pixels to the designated goal. Higher is better.

The quantitative comparison is shown in Table 3, illustrating
that visual MPC substantially outperforms this baseline.
Visual MPC succeeded for most of the tasks. While the
baseline succeeded for some of the cloth folding tasks, it
failed for almost all of the object relocation tasks. This
indicates that an implicit understanding of physics, as cap-
tured by our video prediction models, is indeed essential
for performing this diverse range of object relocation and
manipulation tasks, and the model must perform non-trivial
physical reasoning beyond simply placing and moving the
end-effector.

9.5 Discussion of Experimental Results
Generalization to many distinct tasks in visually diverse
settings is arguably one of the biggest challenges in rein-
forcement learning and robotics today. While deep learning
has relieved us from much of the problem-specific engineer-
ing, most of the works either require extensive amounts
of labeled data or focus on the mastery of single tasks
while relying on human-provided reward signals. From the
experiments with visual MPC, especially the qualitative ex-
amples and the multi-task experiment, we can conclude that
visual MPC generalizes to a wide range of tasks it has never
seen during training. This is in contrast to many model-
free approaches for robotic control which often struggle to
perform well on novel tasks. Most of the generalization
performance is likely a result of large-scale self-supervised
learning, which allows to acquire a rich, task-agnostic dy-
namics model of the environment.

10 CONCLUSION

We presented an algorithm that leverages self-supervision
from visual prediction to learn a deep dynamics model on
images, and show how it can be embedded into a planning
framework to solve a variety of robotic control tasks. We
demonstrate that visual model-predictive control is able to
successfully perform multi-object manipulation, pushing,

picking and placing, and cloth-folding tasks – all within a
single framework.
Limitations. The main limitations of the presented frame-
work are that all target objects need to be visible throughout
execution, it is currently not possible to handle partially
observed domains. This is especially important for tasks
that require objects to be brought into occlusion (or taken
out of occlusion), for example putting an object in a box and
closing it. Another limitation is that the tasks are still of only
medium duration and usually only touch one or two objects.
Longer-term planning remains an open problem. Lastly, the
fidelity of object positioning is still significantly below what
humans can achieve.
Possible future directions. The key advantage of a model-
based deep-reinforcement learning algorithm like visual
MPC is that it generalizes to tasks it has never encountered
before. This makes visual MPC a good candidate for a
building block of future robotic manipulation systems that
will be able solve an even wider range of complex tasks with
much longer horizons.

REFERENCES

[1] G. Tesauro, “Temporal difference learning and td-gammon,” Com-
munications of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforce-
ment learning,” arXiv:1312.5602, 2013.

[3] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end learning
of deep visuomotor policies,” Journal of Machine Learning Research
(JMLR), 2016.

[4] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai,
A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “Mas-
tering chess and shogi by self-play with a general reinforcement
learning algorithm,” arXiv:1712.01815, 2017.

[5] A. Bubic, D. Y. Von Cramon, and R. Schubotz, “Prediction, cogni-
tion and the brain,” Frontiers in Human Neuroscience, 2010.

[6] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in International Conference on Robotics and Automation
(ICRA), 2017.

[7] F. Ebert, C. Finn, A. X. Lee, and S. Levine, “Self-supervised visual
planning with temporal skip connections,” Conference on Robot
Learning (CoRL), 2017.

[8] F. Ebert, S. Dasari, A. X. Lee, S. Levine, and C. Finn, “Robust-
ness via retrying: Closed-loop robotic manipulation with self-
supervised learning,” Conference on Robot Learning (CoRL), 2018.

[9] A. Xie, A. Singh, S. Levine, and C. Finn, “Few-shot goal inference
for visuomotor learning and planning,” Conference on Robot Learn-
ing (CoRL), 2018.

[10] M. P. Deisenroth, G. Neumann, J. Peters et al., “A survey on policy
search for robotics,” Foundations and Trends R© in Robotics, 2013.

[11] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in International Conference
on Machine Learning (ICML), 2011.

[12] I. Lenz and A. Saxena, “Deepmpc: Learning deep latent features
for model predictive control,” in In RSS. Citeseer, 2015.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[13] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Em-
bed to control: A locally linear latent dynamics model for control
from raw images,” in Neural Information Processing Systems, 2015.

[14] A. Dosovitskiy and V. Koltun, “Learning to act by predicting the
future,” International Conference on Learning Representations (ICLR),
2017.

[15] D. Ha and J. Schmidhuber, “World models,” arXiv:1803.10122,
2018.

[16] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, “Action-
conditional video prediction using deep networks in atari games,”
in Neural Information Processing Systems, 2015.

[17] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel,
“Deep spatial autoencoders for visuomotor learning,” in Interna-
tional Conference on Robotics and Automation (ICRA), 2016.

[18] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. J. Johnson, and
S. Levine, “Solar: Deep structured latent representations for
model-based reinforcement learning,” arXiv:1808.09105, 2018.

[19] A. Byravan and D. Fox, “Se3-nets: Learning rigid body motion
using deep neural networks,” arXiv:1606.02378, 2016.

[20] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning
to poke by poking: Experiential learning of intuitive physics,” in
Neural Information Processing Systems, 2016.

[21] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and
S. Levine, “Combining self-supervised learning and imitation for
vision-based rope manipulation,” in International Conference on
Robotics and Automation (ICRA), 2017.

[22] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning
to grasp from 50k tries and 700 robot hours,” in International
Conference on Robotics and Automation (ICRA), 2016.

[23] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen,
“Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection,” International Journal of
Robotics Research (IJRR), 2016.

[24] R. Calandra, A. Owens, M. Upadhyaya, W. Yuan, J. Lin, E. H.
Adelson, and S. Levine, “The feeling of success: Does touch
sensing help predict grasp outcomes?” arXiv:1710.05512, 2017.

[25] L. Pinto, D. Gandhi, Y. Han, Y.-L. Park, and A. Gupta, “The curious
robot: Learning visual representations via physical interactions,”
in European Conference on Computer Vision, 2016.

[26] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and
T. Funkhouser, “Learning synergies between pushing and
grasping with self-supervised deep reinforcement learning,”
arXiv:1803.09956, 2018.

[27] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S. Levine,
“Uncertainty-aware reinforcement learning for collision avoid-
ance,” arXiv:1702.01182, 2017.

[28] D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by crashing,”
arXiv:1704.05588, 2017.

[29] S. Chiappa, S. Racaniere, D. Wierstra, and S. Mohamed, “Recurrent
environment simulators,” arXiv:1704.02254, 2017.

[30] B. Boots, A. Byravan, and D. Fox, “Learning predictive models
of a depth camera & manipulator from raw execution traces,” in
International Conference on Robotics and Automation (ICRA), 2014.

[31] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning for
physical interaction through video prediction,” in Neural Informa-
tion Processing Systems (NIPS), 2016.

[32] N. Kalchbrenner, A. v. d. Oord, K. Simonyan, I. Danihelka,
O. Vinyals, A. Graves, and K. Kavukcuoglu, “Video pixel net-
works,” arXiv:1610.00527, 2016.

[33] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video
prediction beyond mean square error,” International Conference on
Learning Representations (ICLR), 2016.

[34] M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and S. Levine,
“Stochastic variational video prediction,” International Conference
on Learning Representations (ICLR), 2018.

[35] T. Kurutach, A. Tamar, G. Yang, S. Russell, and P. Abbeel,
“Learning plannable representations with causal infogan,”
arXiv:1807.09341, 2018.

[36] S. Reed, A. v. d. Oord, N. Kalchbrenner, S. G. Colmenarejo,
Z. Wang, D. Belov, and N. de Freitas, “Parallel multiscale autore-
gressive density estimation,” arXiv:1703.03664, 2017.

[37] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c.
Woo, “Convolutional lstm network: A machine learning approach
for precipitation nowcasting,” in Neural Information Processing Sys-
tems, 2015.

[38] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos
with scene dynamics,” in Neural Information Processing Systems,
2016.

[39] W. Lotter, G. Kreiman, and D. Cox, “Deep predictive coding
networks for video prediction and unsupervised learning,” Inter-
national Conference on Learning Representations (ICLR), 2017.

[40] B. De Brabandere, X. Jia, T. Tuytelaars, and L. Van Gool, “Dynamic
filter networks,” in Neural Information Processing Systems (NIPS),
2016.

[41] J. T. Betts, “Survey of numerical methods for trajectory optimiza-
tion,” Journal of guidance, control, and dynamics, 1998.

[42] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros, “View
synthesis by appearance flow,” in European conference on computer
vision, 2016.

[43] S. Meister, J. Hur, and S. Roth, “Unflow: Unsupervised learning
of optical flow with a bidirectional census loss,” arXiv:1711.07837,
2017.

[44] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” International Conference on
Machine Learning (ICML), 2017.

[45] E. Grant, C. Finn, J. Peterson, J. Abbott, S. Levine, T. Griffiths,
and T. Darrell, “Concept acquisition via meta-learning: Few-shot
learning from positive examples,” in NIPS Workshop on Cognitively-
Informed Artificial Intelligence, 2017.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” CoRR, vol. abs/1412.6980, 2014.

[47] D. Sherer, “Fetal grasping at 16 weeks’ gestation,” Journal of
ultrasound in medicine, 1993.

[48] B. Babenko, M.-H. Yang, and S. Belongie, “Visual tracking with
online multiple instance learning,” in Computer Vision and Pattern
Recognition (CVPR). IEEE, 2009.

[49] A. X. Lee, R. Zhang, F. Ebert, P. Abbeel, C. Finn, and S. Levine,
“Stochastic adversarial video prediction,” arXiv:1804.01523, 2018.

[50] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Instance normaliza-
tion: The missing ingredient for fast stylization,” arXiv:1607.08022,
2016.

[51] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and
checkerboard artifacts,” Distill, 2016.

[52] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via
adaptive separable convolution,” in International Conference on
Computer Vision (ICCV), 2017.

[53] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine
for model-based control,” in International Conference on Intelligent
Robots and Systems (IROS), 2012.

Frederik Ebert Frederik Ebert received a BS in Mechatronics and In-
formation Technology as well a MS in ”Robotics, Cognition, Intelligence
(RCI)” from the Technical University of Munich (TUM). He is currently a
PhD student at Berkeley Artifical Intelligence Research (BAIR), where
he focuses on developing algorithms for robotic manipulation combining
ideas from computer vision, machine learning, and control.

Chelsea Finn is a research scientist at Google and a post-doctoral
scholar at UC Berkeley, and will join the Computer Science faculty at
Stanford in 2019. Her research focuses on algorithms that can enable
agents to autonomously learn a range of complex skills. She received
a BS in Electrical Engineering and Computer Science from MIT and a
PhD in Computer Science from UC Berkeley.

Sudeep Dasari is a 4th year student at UC Berkeley pursuing a B.S
in Electrical Engineering and Computer Science. His primary research
interests are computer vision, machine learning, and robotic control.

Annie Xie is pursuing a B.S. degree in Electrical Engineering and
Computer Science at UC Berkeley. Her research interests are in the
areas of computer vision and robot learning.

Alex Lee received a BS in Electrical Engineering and Computer Science
from UC Berkeley and is currently pursuing a PhD in Computer Science
from UC Berkeley. His work focuses on algorithms that can enable
robots to learn complex sensorimotor skills.

Sergey Levine received a BS, MS, and PhD in Computer Science from
Stanford. He is currently on the faculty of the Department of Electrical
Engineering and Computer Sciences at UC Berkeley. His work focuses
on machine learning for decision making and control, with an emphasis
on deep learning and reinforcement learning algorithms.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

APPENDIX A
SKIP CONNECTION NEURAL ADVECTION MODEL

Our video prediction model, shown in Figure 3, is inspired
by the dynamic neural advection (DNA) model proposed
by [31] and it is a variant of the SNA model proposed by [7].
The model uses a convolutional LSTM [37] to predict future
frames. The prediction is initialized with an initial sequence
of 2 ground truth frames, and predicts 13 futures frames.
The model predicts these frames by iteratively making next-
frame predictions and feeding those predictions back to
itself. Each predicted frame, is given by a compositing layer,
which composes intermediate frames with predicted com-
positing masks. The intermediate frames include the previ-
ous 2 frames and transformed versions them. To easily allow
various transformations for different parts of the image, we
predict 8 transformed frames, 4 of which are transformed
from the previous frame, and the other 4 from the frame
2 steps in the past. These intermediate frames are then
combined with compositing masks, which are also predicted
by the convolutional LSTM. For simplicity, we collectively
refer to these transformations as a single transformation
F̂t+1←t in Equation 2. In addition, the first frame of the
sequence is also given as one of the intermediate frames [7].

To enable action conditioning, the robot action at each
time step is passed to all the convolutional layers of the main
network, by concatenating it along the channel dimension
of the inputs of these layers. Since they are vectors with no
spatial dimensions, they are replicated spatially to match the
spatial dimensions of the inputs.

The SNA variant that we use incorporate the architec-
tural improvements proposed by [49]. Each convolutional
layer is followed by instance normalization [50] and ReLU
activations. We also use instance normalization on the LSTM
pre-activations (i.e., the input, forget, and output gates, as
well as the transformed and next cell of the LSTM). In
addition, we modify the spatial downsampling and upsam-
pling mechanisms. Standard subsampling and upsampling
between convolutions is known to produce artifacts for
dense image generation tasks [51], [52]. In the encoding
layers, we reduce the spatial resolution of the feature maps
by average pooling, and in the decoding layers, we increase
the resolution by using bilinear interpolation. All convo-
lutions in the generator use a stride of 1. The actions are
concatenated to the inputs of all the convolutional layers of
the main network, as opposed to only the bottleneck.

Figure 13: The blue
dot indicates the des-
ignated pixel

We provide an example of
the skip connection neural ad-
vection (SNA) model recovering
from occlusion in Figure 14. In
this figure, the arm is predicted
to move in front of the desig-
nated pixel, marked in blue in
Figure 13. The predictions of the
DNA model, shown in figure Fig-
ure 14(b), contain incorrect motion
of the marked object, as shown
in the heatmaps visualizing P̂t, al-
though the arm actually passes in
front of it. This is because the DNA
model cannot recover information about an object that it

(a) Skip connection neural advection (SNA) does not
erase or move objects in the background

(b) Standard DNA [6] exhibits undesirable movement of
the distribution Pd(t) and erases the background

Figure 14: Top rows: Predicted images of arm moving in
front of green object with designated pixel (as indicated in
Figure 13). Bottom rows: Predicted probability distributions
Pd(t) of designated pixel obtained by repeatedly applying
transformations.

has ‘overwritten’ during its predictions, causing the model
to predict that the pixel moves with the arm. We identified
this as one of the major causes of planning failure using the
DNA model. By contrast our SNA model predicts that the
occluded object will not move, shown in figure Figure 14(a).

APPENDIX B
IMPROVED ACTION SAMPLING DISTRIBUTIONS FOR
DATA COLLECTION

In order to collect meaningful interaction data for learning
folding of deformable objects such as towels and cloth, we
found that the grasping primitive can be slightly adapted to
increase the likelihood of encountering states where cloths
are actually folded. When using actions sampled from a
simple distribution or the previously-described distribution,
clothing would become tangled up. To improve the effi-
ciency of folding cloths we use an action primitive similar
to the grasping primitive, but additionally we reduce lateral
motion of the end-effector when the gripper is close to the
table, thus reducing events where cloths become tangled up.

APPENDIX C
IMPROVEMENTS OF THE CEM-OPTIMIZER

In the model-predictive control setting, the action sequences
found by the optimizer can be very different between exe-
cution real-world times steps. For example at one time step
the optimizer might find a pushing action leading towards
the goal and in the next time step it determines a grasping
action to be optimal to reach the goal. Naı̈ve replanning
at every time step can then result in alternating between
a pushing and a grasping attempt indefinitely causing the
agent to get stuck and not making any progress towards to
goal.

We can resolve this problem by modifying the sampling
distribution of the first iteration of CEM so that the opti-
mizer commits to the plan found in the previous time step.
In the simplest version of CEM the sampling distribution

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Time

Designted Pixel

Goal Pixel

Figure 15: Applying our method to a pushing task. In the first 3 time instants the object behaves unexpectedly, moving down.
The tracking then allows the robot to retry, allowing it to eventually bring the object to the goal.

Time

Designted Pixel

Goal Pixel

Figure 16: Retrying behavior of our method combining prehensile and non-prehensile manipulation. In the first 4 time instants
shown the robot pushes the object. It then loses the object, and decides to grasp it pulling it all the way to the goal. Retrying is
enabled by applying the learned registration to both camera views (here we only show the front view).

Figure 17: Left: Task setup with green dot marking the obstacle. Right, first row: the predicted frames generated by SNA.
Second row: the probability distribution of the designated pixel on the moving object (brown stuffed animal). Note that part
of the distribution shifts down and left, which is the indicated goal. Third row: the probability distribution of the designated
pixel on the obstacle-object (blue power drill). Although the distribution increases in entropy during the occlusion (in the
middle), it then recovers and remains on its original position.

at first iteration of CEM is chosen to be a Gaussian with
diagonal covariance matrix and zero mean. We instead use
the best action sequence found in the optimization of the
previous real-world time step as the mean for sampling new
actions in the current real-world time-step. Since this action
sequence is optimized for the previous time step we only
use the values a2:T and omit the first action. To sample
actions close to the action sequence from the previous time
step we reduce the entries of the diagonal covariance matrix
for the first T − 1 time steps. It is crucial that the last entry
of the covariance matrix at the end of the horizon is not
reduced otherwise no exploration could happen for the last
time step causing poor performance at later time steps.

APPENDIX D
EXPERIMENTAL SETUP

To train both our video-prediction and registration models,
we collected 20,000 trajectories of pushing motions and
15,000 trajectories with gripper control, where the robot
randomly picks and moves objects using the grasping reflex
described in section 7. The data collection process is fully
autonomous, requiring human intervention only to change
out the objects in front of the robot. The action space con-
sisted of relative movements of the end-effector in cartesian
space along the x, y, and z axes, and for some parts of the
dataset we also added azimuthal rotations of the gripper
and a grasping action.

APPENDIX E
EXPERIMENTAL EVALUATION

Figure 17 shows an example of the SNA model successfully
predicting the position of the obstacle through an occlusion
and finding a trajectory that avoids the obstacle.

APPENDIX F
SIMULATED EXPERIMENTS

In order to provide a more controlled comparison, we also
set up a realistic simulation environment using MuJoCo
[53], which includes a robotic manipulator controlled via
Cartesian position control, similar to our real world setup,
pushing randomly-generated L-shaped objects with random
colors (see details in supplementary materials). We trained
the same video prediction model in this environment, and
set up 50 evaluation tasks where blocks must be pushed to
target locations with maximum episode lengths of 120 steps.
We compare our proposed registration-based method, “pre-
dictor propagation,” and ground-truth registration obtained
from the simulator, which provides an oracle upper bound
on registration performance.

	1 Introduction
	2 Related Work
	3 Overview
	4 Video Prediction for Control
	5 Planning Cost Functions
	5.1 Pixel Distance Cost
	5.2 Registration-Based Cost
	5.3 Classifier-Based Cost Functions
	5.4 When to Use Which Cost Function?

	6 Trajectory Optimizer
	7 Custom Action Sampling Distributions
	8 Multi-View Visual MPC
	9 Experimental Evaluation
	9.1 Comparing Video Prediction Architectures
	9.2 Evaluating Registration-Based Cost Functions
	9.3 Evaluating Classifier-Based Cost Function
	9.4 Evaluating Multi-Task Performance
	9.5 Discussion of Experimental Results

	10 Conclusion
	References
	Biographies
	Frederik Ebert
	Chelsea Finn
	Sudeep Dasari
	Annie Xie
	Alex Lee
	Sergey Levine

	Appendix A: Skip Connection Neural Advection Model
	Appendix B: Improved Action Sampling Distributions for Data Collection
	Appendix C: Improvements of the CEM-Optimizer
	Appendix D: Experimental Setup
	Appendix E: Experimental Evaluation
	Appendix F: Simulated Experiments

