Computational Models of Perceptual Organization

Stella X. Yu

Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition

(Martin et al)

multiple choices
a variety of features
content-dependent

one choice
single feature
content-free

Why Perceptual Organization

Why Perceptual Organization

Mahamud multi-object detector

Why Perceptual Organization

Schneiderman face detector

Traditional Use of Perceptual Organization

sequential processing (Marr, Lowe, Witkin, Tenenbaum, ...)

Perceptual Organization without Object Knowledge

difficult and brittle

(Canny, Geman & Geman, Shah & Mumford, Witkin, Jacobs, ...)

Our Overall Approach

Our Overall Approach

interactive processing (Grossberg, McClelland, Grenandar, Mumford, Lee, ...)

Our Overall Approach

interactive processing (Grossberg, McClelland, Grenandar, Mumford, Lee, ...)

Outline

- 1. Computational framework: spectral clustering
- 2. Expand the repertoire of grouping cues: dissimilarity
- 3. Guide grouping with partial cues
- 4. Guide grouping with object knowledge
- 5. Summary and future work

Generative Approach for Data Clustering

Key: Assumptions on the global structure of the dataPros: Intuitive interpretation; analysis = synthesisCons: Model inadequacy and computational intractability

Discriminative Approach for Clustering

- Key: Same group or not
- Pros: Adaptable to all data structures; tractable computation
- Cons: No interpretation of the groups

Grouping in a Graph-Theoretic Framework

Grouping in a Graph-Theoretic Framework

Representation: $\mathbb{G} = \{\mathbb{V}, \mathbb{E}, W\} = \{ \text{ nodes, edges, weights } \}$

Grouping in a Graph-Theoretic Framework

Representation: $\mathbb{G} = \{\mathbb{V}, \mathbb{E}, W\} = \{$ nodes, edges, weights $\}$ Clustering: $\Gamma_{\mathbb{V}}^{K} = \{\mathbb{V}_{1}, \dots, \mathbb{V}_{K}\} = K$ -way node partitioning

(Shi & Malik, Zabih, Boykov, Veksler, Kolmogorov,...)

Links in Graph Cuts

Links in Graph Cuts

Links in Graph Cuts

links
$$(\mathbb{P}, \mathbb{Q}) = \sum_{p \in \mathbb{P}, q \in \mathbb{Q}} W(p, q)$$

Degree in Graph Cuts

$\operatorname{degree}(\mathbb{P}) = \operatorname{links}(\mathbb{P}, \mathbb{V})$

Linkratio in Graph Cuts

Goodness of Grouping in Graph Cuts

Maximize within-group connections: $linkratio(\mathbb{P}, \mathbb{P})$ Minimize between-group connections: $linkratio(\mathbb{P}, \mathbb{V} \setminus \mathbb{P})$ Equivalent: $linkratio(\mathbb{P}, \mathbb{P}) + linkratio(\mathbb{P}, \mathbb{V} \setminus \mathbb{P}) = 1$

K-Way Normalized Cuts

Yu: PhD Thesis 2003 - p.20/60

$$\max \quad \operatorname{knassoc}(\Gamma_{\mathbb{V}}^{K}) = \frac{1}{K} \sum_{l=1}^{K} \operatorname{linkratio}(\mathbb{V}_{l}, \mathbb{V}_{l})$$

$$\max \quad \operatorname{knassoc}(\Gamma_{\mathbb{V}}^{K}) = \frac{1}{K} \sum_{l=1}^{K} \operatorname{linkratio}(\mathbb{V}_{l}, \mathbb{V}_{l})$$

NP complete even for K = 2 and planar graphs

$$\max \quad \operatorname{knassoc}(\Gamma_{\mathbb{V}}^{K}) = \frac{1}{K} \sum_{l=1}^{K} \operatorname{linkratio}(\mathbb{V}_{l}, \mathbb{V}_{l})$$

NP complete even for K = 2 and planar graphs

Fast solution to find near-global optima:

$$\max \quad \operatorname{knassoc}(\Gamma_{\mathbb{V}}^{K}) = \frac{1}{K} \sum_{l=1}^{K} \operatorname{linkratio}(\mathbb{V}_{l}, \mathbb{V}_{l})$$

NP complete even for K = 2 and planar graphs

Fast solution to find near-global optima:

1. Find global optima in the relaxed continuous domain optima = eigenvectors of $(W, D) \times$ rotations

$$\max \quad \operatorname{knassoc}(\Gamma_{\mathbb{V}}^{K}) = \frac{1}{K} \sum_{l=1}^{K} \operatorname{linkratio}(\mathbb{V}_{l}, \mathbb{V}_{l})$$

NP complete even for K = 2 and planar graphs

Fast solution to find near-global optima:

- 1. Find global optima in the relaxed continuous domain optima = eigenvectors of $(W, D) \times$ rotations
- 2. Find a discrete solution closest to continuous optima closeness = measured in L_2 norm between solutions

Step 1: Find Continuous Global Optima

 $\stackrel{+}{O}$

Step 1: Find Continuous Global Optima

Step 2: Discretize Continuous Optima

Step 2: Discretize Continuous Optima

Pixel Similarity based on Intensity Edges

image oriented filter pairs edge magnitudes

Discrete Optima Generated by Eigenvectors

Discrete Optima Generated by Eigenvectors

 $K = 4: 0.9901 \quad 0.9899 \quad 0.9881$

Not many local discrete optima, all good quality

Multiclass Real Image Segmentation

Outline

- 1. Computational framework: spectral clustering
- 2. Expand the repertoire of grouping cues: dissimilarity
- 3. Guide grouping with partial cues
- 4. Guide grouping with object knowledge
- 5. Summary and future work

Perceptual Popout

Perceptual Popout

Goodness of Grouping: Attraction and Repulsion

Maximize within-group attraction: $\operatorname{linkratio}(\mathbb{P}, \mathbb{P}; A)$ Minimize between-group attraction: $\operatorname{linkratio}(\mathbb{P}, \mathbb{V} \setminus \mathbb{P}; A)$ Equivalent: $\operatorname{linkratio}(\mathbb{P}, \mathbb{P}; A) + \operatorname{linkratio}(\mathbb{P}, \mathbb{V} \setminus \mathbb{P}; A) = 1$

Goodness of Grouping: Attraction and Repulsion

Maximize between-group repulsion: $linkratio(\mathbb{P}, \mathbb{V} \setminus \mathbb{P}; R)$ Minimize within-group repulsion: $linkratio(\mathbb{P}, \mathbb{P}; R)$ Equivalent: $linkratio(\mathbb{P}, \mathbb{P}; R) + linkratio(\mathbb{P}, \mathbb{V} \setminus \mathbb{P}; R) = 1$

Normalized Cuts with Attraction and Repulsion

• Criteria

$$\operatorname{knassoc}(\Gamma_{\mathbb{V}}^{K}) = \frac{1}{K} \sum_{l=1}^{K} \frac{\operatorname{links}(\mathbb{V}_{l}, \mathbb{V}_{l}; A) + \operatorname{links}(\mathbb{V}_{l}, \mathbb{V} \setminus \mathbb{V}_{l}; R)}{\operatorname{degree}(\mathbb{V}_{l}; A) + \operatorname{degree}(\mathbb{V}_{l}; R)}$$
$$\operatorname{kncuts}(\Gamma_{\mathbb{V}}^{K}) = \frac{1}{K} \sum_{l=1}^{K} \frac{\operatorname{links}(\mathbb{V}_{l}, \mathbb{V} \setminus \mathbb{V}_{l}; A) + \operatorname{links}(\mathbb{V}_{l}, \mathbb{V}_{l}; R)}{\operatorname{degree}(\mathbb{V}_{l}; A) + \operatorname{degree}(\mathbb{V}_{l}; R)}$$

Normalized Cuts with Attraction and Repulsion

• Criteria

$$\operatorname{knassoc}(\Gamma_{\mathbb{V}}^{K}) = \frac{1}{K} \sum_{l=1}^{K} \frac{\operatorname{links}(\mathbb{V}_{l}, \mathbb{V}_{l}; A) + \operatorname{links}(\mathbb{V}_{l}, \mathbb{V} \setminus \mathbb{V}_{l}; R)}{\operatorname{degree}(\mathbb{V}_{l}; A) + \operatorname{degree}(\mathbb{V}_{l}; R)}$$
$$\operatorname{kncuts}(\Gamma_{\mathbb{V}}^{K}) = \frac{1}{K} \sum_{l=1}^{K} \frac{\operatorname{links}(\mathbb{V}_{l}, \mathbb{V} \setminus \mathbb{V}_{l}; A) + \operatorname{links}(\mathbb{V}_{l}, \mathbb{V}_{l}; R)}{\operatorname{degree}(\mathbb{V}_{l}; A) + \operatorname{degree}(\mathbb{V}_{l}; R)}$$

• Equivalent weight matrix and degree matrix

$$\hat{W} = A - R + D_R$$
$$\hat{D} = D_A + D_R$$

• Negative weights:

W = A - R

= (positive entries + offset) – (negative entries + offset)

• Negative weights:

W = A - R

= (positive entries + offset) – (negative entries + offset)

• Equivalent matrices: $(\hat{W} + D_{offset}, \hat{D} + 2D_{offset})$

• Negative weights:

W = A - R

= (positive entries + offset) – (negative entries + offset)

- Equivalent matrices: $(\hat{W} + D_{offset}, \hat{D} + 2D_{offset})$
- Regularization: increase the degrees of nodes without changing the sizes of weights between two nodes.

• Negative weights:

W = A - R

= (positive entries + offset) – (negative entries + offset)

- Equivalent matrices: $(\hat{W} + D_{offset}, \hat{D} + 2D_{offset})$
- Regularization: increase the degrees of nodes without changing the sizes of weights between two nodes.
- Decrease the sensitivity of linkratio for nodes with little connections.

Roles of Attraction, Repulsion, Regularization

Segmentation with Repulsion and Regularization

attraction

attraction, repulsion and regularization

Segmentation with Repulsion and Regularization

attraction

attraction, repulsion and regularization

Segmentation with Repulsion and Regularization

attraction, repulsion and regularization

attraction

Outline

- 1. Computational framework: spectral clustering
- 2. Expand the repertoire of grouping cues: dissimilarity
- 3. Guide grouping with partial cues
- 4. Guide grouping with object knowledge
- 5. Summary and future work

Grouping with Partial Cues

Basic Formulation: Grouping with Constraints

maximize $\varepsilon(\Gamma_V^K)$

Basic Formulation: Grouping with Constraints

	-	- - -		•	•	•					•		•	•	•	
ma	■ IX	in	■ ni	∎ Z€	•	-	$\varepsilon($	Ľ	\mathbb{K})	•		•	•	•	
suk	oj	90	ct	to)		X	(i	, İ	!)	_	- ∡	X	(j	, l)

Computing Constrained Normalized Cuts

• Constrained eigenvalue problem

• Efficient solution using a projector onto the feasible space

• Generalize Rayleigh-Ritz theorem to projected matrices

natural grouping

natural grouping

natural grouping

natural grouping

constrained grouping

natural grouping

constrained grouping

natural grouping

constrained grouping

Remedy: Propagate Constraints

• General formulation:

maximize $\varepsilon(\Gamma_{\mathbb{V}}^{K})$ subject to $S \cdot X(i, l) = S \cdot X(j, l)$
Remedy: Propagate Constraints

• General formulation:

maximize $\varepsilon(\Gamma_{\mathbb{V}}^{K})$ subject to $S \cdot X(i, l) = S \cdot X(j, l)$

• Normalized cuts:

Clustering Points with Sparse Grouping Cues

1	Ċ,																

										а.	а.	ы.					

simple bias

smoothed bias

no bias

no bias

simple bias

no bias

simple bias

smoothed bias

Image Segmentation with Spatial Attention

Image Segmentation with Spatial Attention

Outline

- 1. Computational framework: spectral clustering
- 2. Expand the repertoire of grouping cues: dissimilarity
- 3. Guide grouping with partial cues
- 4. Guide grouping with object knowledge
- 5. Summary and future work

Object Segmentation

Yu: PhD Thesis 2003 – p.47/60

Joint Pixel-Patch Grouping: Criterion

$$\bar{\varepsilon}(\Gamma_{\mathbb{V}}^{K},\Gamma_{\mathbb{U}}^{K};A,B) = \frac{1}{K} \sum_{l=1}^{K} \frac{\text{linkratio}(\mathbb{U}_{l},\mathbb{U}_{l};B) \cdot \text{degree}(\mathbb{U}_{l};B)}{\text{degree}(\mathbb{V}_{l};A) + \text{degree}(\mathbb{U}_{l};B)} + \frac{1}{K} \sum_{l=1}^{K} \frac{\text{linkratio}(\mathbb{V}_{l},\mathbb{V}_{l};A) \cdot \text{degree}(\mathbb{V}_{l};A)}{\text{degree}(\mathbb{V}_{l};A) + \text{degree}(\mathbb{U}_{l};B)}$$

Joint Pixel-Patch Grouping: Consistency

$$\Gamma_{\mathbb{U}}^{K} = \{\mathbb{U}_{1}, \dots, \mathbb{U}_{K}\}, \qquad \Gamma_{\mathbb{V}}^{K} = \{\mathbb{V}_{1}, \dots, \mathbb{V}_{K}\}$$

Bias linking patches with their pixels

How Object Knowledge Helps Segmentation

How Segmentation Helps Object Detection

image

patch density

segmentation

When Does Our Method Fail

image

patch density

segmentation

Equally Applicable to Multiple Objects

Contributions to Perceptual Organization

1. grouping and figure-ground in one framework

Contributions to Perceptual Organization

2. grouping integrated with spatial and object attention

Contributions to Graph Theory

1. new grouping cues

Contributions to Graph Theory

2. new graph partitioning techniques

K-way cuts

directed cuts

joint cuts

Future Work

- 1. Automatic selection of the number of classes.
- 2. A model-based view on spectral clustering.
- 3. A criterion for comparing two segmentations.
- 4. Closing a feedback loop.
- 5. Object representation.
- 6. Scaling up.

Acknowledgements

- Jianbo Shi, Tai Sing Lee, Takeo Kanade Shyjan Mahamud, David Tolliver Jing Xiao, Vandi Verma
- CMU HumanID Lab
 CMU Hebert Lab
- ONR N00014-00-1-0915
 NSF IRI-9817496
 NSF LIS 9720350
 NSF CAREER 9984706
 NIH EY 08098