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What Is Perceptual Organization
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What Is Perceptual Organization

(Martin et al)
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What Is Perceptual Organization

� multiple choices
� a variety of features
� content-dependent

•
•
•
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� one choice
� single feature
� content-free
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Why Perceptual Organization

image

recognition
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Why Perceptual Organization

1
5

9

Mahamud multi-object detector
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Why Perceptual Organization

Schneiderman face detector
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Traditional Use of Perceptual Organization

image

segmentation

figure-ground

recognition
perceptual organization

sequential processing (Marr, Lowe, Witkin, Tenenbaum, ...)
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Perceptual Organization without Object Knowledge

difficult and brittle

(Canny, Geman & Geman, Shah & Mumford, Witkin, Jacobs, ...)
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Our Overall Approach

perceptual organization

Pragnanz

recognition

grouping figure-ground
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Our Overall Approach

perceptual organization

interactive processing (Grossberg, McClelland,Grenandar,Mumford,Lee,...)

Pragnanz

recognition

grouping figure-ground
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Our Overall Approach

perceptual organization

interactive processing (Grossberg, McClelland,Grenandar,Mumford,Lee,...)

Pragnanz

recognition

grouping figure-ground

A criterion

A fast solution

A wide range of images
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Outline
1. Computational framework: spectral clustering

2. Expand the repertoire of grouping cues: dissimilarity

3. Guide grouping with partial cues

4. Guide grouping with object knowledge

5. Summary and future work

+
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Generative Approach for Data Clustering
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Key: Assumptions on the global structure of the data

Pros: Intuitive interpretation; analysis = synthesis

Cons: Model inadequacy and computational intractability
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Discriminative Approach for Clustering
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0.7
0.1

Key: Same group or not

Pros: Adaptable to all data structures; tractable computation

Cons: No interpretation of the groups
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Grouping in a Graph-Theoretic Framework
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Grouping in a Graph-Theoretic Framework

�
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Representation: G = {V, E,W} = { nodes, edges, weights }
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Grouping in a Graph-Theoretic Framework
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Representation: G = {V, E,W} = { nodes, edges, weights }

Clustering: ΓK
V = {V1, . . . , VK} = K-way node partitioning

(Shi & Malik, Zabih, Boykov, Veksler, Kolmogorov,...)
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Links in Graph Cuts
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Links in Graph Cuts
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P Q
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Links in Graph Cuts

�
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P Q

links(P, Q) =
∑

p∈P, q∈Q

W (p, q)
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Degree in Graph Cuts
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P Q

degree(P) = links(P, V)
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Linkratio in Graph Cuts
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P Q

linkratio(P, Q) =
links(P, Q)

degree(P)
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Goodness of Grouping in Graph Cuts
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P

V \ P

Maximize within-group connections: linkratio(P, P)

Minimize between-group connections: linkratio(P, V \ P)

Equivalent: linkratio(P, P) + linkratio(P, V \ P) = 1
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K-Way Normalized Cuts
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V1 V2

V3

max knassoc(ΓK
V ) =

1

K

K∑

l=1

linkratio(Vl, Vl)

min kncuts(ΓK
V ) =

1

K

K∑

l=1

linkratio(Vl, V \ Vl)
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A Principled Solution to Normalized Cuts

max knassoc(ΓK
V ) =

1

K

K∑

l=1

linkratio(Vl, Vl)

NP complete even for K = 2 and planar graphs

Fast solution to find near-global optima:

1. Find global optima in the relaxed continuous domain
optima = eigenvectors of (W,D) × rotations

2. Find a discrete solution closest to continuous optima
closeness = measured in L2 norm between solutions
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Step 1: Find Continuous Global Optima

+
O
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Step 1: Find Continuous Global Optima

continuous optima

+
O

�

X̃∗

eigensolve

Yu: PhD Thesis 2003 – p.22/60



Step 2: Discretize Continuous Optima

+

�

�

eigensolve

O

X̃∗

X∗(0)
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Step 2: Discretize Continuous Optima

+

�

�

�

eigensolve

initialize

O

X̃∗

X∗(0)

X̃∗(0)
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Step 2: Discretize Continuous Optima

+

�

�

�

�eigensolve

initialize

refine

O

X̃∗

X∗(0)

X̃∗(0)

X∗(1)
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Step 2: Discretize Continuous Optima

+

�

�

�

�

�eigensolve

initialize

refine

O

X̃∗

X∗(0)

X̃∗(0)

X∗(1)X̃∗(1)

Yu: PhD Thesis 2003 – p.23/60



Step 2: Discretize Continuous Optima

+
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eigensolve

initialize

refine

O

X̃∗

X∗(0)

X̃∗(0)

X∗(1)X̃∗(1)
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Step 2: Discretize Continuous Optima

+

�

�

�
�

�

�

�

eigensolve

initialize

refine

O

X̃∗

X∗(0)

X̃∗(0)

X∗(1)X̃∗(1)

X∗(2)X̃∗(2)
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Step 2: Discretize Continuous Optima

+

�

�

�
�

�

�

�

eigensolve

initialize

refine

converge

O

X̃∗

X∗(0)

X̃∗(0)

X∗(1)X̃∗(1)

X∗(2)X̃∗(2)

Final solution: (X∗(2), X̃∗(2))
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Pixel Similarity based on Intensity Edges

1

2

3

image oriented filter pairs edge magnitudes

Yu: PhD Thesis 2003 – p.24/60



Discrete Optima Generated by Eigenvectors

K = 4 : 0.9901 0.9899 0.9881

Not many local discrete optima, all good quality
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Discrete Optima Generated by Eigenvectors

K = 4 : 0.9901 0.9899 0.9881

Not many local discrete optima, all good quality
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Multiclass Real Image Segmentation
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Outline
1. Computational framework: spectral clustering

2. Expand the repertoire of grouping cues: dissimilarity

3. Guide grouping with partial cues

4. Guide grouping with object knowledge

5. Summary and future work
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Perceptual Popout
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Goodness of Grouping: Attraction and Repulsion

�

�

�

��

�

�

�

�

�

�
�

P

V \ P

Maximize within-group attraction: linkratio(P, P;A)

Minimize between-group attraction: linkratio(P, V \ P;A)

Equivalent: linkratio(P, P;A) + linkratio(P, V \ P;A) = 1
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Goodness of Grouping: Attraction and Repulsion

�

�

�

��

�

�

�

�

�

�
�

P

V \ P

Maximize between-group repulsion: linkratio(P, V \ P;R)

Minimize within-group repulsion: linkratio(P, P;R)

Equivalent: linkratio(P, P;R) + linkratio(P, V \ P;R) = 1

Yu: PhD Thesis 2003 – p.29/60



Normalized Cuts with Attraction and Repulsion

• Criteria

knassoc(ΓK
V ) =

1

K

K∑

l=1

links(Vl, Vl;A) + links(Vl, V \ Vl;R)

degree(Vl;A) + degree(Vl;R)

kncuts(ΓK
V ) =

1

K

K∑

l=1

links(Vl, V \ Vl;A) + links(Vl, Vl;R)

degree(Vl;A) + degree(Vl;R)

• Equivalent weight matrix and degree matrix

Ŵ = A −R + DR

D̂ = DA +DR

Yu: PhD Thesis 2003 – p.30/60
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Negative Weights and Regularization

• Negative weights:

W = A − R

= (positive entries + offset) − (negative entries + offset)

• Equivalent matrices: (Ŵ + Doffset, D̂ + 2Doffset)

• Regularization: increase the degrees of nodes without
changing the sizes of weights between two nodes.

• Decrease the sensitivity of linkratio for nodes with little
connections.

Yu: PhD Thesis 2003 – p.31/60
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Roles of Attraction, Repulsion, Regularization

attraction + repulsion + regularization
Yu: PhD Thesis 2003 – p.32/60



Segmentation with Repulsion and Regularization

attraction attraction, repulsion and regularization
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Segmentation with Repulsion and Regularization

attraction attraction, repulsion and regularization
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Segmentation with Repulsion and Regularization

attraction attraction, repulsion and regularization
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Outline
1. Computational framework: spectral clustering

2. Expand the repertoire of grouping cues: dissimilarity

3. Guide grouping with partial cues

4. Guide grouping with object knowledge

5. Summary and future work
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Grouping with Partial Cues

+ ⇒

Yu: PhD Thesis 2003 – p.37/60



Basic Formulation: Grouping with Constraints
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maximize ε(ΓK
V )
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Basic Formulation: Grouping with Constraints
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maximize ε(ΓK
V )

subject to X(i, l) = X(j, l)
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Computing Constrained Normalized Cuts

• Constrained eigenvalue problem

• Efficient solution using a projector onto the feasible space

• Generalize Rayleigh-Ritz theorem to projected matrices

Yu: PhD Thesis 2003 – p.39/60



Why Simple Constraints Are Insufficient
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Why Simple Constraints Are Insufficient
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Why Simple Constraints Are Insufficient
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Why Simple Constraints Are Insufficient
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Remedy: Propagate Constraints

• General formulation:

maximize ε(ΓK
V )

subject to S · X(i, l) = S · X(j, l)

• Normalized cuts:

0.8

0.2

0.4
0.3

0.3

S = P, or
∑

k

PikX(k, l) =
∑

k

PjkX(k, l), or(P T U)TX = 0

Yu: PhD Thesis 2003 – p.41/60
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Clustering Points with Sparse Grouping Cues
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Image Segmentation with Biased Grouping
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Image Segmentation with Biased Grouping

no bias
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Image Segmentation with Biased Grouping
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Image Segmentation with Biased Grouping

no bias simple bias smoothed bias
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Image Segmentation with Biased Grouping
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Image Segmentation with Biased Grouping
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Image Segmentation with Spatial Attention
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Image Segmentation with Spatial Attention
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Outline
1. Computational framework: spectral clustering

2. Expand the repertoire of grouping cues: dissimilarity

3. Guide grouping with partial cues

4. Guide grouping with object knowledge

5. Summary and future work
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Object Segmentation
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Our Approach to Object Segmentation

Yu: PhD Thesis 2003 – p.48/60



Our Approach to Object Segmentation

Yu: PhD Thesis 2003 – p.48/60



Our Approach to Object Segmentation

Yu: PhD Thesis 2003 – p.48/60



Our Approach to Object Segmentation

Yu: PhD Thesis 2003 – p.48/60
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Our Approach to Object Segmentation

Yu: PhD Thesis 2003 – p.48/60



Joint Pixel-Patch Grouping: Criterion

A

B

C

ε̄(ΓK
V ,ΓK

U ;A,B) =
1

K

K∑

l=1

linkratio(Ul, Ul;B) · degree(Ul;B)

degree(Vl;A) + degree(Ul;B)

+
1

K

K∑

l=1

linkratio(Vl, Vl;A) · degree(Vl;A)

degree(Vl;A) + degree(Ul;B)
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Joint Pixel-Patch Grouping: Consistency

A

B

C

ΓK
U = {U1, . . . , UK}, ΓK

V = {V1, . . . , VK}

Bias linking patches with their pixels
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How Object Knowledge Helps Segmentation

pixel only pixel w/ ROI pixel-patch

541s 150s 110s
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How Segmentation Helps Object Detection

image patch density segmentation
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When Does Our Method Fail

image patch density segmentation
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Equally Applicable to Multiple Objects

Yu: PhD Thesis 2003 – p.54/60



Contributions to Perceptual Organization

1. grouping and figure-ground in one framework

figure

ground

Yu: PhD Thesis 2003 – p.55/60



Contributions to Perceptual Organization

2. grouping integrated with spatial and object attention
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Contributions to Graph Theory

1. new grouping cues

attraction repulsion

regularization depth
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Contributions to Graph Theory

2. new graph partitioning techniques
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Future Work

1. Automatic selection of the number of classes.

2. A model-based view on spectral clustering.

3. A criterion for comparing two segmentations.

4. Closing a feedback loop.

5. Object representation.

6. Scaling up.
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