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Abstract

Perceptual organization refers to the process of organizing sensory input into

coherent and interpretable perceptual structures. This process is challenging due

to the chicken-and-egg nature between the various sub-processes such as image

segmentation, figure-ground segregation and object recognition. Low-level pro-

cessing requires the guidance of high-level knowledge to overcome noise; while

high-level processing relies on low-level processes to reduce the computational

complexity. Neither process can be sufficient on its own. Consequently, any sys-

tem that carries out these processes in a sequence is bound to be brittle. An alterna-

tive system is one in which all processes interact with each other simultaneously.

In this thesis, we develop a set of simple yet realistic interactive processing

models for perceptual organization. We model the processing in the framework of

spectral graph theory, with a criterion encoding the overall goodness of perceptual

organization. We derive fast solutions for near-global optima of the criterion, and

demonstrate the efficacy of the models on segmenting a wide range of real images.

Through these models, we are able to capture a variety of perceptual phe-

nomena: a unified treatment of various grouping, figure-ground and depth cues to

produce popout, region segmentation and depth segregation in one step; and a uni-

fied framework for integrating bottom-up and top-down information to produce an

object segmentation from spatial and object attention.

We achieve these goals by empowering current spectral graph methods with a

principled solution for multiclass spectral graph partitioning; expanded repertoire

of grouping cues to include similarity, dissimilarity and ordering relationships;

a theory for integrating sparse grouping cues; and a model for representing and

integrating higher-order relationships. These computational tools are also useful

more generally in other domains where data need to be organized effectively.

Keywords: perceptual organization, image segmentation, figure-ground, depth

segregation, attention, bias, popout, visual search, clustering, graph partitioning,

constrained optimization.
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Chapter 1

Introduction

The ability of the human visual system to isolate objects from an image is remark-

able, yet the computational underpinnings of such an ability remain elusive.

Consider a few examples of images taken from our everyday lives. Fig 1.1 is

a sample of simple scenarios, where the foreground and background can each be

described by a set of features, for example, image intensity. A qualitative descrip-

tion of how we perceive the structures exhibited in such visual inputs was first put

forward by experimental psychologists in the 19th and 20th century, who termed

the process perceptual organization. A set of laws of grouping under ideal sim-

plistic settings for artificial stimuli were derived: all else being equal, elements are

structured into groups sharing a common feature, e.g. intensity, color, or motion

(Wertheimer, 1938; Kanizsa, 1979; Palmer, 1999). Consequently, earlier attempts

at image segmentation focused on simple low-level feature analysis and enhance-

ment, giving rise to approaches such as thresholding (Sahoo et al., 1988) and edge

linking (Witkin, 1983; Canny, 1986; Deriche, 1990).

In a basic thresholding approach, a histogram of intensities for all the pixels

in the image is first collected. Then a threshold is found by locating the deepest

valley of the histogram to maximize the intensity difference between two pixel

sets. This approach only looks at the statistics of intensity values without taking

their spatial distribution into account. When it is applied to the first image in

Fig 1.1, for example, parts of the face and hands become the background. To
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Figure 1.1: Images of simple foreground and background can be segmented based on

feature attributes, such as brightness and spatial coherence. Row #1: images. Row #2:

edge magnitudes obtained at a fixed scale. Same convention for Fig 1.2 to Fig 1.4.

make up for the ignored spatial aspect of segmentation in thresholding approaches,

morphological operations (Jain, 1989) are often used subsequently, which poses a

tradeoff between removing noise and preserving small structures.

Compared to thresholding techniques, edge linking is a spatially local ap-

proach, where the division between two regions is found by detecting changes

in low-level features within a local neighbourhood. As can be seen in the sec-

ond row of Fig 1.1, edge detection is more robust to global transient changes in

lighting. However, it is non-trivial to derive a region segmentation from detected

edges since edges are not guaranteed to form closed contours. This is a common

problem with most contour-based approaches. Another common problem with

detected edges is that they may not correspond to the boundaries of objects. Tex-

ture of an object can lead to strong firing of an edge detector, while true object

boundaries may have weak contrast against the background.

In Fig 1.2, the foreground object is still clearly delineated from the back-

ground, even though the images are considerably noisier than in the previous fig-

ure. Now, segmentation based on just a common feature value for each region is

insufficient. To handle such situations, further grouping laws such as boundary

smoothness need to be employed. Knowledge of such generic priors on bound-

ary and/or region properties is used in various approaches of image segmentation:
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active contours (Kass et al., 1988; Cohen, 1991; Ronfard, 1994), boundary de-

tection (Mumford and Shah, 1985; Nitzberg et al., 1993; Geiger and Kumaran,

1996; Williams and Jacobs, 1997), region growing (Hong and Rosenfeld, 1984;

Adams and Bischof, 1994), region competition (Zhu and Yuille, 1996), Markov

random fields (Geman and Geman, 1984; Blake and Zisserman, 1987), level-set

and variational methods (Sethian, 1996), graph cuts (Shi and Malik, 2000), etc.

Figure 1.2: Poor imaging conditions and the interactions between foreground and back-

ground can confuse a segmentation algorithm based solely on feature similarity. Regions

are no longer characterized by their feature values alone, and their boundaries do not

always have sharp contrast. Boundary smoothness, symmetry, focus and defocus, all be-

come important cues in sorting out competing segmentations.

Examples of such generic priors are the piecewise homogeneity assumption

and the smooth boundary assumption. In its basic form, the former assumes that

an image region has roughly the same intensity, while neighbouring regions have

different intensities. The latter assumes that object boundaries are smooth, while

those from surface textures or spatial displacement between objects tend to have

abrupt turns and cusps. When we look for regions or boundaries with desired

properties, our image segmentation is driven away from those presumably dis-

tracting image features. Various other assumptions have also been explored, e.g.,

convexity (Jacobs, 1996) and closure (Mahamud et al., 2003) of boundaries.

Fig 1.3 presents challenges other than noise: occlusion and clutter. Segmenta-
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tion for such images cannot depend merely on low-level signal processing. Spe-

cific knowledge about objects and their relationships to the environment has to

be incorporated into the segmentation process. Examples of such segmentation

schemes include model-based inference methods: Hough transforms (Illingworth

and Kittler, 1988), geometric hashing (Wolfson and Rigoutsos, 1997) and de-

formable templates (McInerney and Terzopoulos, 1996). The distinction between

segmentation and recognition becomes vague.

Figure 1.3: Clutter and occlusion pose another major challenge in image segmentation.

As a result, significant portions of region boundaries can vanish. Likewise, in highly

textured regions, focused visual processing is required for a human subject to delineate

the part belonging to a foreground object. Object segmentation is impossible without prior

knowledge about object shapes and articulated configurations.

For example, when using Hough transforms to detect circles in an image, we

first parameterize a circle with its location and size. Image features such as cor-

ners or edges are detected and votes for all possible realizations of a circle are

tallied. The one with the most votes becomes the recognized circle. The problem

is that low-level measurements are often noisy, thus the votes are not reliable. In

addition, if the object model involves many parameters, detecting the winning re-

alization is problematic, since there may not be enough votes from image features.

Deformable templates constrain the global object shape in a more rigorous way,

however, they often critically depend on initialization.
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In Fig 1.4, it becomes evident that recovering objects that are barely distin-

guishable from clutter is difficult without an understanding of the scene context

(Yarbus, 1967; Rimey, 1993). Perceptual processing under such adverse condi-

tions is what makes computer vision one of the most challenging fields of artificial

intelligence.

wolf at night wolf on a plain owl in a tree

man in an assembly vendor in a market family in a living room

Figure 1.4: For images of outdoor scenes, objects of interest are often indistinguishable

from their surroundings. When both foreground and background are richly textured, or

when the scene is taken under rare viewing directions, it is extremely difficult to segment

objects of interest without attempting an interpretation of the rest of the scene.
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Finally, the computational modeling of visual perceptual organization is at its

roots the study on how to organize information effectively. Other domains such as

sensory and text processing also share the same underlying principles of organi-

zation. The study of such principles, however, are most readily intuitive in vision.

Perceptual processing of images has all the complexity that is present in the other

domains, yet the processing can be easily scrutinized and comprehended. This

thesis focuses specifically on the computational modeling of perceptual organi-

zation, however the tools developed can be easily adapted to other data grouping

problems as well.

1.1 Overall Approach

Theories for perceptual organization roughly fall into two camps: the process is

either sequential or interactive. See Fig 1.5.

recognition

figure-ground

segmentation

recognition

figure-ground

grouping

segmentation

a: sequential processing b: interactive processing

Figure 1.5: Two views on perceptual organization. a: Segmentation is a grouping pro-

cess acting on low-level cues, e.g. intensity, edgels etc. The resulting regions are further

grouped into foreground and background based on higher-level cues, e.g. convexity, sym-

metry, parallelism etc. Only the foreground is processed further for object recognition. b:

Segmentation is considered the outcome of an interactive process among high-level object

knowledge, intermediate figure-ground cues and low-level grouping cues.

In the sequential processing theory popularized by Marr (Marr, 1982), visual

processing starts with what is possible to compute directly from an image and
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ends with the information required to support goals such as navigation or object

recognition. In-between representations are derived to turn the available informa-

tion at one level to the required information at the succeeding level. Accordingly,

most current image segmentation algorithms adopt a bottom-up approach. They

start with an over-segmentation based on low-level cues such as feature similar-

ity and boundary continuity, and then build up larger perceptual units (e.g., sur-

face, foreground and background) by adding high-level knowledge (e.g., statistical

properties of regions) into the grouping process (Zhu and Yuille, 1996). Identify-

ing perceptual groups by a generic segmentation process helps in discovering the

underlying causes of perceptual phenomena (Hoffman, 1983; Witkin and Tenen-

baum, 1983; Freeman, 1996; Knill and Richards, 1996), achieving perceptual

constancy (Adelson, 1999; Adelson and Pentland, 1996; Hochberg and Brooks,

1962; Lowe, 1984), or compressing the redundant representation by coding only

relevant information (Attneave, 1954; Barlow, 1960; Mumford, 1996).

Although a sequential system can relieve later stages of perceptual process-

ing of computational burden, such a feed-forward system is vulnerable to mis-

takes made at each step. The reason why it is vulnerable is that it always faces

a chicken-and-egg dilemma. Without utilizing any knowledge about the scene,

image segmentation gets lost in poor data conditions: weak edges, shadows, oc-

clusions and noise (Fig 1.6). Missed object boundaries are often hard to recover

in subsequent processing. Gestaltists have long recognized this issue, circum-

venting it by adding a grouping factor called familiarity (Palmer, 1999). On the

other hand, without being subject to perceptual constraints imposed by low-level

grouping, an object detection process can produce many false positives in a clut-

tered scene (Kanizsa, 1979; Jacobs, 1992; Mahamud, 2002). Eliminating such

false positives by checking image data directly against object models not only is

time-consuming, but also frequently ends up hallucinating objects (Fig 1.7). Lo-

cally, many of these hallucinations have features resembling some known objects,

but in a larger context surrouding them, they are not distinctive enough to validate

the known objects. Such contextual analysis is what perceptual organization does

and that’s where perceptual organization can help object recognition.
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a: image b: Canny

c: Berkeley d: human

http://www.cs.berkeley.edu/projects/vision/grouping/segbench/pb/index.html

Figure 1.6: Low-level image segmentation alone often does not respect object bound-

aries. a: Shown here is an image example for edge detection by (Martin et al., 2002).

b: edges by Canny edge detector, the goal of which is to detect sharp changes in pixel

intensities. It fires strongly in textured areas (e.g. the stony ground), although such inten-

sity changes do not correspond to object boundaries. c: edges by (Martin et al., 2002),

where human segmentation data were used to learn a boundary classifier based on lo-

cal brightness, color and texture cues. Many sporadic texture edges are suppressed. d:

segmentation by human subjects, where object boundaries are clearly marked despite the

lack of intensity contrast at some places. Significant improvements have been made in

predicting object boundaries directly from low-level feature statistics. However, without

the guidance of global object-level knowledge, low-level image segmentation still easily

misses object boundaries due to lighting and clutter.
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http://vasc.ri.cmu.edu/demos/faceindex

Figure 1.7: Object detection schemes are often overwhelmed by false alarms. Shown

here is a face detection example by (Schneiderman and Kanade, 2002), where a set of

low-level features are first learned from training images, and then used directly to classify

test image patches as faces/non-faces. This detector achieved the state-of-the-art bench-

mark performance in computer vision, yet false alarms are still inevitable for such images

obtained from public submissions. Locally, each false positive has certain features resem-

bling a face, but they are explained away by the surrounding context. In general, an object

recognition scheme that does not rely on any image segmentation is prone to false alarms.

In contrast, the interactive processing point of view acknowledges the chicken-

and-egg nature of perceptual organization (Kelly and Grossberg, 2000; Rumelhart

and McClelland, 1986; Grenander and Miller, 1994), and overcomes the issue by

engaging all perceptual processing simultaneously. The complicating issue that

arises is the interactions among the various perceptual modules. Despite agree-

ment on the need for interactive processing in the literature (Peterson, 1994), con-

sensus on the details that realize such a scheme has not yet been reached.
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The FACADE theory given in (Kelly and Grossberg, 2000) is a comprehen-

sive computational model constrained by the findings in biological vision systems

yet able to explain many peceptual pheonomena. However, it is overly flexible

and lacks a clear formulation of the overall computation. Some theories focus

on interpreting the computation carried out in biological systems (Lee and Mum-

ford, 2003) with high-level concepts only. Parallel distributed processing theory

(Rumelhart and McClelland, 1986) is again a biologically inspired computational

framework for perceptual processing. It has revolutionized many concepts regard-

ing the representation and interactions between processing modules. However,

such ideas have mainly been demonstrated on artificial stimuli, thus their applica-

tion is often very limited in scope (Vecera and O’Reilly, 1998).

In computer vision, the most influential interactive processing framework is

pattern theory (Grenander and Miller, 1994). The key novel idea is that perceptual

processing is an analysis process that is equivalent to synthesizing sensory input

with known patterns. It has inspired a whole range of generative approaches.

One of the most successful applications of this “analysis = synthesis” idea on

segmenting real images is given in (Tu and Zhu, 2002). However, despite its

rigorous theoretical basis, the implementation often involves too many parameters

and heuristics.

In this thesis, we adopt the interactive processing point of view for the above

mentioned reasons. Illustrated in Fig 1.8, our computational models always have

a clear objective to optimize. This objective quantifies the concept of Pragnanz

(Koffka, 1935), which gauges the goodness of an overall perceptual organization

by taking cues at all levels into account simultaneously. Unlike the sequential

processing point of view, in our work, there is no distinction between segmenta-

tion, figure-ground and object recognition. They are merely different projections

of one underlying perceptual output fulfilling the Pragnanz.

In our work, interactions within and between visual modules are captured

in a graph-theoretic framework. For each module, perceptual elements such as

pixels, edgels or patches are represented by nodes, and relationships between

the elements are represented by weights attached to edges connecting the nodes.

10



Pragnanz

recognition

grouping figure-ground

Figure 1.8: Our approach unifies grouping, figure-ground and recognition in one compu-

tational framework. The central idea tying the three processes is “Pragnanz”, which gives

a goodness measure for a given perceptual organization in terms of all grouping cues,

figure-ground cues and object knowledge.

Interactions between modules are represented as constraints on grouping schemes.

Finding a good grouping then becomes a node-partitioning problem subject to the

interaction constraints.

Previous work (Shi and Malik, 2000) proposed a specific graph partitioning

criterion for perceptual grouping. A remarkable property of the criterion is that it

has an efficient computational solution: near-global optima of this NP-complete

problem can be obtained through the spectral decomposition of a matrix.

Building upon this work on spectral graph theory, this thesis makes the fol-

lowing contributions.

1. We unify grouping cues, figure-ground cues and depth order cues in one

process. In particular, we gain more understanding on perceptual popout

with respect to general grouping, and we carry out region segmentation and

depth segregation at the same time.

2. We unify top-down and bottom-up information in a single grouping process.

In particular, our biased grouping process incorporates cues derived from

spatial and object attention. The former provides partial grouping cues on

visual elements, the latter provides patch grouping cues for specific objects.

11



The above contributions are achieved by the following novel computational tools

that we develop:

1. a principled solution for multi-class spectral graph partitioning;

2. an expanded repertoire of grouping cues, which now include similarity, dis-

similarity and ordering relationships.

3. a theory for integrating sparse grouping cues;

4. a model for representing and integrating higher-order relationships.

Summarizing, the salient aspects that distinguish this thesis from prior models

of interactive processing are: (1) a criterion formulating the goal of the whole

computational process, (2) a fast solution for near-global optima of the criterion,

and (3) results on a wide range of real images.

1.2 Road Map

The organization of this thesis is summarized in Fig 1.9. Below, we describe the

logical development behind the various chapters.

Chapter 2 gives a principled account of multiclass spectral clustering. Since

all models in this thesis are cast in the framework of spectral graph partitioning,

this chapter provides a foundation for the rest of the chapters. We first general-

ize the normalized cuts criterion in graph theory to multiclass problems. A re-

laxed continuous solution is found by eigen-decomposition. We clarify the role

of eigenvectors as a generator of all continuous optima. We then solve an opti-

mal discretization problem, which finds nearly global-optimal discrete solutions

closest to the continuous optima. Our method is robust to a random initialization

and converges faster than other clustering methods. Flexible initializations also

allow us to obtain nearly optimal solutions with special requirements. Extensive

experiments on real image segmentation are reported.

Next we enhance our grouping scheme along two lines: by expanding the

repertoire of grouping cues, and by guiding grouping with prior knowledge.

12



Here

Ch 2: multiclass spectral clustering

Ch 3: repulsion

Ch 4: depth ordering

Ch 5: partial grouping

Ch 6: object knowledge

Ch 7: conclusions and future work

understand the basics: why spectral methods?

expand

repertoire

of

grouping

cues

guide

grouping

with

prior

knowledge

Figure 1.9: Road map of this thesis.

In Chapter 3, we identify the active role of dissimilarity in grouping, an often

overlooked grouping principle we call repulsion, in contrast with attraction which

groups by similarity. Using attraction for similarity grouping, repulsion for dis-

similarity grouping, we provide a theoretical basis for regularizing a solution for

spectral graph algorithms. We show that attraction, repulsion and regularization

each contributes in a unique way to perceptual grouping.

Further expanding the repertoire of grouping cues, in Chapter 4 we propose

the use of ordering cues arising from occlusion events to be handled together

with the reciprocal relationships of similarity and dissimilarity cues. This new

representation allows for the integration of local grouping and figure-ground cues

so that depth segregation may be done simultaneously with region segmentation.
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While the methods in Chapter 3 and 4 enrich the representations of graph par-

titioning approaches, those in Chapter 5 and 6 deal with utilizing prior knowledge

to guide the grouping process.

The first form of prior knowledge we consider is partial grouping informa-

tion known beforehand. We formulate such a biased grouping problem as a con-

strained optimization problem, where structural properties of the input data define

the goodness of a grouping, and partial grouping cues define the feasibility of a

grouping. A key observation is that a direct integration of these two sources of

information is ineffective. The often sparse partial grouping cues have to be prop-

agated, for which we provide a principled approach. We apply our method to real

image segmentation problems, where partial grouping priors can often be derived

based on a crude spatial attentional map, i.e. places of salient features, large mo-

tion in a video sequence, or prior expectation of object locations. We demonstrate

not only that it is possible to integrate both image structures and priors in a single

grouping process, but also that objects can be segregated from the background

without using specific object knowledge.

The second form of prior knowledge that we consider is object-specific. For

example, we want to segment an image into foreground and background, with

foreground containing solely objects of interest known a priori. Adopting image

patches from training sets as a representation for objects, we develop an object

segmentation method that incorporates both edge detection and object part de-

tection results. It consists of two parallel processes: low-level pixel grouping

and high-level patch grouping. We seek a solution that optimizes a joint group-

ing criterion in a reduced space enforced by grouping correspondence between

pixels and patches. In essence, the output of object patch grouping provides par-

tial grouping constraints on pixels. However, these grouping constraints are not

known in advance, since the patch grouping itself is part of the solutions that we

seek. With partial pixel-grouping cues dependent on patch grouping, we achieve

object recognition and image segmentation at the same time. We report promising

experimental results on a database of objects subject to clutter and occlusion.

We conclude the thesis in Chapter 7 with discussions on future work.
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Chapter 2

Multiclass Spectral Clustering

Generative models are often used in standard approaches to clustering data points.

For example, under a mixture density model, parameter estimation techniques are

employed to learn both the model parameters and class labels (Jordan, 1999).

Recently a model-based view was also given to common clustering algorithms

such as K-means and agglomerative algorithms (Kamvar et al., 2002). With the

underlying assumptions explicitly made, the generative approaches are favored

for their descriptive properties.

However, two issues limit their success in applications: model inadequacy

and/or computational intractability. For example, the popular Gaussian density

assumption is rarely appropriate for capturing the complexity of real data; sec-

ondly, their energy functions often have many local minima, which are sometimes

obtained with very slow convergence.

Consider the point set in Fig 2.1. It has four clusters based on proximity. All

four clusters are point clouds, except the first one which has a ring structure. A

Gaussian density model well describes a point cloud, but it is poor at capturing the

ring cluster. A mixture of Gaussians are used, which introduce a lot more param-

eters such as the number of Gaussians, the mixing proportion of each component

Gaussian in addition to its location, size and shape (Fig 2.2). In high-dimensional

spaces, we may not have access to enough training data to constrain the search for

optimal parameters, resulting in slow convergence to local optima.
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Figure 2.1: Point set data. Points are numbered sequentially in four marked groups, with

125, 20, 70, 30 points each.
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Figure 2.2: Generative approaches for clustering. Shown here is an example of a mixture

of Gaussians that explain the point set data. Model complexity can increase tremendously

when point sets become more complicated, rendering the computation intractable.

Instead of employing a generative model to explain data clusters, spectral

graph partitioning methods (Chung, 1997) are an alternative that is more closely

related to multi-dimensional scaling and locally linear embedding (Roweis and

Saul, 2000), the goal of which is to preserve certain relationships (e.g. dis-

tance) among data points in a lower-dimensional representation. K-class spectral

clustering is regarded as one that embeds data points with certain grouping rela-

tionships into a K-dimensional space. In contrast with model-based approaches,
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grouping based on such relational cues can easily adapt to complex data clusters.

In graph-theoretic approaches, each data point is taken as a node. A weighted

graph is then built with similarity measures attached to edges connecting the

nodes. Clustering points becomes a node partitioning problem. For certain parti-

tioning criteria (Shi and Malik, 2000), the global-optima are obtained in a relaxed

continuous domain by solving an associated eigenvalue problem.

To make the idea more concrete, consider Fig 2.1 again. We build a graph

with 245 nodes, with a 245 × 245 matrix W summarizing all possible pairwise

relationships between them. In this case, W (i, j) is large if points i and j are

close:

W (i, j) = exp

(

−
(i − j)2

2σ2
d

)

, (2.1)

where i denotes the coordinates of data point i. For the point set in Fig 2.1, we set

σd = 0.5. Unlike the generative approaches, these cues encode proximity without

resorting to any assumption of a global structure. We end up with a graph which

tends to have strong connections between nodes within each cluster and weak

connections between clusters. A good clustering corresponds to a partitioning

scheme that separates all the nodes by cutting off the weakest links among them.

This can be formulated as an optimization problem on the weight matrix W . It

has been shown in (Shi and Malik, 2000) that for the 2-class normalized cuts

criterion, the global optimum in the relaxed continuous domain is given by the

second largest eigenvector shown in Fig 2.3. Using the criterion to select the best

threshold on this eigenvector, we can divide all points into two classes, which

correspond to the left and right division between clusters 1, 2 and 3, 4.

Overall, spectral graph methods are conceptually simple, numerically efficient

(Anstreicher and Wolkowicz, 2000), and successful in applications such as circuit

layout (Chan et al., 1994; Alpert and Kahng, 1995a), load balancing in parallel

computation (Hendrickson and Leland, 1995) and image segmentation in com-

puter vision (Malik et al., 2001).

However, the conceptual simplicity of such approaches is lost in the last step

which involves recovering a discrete solution from the continuous solution. A ma-

jority of the theoretical work on spectral methods have dealt with bipartitioning

17



1.0000

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0.9995

� � � � � � � � � � � � � � � � � � � � � � � � � � �
�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�
�

� � � �
� � � � � � � � � � � � � �

� � � � � � � � � �

0.9990

� � � � �
� � � � � � � � � � � �

� � �
� � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � � � �
� �

� � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � �

� � � � � � � � � � �
�

� � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�
�

� � � � � � � �
�

� � � � � � � � � � � � � � � � � � �

0.9947

� � � � � � � � � � � � � � � � � � � �
� � � � � � �

� � � � � �
� � � � � � � � �

� � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � �
�

� � � � � � � � � � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � � � � �
� � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� �

�

� � �
� � � �

� �

� � � � �

�

� �
�

� � � �
�

� � � �
�

� � � �
� �

� �

�

�

�

�

� �

� � � � �

�

�

�

� �

�

� � � � � � �

�

�

� � � �

�

�

�

� � �
�

�

�
� �

�

�
�

� �
�

� � �
� � � �

�
�

�
�

� � �

Figure 2.3: The first four eigenvectors of normalized cuts ordered according to their

eigenvalues given in each plot. Horizontal dotted lines indicate 0. The vertical lines

denote the four partitions.

(Chung, 1997). For K-way partitioning, most previous works treat the eigenvec-

tors as a lower-dimensional geometric embedding (Alpert and Kahng, 1995b) of

the original problem, where data points in the same class take similar eigenvector

components and are thus mapped to nearby n-dimensional points, with each co-

ordinate specified by one of the n eigenvectors. Various clustering heuristics such

as K-means (Shi and Malik, 2000; Ng et al., 2002), transportation (Barnes, 82),

dynamic programming (Alpert and Kahng, 1995b), greedy pruning or exhaustive

search (Shi and Malik, 2000) are subsequently employed on the new point sets to

retrieve partitions.

These methods also vary in the number of eigenvectors they use and the ge-

ometrical representation they adopt. Some take K eigenvectors to construct 2K

partitions using recursive bipartitioning (Shi and Malik, 2000) or hypercube parti-

tioning (Hendrickson and Leland, 1995). To get K flat partitions, most prior work

uses K eigenvectors (Chan et al., 1994; Shi and Malik, 2000; Weiss, 1999; Ng
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et al., 2002), others use more eigenvectors than partitions required (Alpert et al.,

1995; Malik et al., 2001). Sometimes, the first trivial eigenvector is discarded

(Hall, 1970; Shi and Malik, 1997). Some works use eigenvectors literally as point

coordinates (Shi and Malik, 2000; Alpert and Kahng, 1995b), while many nor-

malize these points to have unit lengths to construct interpretable affinity matrices

(Scott and Longuet-Higgins, 1991; Chan et al., 1994), or with justifications from

perturbation theory (Shi and Malik, 1998; Ng et al., 2002).

We will show that such heuristic post-processing can be avoided through a

clearer understanding of the relationships between multiple eigenvectors and mul-

ticlass partitioning criteria. In fact, we show that such heuristics, which bring in

unnecessary assumptions, are not needed. The eigenvectors are more than a geo-

metric embedding. They completely characterize the structure of all optimal solu-

tions we are seeking. Unlike most search-based optimization methods which give

only one instance of optima at a time, these eigenvectors provide a compass for

us to navigate the whole space of global optima. In the neighbourhoods of these

continuous optima, we can discover many near global-optimal discrete solutions

that suit our needs.

In this chapter, we will detail how to obtain such a near-global optimum in a

principled manner. We first generalize the bipartitioning-based normalized cuts

criterion (Shi and Malik, 2000) to multiclass problems. Then we develop its com-

putational solution. Illustrated in Fig 2.4, our method has two stages. (1) We

solve a relaxed continuous optimization problem. The set of global optima in a

transformed space are generated by a set of eigenvectors Z∗, with arbitrary or-

thogonal transforms R. Each of them corresponds to an optimal partitioning X̃∗R

in the continuous domain. (2) We obtain a discrete solution X ∗ closest to the set

of continuous optima X̃∗R. This is done iteratively by an alternating optimization

procedure: given a discrete solution, we solve for its closest continuous optimum;

given a continuous solution, we solve for its closest discrete partitioning solution.

After convergence, X∗ corresponds to a partitioning that is nearly globally opti-

mal. Finally we illustrate our ideas on the point set data and show our results on

real image segmentation.

19



+

�

�

�

�

�

��

��

	


R∗

eigensolve

normalize

initialize

refine

converge

O

Z∗

X̃∗

X∗(0)

X̃∗(0)

X∗(1)X̃∗(1)

X∗(2)X̃∗(2)

{Z∗R : RT R = IK}

{X̃∗R : RT R = IK}

Figure 2.4: Schematic diagram of our algorithm. Here, each point represents a high-

dimensional partitioning solution (not to be confused with the 2D phase-plots in Fig 2.6).

(O,+): origin of this space. Inner and outer circles: sets of continuous optima for trans-

formed and original representations of partitioning solutions. R: any orthogonal trans-

form. (X∗,�): discrete solutions. (X̃∗,�): continuous solutions. Stage #1: we obtain

a global optimum for the transformed representation by eigenvectors Z ∗. It sweeps out

an orbit of all global optima using orthogonal transform R. They are mapped back to

the original representation with their lengths normalized. Stage #2: we obtain a discrete

solution closest the orbit of the continuous optima. Given a point A, its closest point on

the orbit is the intersection of the line OA and the circle. Therefore, starting from X ∗(0),

we find its closest continuous optimum by computing the best orthogonal transform R∗

to bring X̃∗ to X̃∗(0). Among all feasible discrete solutions, X∗(1) is the closest to X̃∗(0).

Again, we re-compute R∗ to bring X̃∗ to X̃∗(1), whose nearest discrete neighbour be-

comes X∗(2). The closest continuous optimum to X∗(2) is X̃∗(2), whose nearest discrete

neighbour is still X∗(2) . The algorithm converges. X∗(2) is nearly global-optimal.
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2.1 Multiclass Normalized Cuts

A weighted graph is specified by G = (V, E, W ), where V is the set of all nodes;

E is the set of edges connecting the nodes; W is an affinity matrix, with weights

characterizing the likelihood that two nodes belong to the same group. W is

assumed nonnegative and symmetric.

Let [n] denote the set of integers between 1 and n: [n] = {1, 2, . . . , n}. Let

V = [N ] denote the set of all elements (data points or pixels) to be grouped.

To cluster N points into K groups is to decompose V into K disjoint sets, i.e.,

V = ∪K
l=1Vl and Vk ∩ Vl = ∅, k 6= l. We denote this K-way partitioning by

ΓK
V = {V1, . . . , VK}.

2.1.1 Multiclass Partitioning Criteria

Let node sets P, Q ⊂ V. We define links(P, Q) to be the total weighted connec-

tions from P to Q:

links(P, Q) =
∑

p∈P, q∈Q

W (p, q). (2.2)

The degree of a set is its total connections to all the nodes:

degree(P) = links(P, V). (2.3)

Using the degree as a normalization term, we define linkratio(P, Q) as the pro-

portion of the connections from P to Q among all those P has:

linkratio(P, Q) =
links(P, Q)

degree(P)
. (2.4)

Two special linkratio’s are of particular interest:

linkratio(P, P): measures how many links stay within P itself;

linkratio(P, V \ P): measures how many links escape from P.

A good clustering desires both tight connections within partitions and loose con-

nections between partitions (Fig 2.5). This intuition is quantitatively captured by
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Figure 2.5: K-way normalized cuts criterion. Consider the above 3-way partitioning of

nodes into •, N, � groups. Edges intersecting the dashed lines are those being cut by the

partitioning. The three linkratio’s are given in the figure, assuming that each edge has

a unit weight. Note that an edge is counted twice for within-group connections. A good

partitioning has most (thick) edges contained in each group, allowing as few (thin) edges

escaping as possible.

large linkratio(P, P) and small linkratio(P, V \ P). Thanks to the normalization,

these two goals are in no conflict, as:

linkratio(P, P) + linkratio(P, V \ P) = 1. (2.5)

Generalizing this idea on a single node set P to K node sets that make up V,

we are able to formulate a goodness measure for a K-way partitioning. Formally,

we define K-way normalized associations and normalized cuts criteria:

knassoc(ΓK
V ) =

1

K

K
∑

l=1

linkratio(Vl, Vl) (2.6)

kncuts(ΓK
V ) =

1

K

K
∑

l=1

linkratio(Vl, V \ Vl). (2.7)
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Clearly knassoc(ΓK
V ) + kncuts(ΓK

V ) = 1, i.e. maximizing the associations and

minimizing the cuts are achieved simultaneously.

Among numerous partitioning criteria such as minimum cuts and various def-

initions of average cuts, only minimum cuts and normalized cuts have this duality

property. However, minimum cuts are noise-sensitive, i.e., a few isolated nodes

could easily draw the cuts away from a global partitioning, whereas normalized

cuts are robust to weight noise (Shi and Malik, 2000). Since knassoc and kncuts

are equivalent, we make no distinction further and denote our objective as:

ε(ΓK
V ) = knassoc(ΓK

V ). (2.8)

ε is a unit-less value between 0 and 1 regardless of K.

For any K-way partitioning criterion, we need to examine its performance

over K’s: how does it change with K? Can it produce a refinement of partitioning

when K increases? The definitions in Eqn (2.6) and (2.7) do not lend an obvi-

ous answer to these questions. However, we will show that an upperbound of ε

decreases monotonically with increasing K. Although ε itself does not entail the

requirement of hierarchical refinement over the number of classes, a consistent

optimal partitioning can often be obtained with little extra cost.

2.1.2 Representation

We define the degree matrix for the symmetric weight matrix W to be:

D = Diag(W1N), (2.9)

where Diag forms a diagonal matrix from its vector argument and 1d denotes the

d × 1 vector of all 1’s. We use N × K partition matrix X to represent ΓK
V . Let

X = [X1, . . . , XK], where Xl is a binary indicator for Vl:

X(i, l) = istrue(i ∈ Vl), i ∈ V, l ∈ [K], (2.10)

where istrue(·) is 1 if the argument is true and 0 otherwise. Since a node is

assigned to one and only one partition, there is an exclusion constraint between

columns of X: X 1K = 1N .
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With these symbols, we rewrite links and degree as functions of X:

links(Vl, Vl) = XT
l WXl (2.11)

degree(Vl) = XT
l DXl. (2.12)

The K-way normalized cuts criterion is expressed in an optimization program of

variable X , called program PNCX:

maximize ε(X) =
1

K

K
∑

l=1

XT
l WXl

XT
l DXl

(2.13)

subject to X ∈ {0, 1}N×K, X 1K = 1N . (2.14)

This problem is NP-complete even for a planar graph at K = 2 (Shi and Malik,

2000). We will develop a fast algorithm to find its near-global optima.

2.2 Solving K-way Normalized Cuts

We solve program PNCX in two steps. We first relax a transformed formulation

into an eigenvalue problem. We show that its global optimum is not unique, and

a special solution is eigenvectors of (W, D). Transforming the eigenvectors to the

space of partition matrices, we get a set of continuous global optima. We then

solve a discretization problem, where the discrete partition matrix closest to the

continuous optima is sought. Such a discrete solution is thus near global-optimal.

2.2.1 Finding Optimal Relaxed Solutions

We introduce scaled partition matrix Z to make Eqn (2.13) more manageable. Let

Z = X(XT DX)−
1

2 . (2.15)

Since XT DX is diagonal, the columns of Z are simply those of X scaled by the

inverse square root of the degrees of partitions. We then have ε(X) = 1
K

tr(ZT WZ),

where tr denotes the trace of a matrix. A natural constraint on Z is:

ZT DZ = (XT DX)−
1

2 XT DX(XTDX)−
1

2 = IK,
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where IK denotes the K × K identity matrix. Ignoring the constraints in PNCX,

we derive a new program of variable Z and call it PNCZ:

maximize ε(Z) =
1

K
tr(ZT WZ) (2.16)

subject to ZT DZ = IK. (2.17)

Relaxing Z into the continuous domain turns the discrete problem into a tractable

continuous optimization problem. The special structure of this program is re-

vealed in Proposition 1, which can be proved trivially using tr(AB) = tr(BA).

Proposition 1 (Orthogonal Invariance). Let R be a K × K matrix. If Z is a

feasible solution to PNCZ, so is {ZR : RT R = IK}. Furthermore, they have the

same objective value: ε(ZR) = ε(Z).

Therefore, a feasible solution remains equally good with arbitrary rotation

and reflection. Program PNCZ is a Rayleigh quotient optimization problem that

has been addressed in Rayleigh-Ritz theorem and its extensions. Proposition 2

rephrases the theorem in our problem setting. It can also be proven directly using

Lagrangian relaxation. The proposition shows that among all the optima are the

eigenvectors of (W, D), or equivalently those of normalized weight matrix P :

P = D−1W. (2.18)

Since P is a stochastic matrix (Meila and Shi, 2001), it is easy to verify that 1N is

a trivial eigenvector of P and it corresponds to the largest eigenvalue of 1.

Proposition 2 (Optimal Eigensolution). Let (V, S) be the eigendecomposition

of P : PV = V S, where V = [V1, . . . , VN ] and S = Diag(s) with eigenvalues

ordered nonincreasingly: s1 ≥ . . . ≥ sN . (V, S) is obtained from the orthonormal

eigensolution (V̄ , S) of the symmetric matrix D− 1

2 WD− 1

2 , where

V = D− 1

2 V̄ , (2.19)

D− 1

2 WD− 1

2 V̄ = V̄ S, V̄ T V̄ = IN . (2.20)
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Therefore, V and S are all real and any K distinct eigenvectors form a local

optimum candidate to PNCZ, with

ε([Vπ1
, . . . , VπK

]) =
1

K

K
∑

l=1

sπl
, (2.21)

where π is an index vector of K distinct integers from [N ]. The global optimum of

PNCZ is thus achieved when π = [1, . . . , K]:

Z∗ = [V1, . . . , VK], (2.22)

Λ∗ = Diag([s1, . . . , sK]), (2.23)

ε(Z∗) =
1

K
tr(Λ∗) = max

ZT DZ=IK

ε(Z). (2.24)

Strictly speaking, any distinct K columns of V are locally optimal only if the

weight matrix is semi-positive definite. Though a pairwise weight matrix evalu-

ated from a Gaussian function is guaranteed to be positive definite (Berg et al.,

1984), which is what we will use in our experiments, in general it may not be

semi-positive definite. In other words, the objective function may not be convex.

However, the global-optimality holds even when it is non-convex. The Rayleigh

quotient is known to play an important role in the optimization of a non-convex

function on a possibly nonconvex set. Our relaxation technique belongs to the

family of trust region subproblems, where strong duality (zero duality gap) holds

for a larger class of seemingly non-convex problems. A rigorous exposition can

be found in (Anstreicher and Wolkowicz, 2000) and references therein.

To summarize, the global optimum of PNCZ is not unique. It is a subspace

spanned by the first K largest eigenvectors of P through orthogonal matrices:

{Z∗R : RT R = IK , PZ∗ = Z∗Λ∗}. (2.25)

Unless the eigenvalues are all the same, Z∗R are no longer the eigenvectors of P .

All these solutions have the optimal objective value, which provides a nonincreas-

ing upperbound to PNCX.
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Corollary 1 (Upperbound Monotonicity). For any K,

max ε(ΓK
V ) ≤ max

ZT DZ=IK

ε(Z) =
1

K

K
∑

l=1

sl (2.26)

max
ZT DZ=IK+1

ε(Z) ≤ max
ZT DZ=IK

ε(Z). (2.27)

Next we transform Z back to the space of partition matrices. If f is the map-

ping that scales X to Z, then f−1 is the normalization that brings Z back to X:

Z = f(X) = X(XTDX)−
1

2 (2.28)

X = f−1(Z) = Diag(diag− 1

2 (ZZT )) Z, (2.29)

where diag returns the diagonal of its matrix argument in a column vector. If we

take the rows of Z as coordinates of K-dimensional points, what f−1 does is to

normalize their lengths so that they lie on the unit hypersphere centered at the

origin. With f−1, we transform the continuous optimum Z∗R in the Z-space to

the X-space: since RT R = IK ,

f−1(Z∗R) = f−1(Z∗)R. (2.30)

This simplification is important because now the continuous optima are directly

characterized by f−1(Z∗) in the X-space:

{X̃∗R : X̃∗ = f−1(Z∗), RT R = IK}. (2.31)

2.2.2 Special Case: Bipartitioning

Before we proceed to discretize the continuous optima, we examine 2-class nor-

malized cuts in our multiclass framework. Instead of transforming the eigenvec-

tors to approach an underlying discrete solution, we transform the underlying so-

lution to approach the eigenvectors. By doing so, we reach a direct interpretation

of eigenvectors.
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Proposition 3. Let d = 1T D1 denote the total degree of all the nodes in the

graph. Let α = XT
1 DX1/d denote the degree ratio of the first group V1. For

K = 2, there exists an orthogonal matrix R such that the first column of ZR =

X(XTDX)−
1

2 R is a multiple of 1N :

R =

[ √
α −

√
1 − α√

1 − α
√

α

]

, (2.32)

ZR =
1√
d
·
[

1N

√

α
1−α

−
√

1
α(1−α)

· X1

]

(2.33)

Proof. Since X1 + X2 = 1N and XT DX = d · Diag([α, 1 − α]), we have:

ZR = X(XTDX)−
1

2 R

=
1√
d
·
[

X1√
α

1−X1

1−α

]

·
[ √

α −
√

1 − α√
1 − α

√
α

]

=
1√
d
·
[

1N

√

α
1−α

−
(

√

α
1−α

+
√

1−α
α

)

· X1

]

.

Reduction of the last equation gives Eqn (2.33).

Since 1N is an eigenvector of P , we immediately see that the second eigen-

vector of P is an approximation to the linear function of X1 given in the second

column of Eqn (2.33). It is a scaled version of the variable used in (Shi and Malik,

2000) for determining the solution to 2-class normalized cuts. To make it more

explicit, given R in Eqn (2.32), let Y = ZR = [Y1, Y2]. The reader can verify that

Y T DY = I2 is automatically satisfied. Let y = X1−α ·1N , i.e. Y2 = β ·y, where

β =
√

dα(1 − α). Then we have:

ε(Y ) =
1

2
tr(Y T WY ) =

1

2

(

1

d
1T

NW1N + Y T
2 WY2

)

=
1

2

(

1 + β2yTWy

)

,

yTDy =
1

β2
Y T

2 DY2 =
1

β2
.

Based on the definition on α, there is a natural constraint on y: yTD1N = 0. For

2-class problems, we reduce PNCZ to a Rayleigh quotient in the single scaled
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indicator y:

maximize ε(y; W ) =
1

2

(

yTWy

yTDy
+ 1

)

, (2.34)

subject to yT D1N = 0. (2.35)

The question that follows is this: if the second eigenvector is a relaxed version of

X1 − α · 1N or equivalently (1 − α) · X1 − αX2, what about the third and fourth

eigenvector? Even if we have these eigenvectors, how do we recover X from these

transformations?

These are the difficulties involved when generalizing such a reduction proce-

dure to K > 2. It is a major reason why multiclass normalized cuts have not been

studied formally. Extrapolating recklessly to multiclass problems could be mis-

leading: a hierarchical segmentation was suggested (Shi and Malik, 2000), i.e.,

2K partitions only need K eigenvectors, with one subsequent eigenvector for a

successive bipartitioning. It is now clear that we need K and only K eigenvectors

to yield K (not 2K) partitions. The reason is that group indicators are constrained

to be orthogonal. They cannot be chosen freely, as required for hierarchical cuts.

We also gain more perspective on the first eigenvector. Though Z∗
1 = d− 1

2 ·1N

is a trivial multiple of 1N , X̃∗
1 is not for K > 1. The seemingly trivial first

eigenvector is as important as any others, since they collectively provide a basis

for generating the whole set of continuous solutions that optimize the objective.

2.2.3 Finding Optimal Discrete Solutions

The optimal solutions to PNCZ are in general not feasible to the original program

PNCX. However, we can use them to find a nearby discrete solution. This discrete

solution may not be the absolute maximizer of PNCX, but it is nearly global-

optimal due to the continuity of the objective function. Therefore, our goal here

is to find a discrete solution that satisfies the binary constraints of the original

program PNCX, yet is closest to the continuous optima given in Eqn (2.31).

Theorem 1 (Optimal Discretization). Let X̃∗ = f−1(Z∗). An optimal discrete
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partition X∗ is considered the one satisfying the following program called POD:

minimize φ(X, R) = ‖X − X̃∗R‖2 (2.36)

subject to X ∈ {0, 1}N×K, X 1K = 1N (2.37)

RT R = IK, (2.38)

where ‖M‖ denotes the Frobenius norm of matrix M : ‖M‖ =
√

tr(MMT ). A

local optimum (X∗, R∗) of this bilinear program can be solved iteratively.

Given R∗, POD is reduced to program PODX in X:

minimize φ(X) = ‖X − X̃∗R∗‖2 (2.39)

subject to X ∈ {0, 1}N×K, X 1K = 1N . (2.40)

Let X̃ = X̃∗R∗. The optimal solution is given by non-maximum suppression (if

there are multiple maxima, only one of them, but any one of them, can be chosen

so as to honor the exclusion constraint on a partition matrix):

X∗(i, l) = istrue(l = arg max
k∈[K]

X̃(i, k)), i ∈ V. (2.41)

Given X∗, POD is reduced to program PODR in R:

minimize φ(R) = ‖X∗ − X̃∗R‖2 (2.42)

subject to RT R = IK, (2.43)

and the solution is given through some singular vectors:

R∗ = ŨUT , (2.44)

X∗T X̃∗ = UΩŨT , Ω = Diag(ω), (2.45)

where (U, Ω, Ũ) is a singular value decomposition (SVD) of X∗T X̃∗, with UT U =

IK , ŨT Ũ = IK and ω1 ≥ . . . ≥ ωK .

Proof. First we note that: φ(X, R) = ‖X‖2+‖X̃∗‖2−tr(XRT X̃∗T +XT X̃∗R) =

2N − 2 tr(XRT X̃∗T ). Thus minimizing φ(X, R) is equivalent to maximizing

tr(XRT X̃∗T ). For PODX, given R = R∗, as each entry of diag(XR∗T X̃∗T )

30



can be optimized independently, Eqn (2.41) results. For PODR, given X = X ∗,

we construct a Lagrangian using a symmetric matrix multiplier Λ:

L(R, Λ) = tr(X∗RT X̃∗T ) − 1

2
tr(ΛT (RT R − IK)).

The optimum (R∗, Λ∗) must satisfy

LR = X̃∗T X∗ − RΛ = 0, i.e. Λ∗ = R∗T X̃∗T X∗. (2.46)

Thus Λ∗T Λ∗ = UΩ2UT . Since Λ = ΛT , Λ∗ = UΩUT . From Eqn (2.46), we then

have: R∗ = ŨUT and φ(R∗) = 2N − 2 tr(Ω). The larger tr(Ω) is, the closer X∗

is to X̃∗R∗.

Due to the orthogonal invariance of the continuous optima, our method is ro-

bust to arbitrary initialization, from either X or R. A good initialization can nev-

ertheless speed up convergence. We find the heuristic mentioned in (Ng et al.,

2002) is good and fast. It is simply K-means clustering with K nearly orthogonal

data points as centers. Computationally, it is equivalent to initialize R∗ by choos-

ing K rows of X̃∗ that are as orthogonal to each other as possible. To derive X ∗

by Eqn (2.41) on this non-orthogonal R∗ is exactly K-means clustering with the

unit-length centers.

Given X∗, we solve PODR to find a continuous optimum X̃∗R∗ closest to

it. For this continuous optimum, we then solve PODX to find its closest discrete

solution. Each step reduces the same objective φ through coordinate descent. We

can only guarantee such iterations end in a local optimum, which may vary with

the initial estimation. However, since X̃∗R∗ are all globally optimal regardless

of R∗, whichever X̃∗R∗ the program POD converges to, its proximal discrete

solution X∗ will not be too much off from the optimality.

The loss of optimality in discretization might result in ε(X∗) < 1
K

∑K+1
l=2 sl,

which is the next optimal value in the continuous domain and is achieved by Z =

[V2, . . . , VK+1]. A legitimate concern is whether a nearby discrete solution X of

this suboptimal Z would suffer less loss in discretization and become optimal:

ε(X) > ε(X∗). We don’t have any theoretical analysis regarding this issue, but

such reversal of optimality is rare if ever in our experiments.
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2.2.4 Algorithm

Given weight matrix W and desired number of classes K:

1. Compute the degree matrix D = Diag(W1N).

2. Find the optimal eigensolution Z∗ by:

D− 1

2 WD− 1

2 V̄[K] = V̄[K] Diag(s[K]), V̄ T
[K]V̄[K] = IK

Z∗ = D− 1

2 V̄[K].

3. Normalize Z∗ by: X̃∗ = Diag(diag− 1

2 (Z∗Z∗T ))Z∗.

4. Initialize X∗ by computing R∗ as:

R∗
1 = [X̃∗(i, 1), . . . X̃∗(i, K)]T , random i ∈ [N ]

c = 0N×1

For k = 2, . . . , K, do:

c = c + abs(X̃∗R∗
k−1)

R∗
k = [X̃∗(i, 1), . . . X̃∗(i, K)]T , i = arg min c

5. Initialize convergence monitoring parameter φ̄∗ = 0.

6. Find the optimal discrete solution X∗ by:

X̃ = X̃∗R∗

X∗(i, l) = istrue(l = arg maxk∈[K] X̃(i, k)), i ∈ V, l ∈ [K].

7. Find the optimal orthogonal matrix R∗ by:

X∗T X̃∗ = UΩŨT , Ω = Diag(ω)

φ̄ = tr(Ω)

If |φ̄ − φ̄∗| < machine precision, then stop and output X∗

φ̄∗ = φ̄

R∗ = ŨUT

8. Go to Step 6.

32



In Step 2, we use V̄[K] as a shorthand for [V̄1, . . . , V̄K], and likewise for S̄[K].

In Step 4, B = abs(A) denotes the absolute values of the elements of A. In Step

3, since X̃∗ = Diag(diag− 1

2 (Z∗Z∗T ))Z∗ scales the lengths of each row to 1, we

can skip scaling V̄ in order to get V , i.e. Z∗ = [V̄1, . . . , V̄K] leads to the same X̃∗.

Step 2 solves the first K leading eigenvectors of an N × N usually sparse

matrix. It is nevertheless the most time consuming, with a time complexity of

O(N
3

2 K) using a Lancoz eigensolver in our image segmentation experiments. See

an analysis in (Shi, 1998). Step 4 has NK(K − 1) multiplications in choosing K

centers. Step 6 involves NK2 multiplications to compute X̃∗R∗. Step 7 involves

an SVD of a K × K matrix and K3 multiplications for computing R∗. Since X∗

is binary, X∗T X̃∗ can be done efficiently with all additions. Taken together, the

time complexity of the algorithm is O(N
3

2 K + NK2).

2.3 Experiments

For the point set used in the introduction, we have shown the four eigenvectors of

P in Fig 2.3. These eigenvectors provide the basis for up to 4-class partitioning.

Using this point set data, we illustrate the flow of our algorithm in Fig 2.6. An

example using suboptimal continuous solutions is given in Fig 2.7. The results for

K > 2 are given in Fig 2.8. There is loss of optimality in discrete partitions, but

they are nearly global-optimal.

Images are first convolved with oriented filter pairs to extract the magnitude of

edge responses OE (Malik et al., 2001). Pixel affinity W is inversely correlated

with the maximum magnitude of edges crossing the line connecting two pixels.

W (i, j) is low if i, j are on the two sides of a strong edge (Fig 2.9):

W (i, j) = exp

(

−
maxt∈(0,1) OE2(i + t · j)

2σ2
e · maxk OE2(k)

)

, (2.47)

where i denotes the location of pixel i. This measure is meaningful only for

nearby pixels. We hence set W (i, j) = 0 beyond a city-block distance rW . We fix

σe = 0.01 and rW = 8 for all images.
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Z∗ = [V1, V2] X̃∗ = f−1(Z∗)
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normalize
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Figure 2.6: Progression of our algorithm. Each plot shows an N × 2 matrix, with each

row taken as (x, y) coordinates of a point in the plane. Though there are N = 245 points

in total, many of them are mapped to the same planar point, resulting in three visible clus-

ters. #1 Normalize: starting with the eigenvectors Z ∗, we first map it back to the X-space

by normalizing their lengths so that all of them lie on the unit circle. #2 Initialize: two

points with almost orthogonal phases are selected to form R∗(0). X̃∗R∗(0) is the projec-

tion of all the points to the two chosen directions. An initial clustering X ∗(0) is obtained

by non-maximum suppression: points are divided according to the dashed line x = y:

points below the line assigned to (1, 0) hence V1, those above the line assigned to (0, 1)

hence V2. #3 Refine: we find the closest continuous optimal to X∗(0) by adjusting the

rotation matrix R∗(1). Non-maximum suppression produces its closest discrete solution

X∗(1), which is exactly the same as X∗(0). The algorithm converges and stops. The final

clustering is shown in the center, with ε(X∗) = 0.9997 < ε(X̃∗) = 0.9998.
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Figure 2.7: Clustering from suboptimal continuous solutions. Same convention as

Fig 2.6. After initialization, we refine the clustering by iteratively applying an optimal

orthogonal transformation R∗, in this case equivalent to a rotation and a reflection in

the plane. After 3 iterations, the algorithm converges to a local optimum where the pair

(X∗, X̃∗R∗) no longer changes. Notice here the discrete solution has a better objective

value than its continuous counterpart.
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K = 3: (0.9995, 0.9995) K = 4: (0.9978, 0.9983)

Figure 2.8: Clustering from the first 3, 4 eigenvectors. The numbers are (ε(X∗), ε(X̃∗)).

1

2

3

image oriented filter pairs edge magnitudes

Figure 2.9: Pixel affinity matrix W is computed based on intensity edge magnitudes. For

example, W (1, 2) ≈ 0 while W (1, 3) ≈ 1.

Real images present a richer structure than the artificial point set data. Fig 2.10

shows the first 20 leading eigenvectors for an image. These eigenvectors can be in-

terpreted as vibration modes in a mass-spring system, with eigenvalues indicating

vibration periods. Shown in Fig 2.11, through orthogonal transforms, the coarse-

to-fine structure of X̃∗ is folded flat in X̃∗R∗. Nevertheless, refining partitions

with increasing K can be achieved through a sequential initialization: we use X ∗
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of ΓK
V as a starting segmentation for ΓK+1

V , with its largest region broken into 2

groups. This produces a pseudo-hierarchical segmentation in Fig 2.10: when K

increases, regions tend to be successively divided (e.g. K7, K8), yet the enclosing

boundaries are subject to fine adjustment (e.g. K5, K6). Knowing the structure

of all continuous optima allows us to pick out a set of good discrete solutions with

special specifications.

Our solution to the original normalized cuts formulation PNCX is done in two

steps: first find continuous optima and then find a closest discrete solution. Al-

though each step is optimal, the output at the end need not be optimal in general.

To evaluate the optimality of our solutions as well as to understand the effects

of initialization in our discretization step, we collect all possible optimal discrete

solutions from our discretization procedure. This is done by initializing the dis-

cretization procedure with pixels sampled at a dense grid shown in Fig 2.12.

What is remarkable is that for most K’s, i.e. K = 1, 2, 3, 6, 7, 8, 9, 12, 13,

17, 18, 19, 20 among K ≤ 20, all initializations converge to one single optimum

(Fig 2.13). For K = 2, we show the final continuous solution in Fig 2.12. It

is most evident in the phaseplot that there is no other choice for discretization.

For other K’s, there could be multiple solutions that attract different initializa-

tions (Fig 2.14). Despite many discrete solutions in the vicinity of a continuous

optimum, only a few of them are closest to the set of continuous optima. What

distinguishes them from other discrete solutions, for example, the intermediate

solutions during iterations (Fig 2.11), is that they all have relatively stable organi-

zations (Fig 2.14), although they do not necessarily have larger objective values.

The maximum and minimum of these discrete solutions provide a tight em-

pirical bound to our discrete solutions from any single initialization, for example,

the hierarchical initialization in Fig 2.10. Shown in Fig 2.13 the objective values

for the continuous optima monotonically decrease with larger K, whereas those

for the discrete optima gradually decrease by and large, but not monotonically.

We also see that the hierarchical initialization helps to approach an optimal dis-

crete solution most of the time. Examining these values with their corresponding

segmentations, we find that ε itself is not very indicative for selecting the best K.
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V1 V2 V3 V4

V5 V6 V7 V8

V9 V10 V11 V12

V13 V14 V15 V16

V17 V18 V19 V20

K = 1 K = 2 K = 3 K = 4

K = 5 K = 6 K = 7 K = 8

K = 9 K = 10 K = 11 K = 12

K = 13 K = 14 K = 15 K = 16

K = 17 K = 18 K = 19 K = 20

Figure 2.10: Multiclass spectral clustering for image segmentation. It takes 36 seconds

to compute the 20 leading eigenvectors in MATLAB on a PC with 1GHz CPU and 1GB

memory. Image size: 120 × 97. Each is a segmentation using the first K eigenvectors.

The discretization process takes 0.1 up to 1.1 seconds.
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X̃∗
1

X̃∗
2

X̃∗
3

Figure 2.11: Progression of our algorithm for image segmentation. K = 3. Column

#1 continuous optimum: X̃∗ = f−1([V1, V2, V3]). Columns #2 till #5: discretization at

iteration t = 0, 1, 2, 3: X̃∗R∗(t) (rows #1-#3), X∗(t) (row #4), with ε(X∗(t)) evolving

from 0.9860, 0.9874, 0.9929 to 0.9932 upon convergence.
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seeds X̃∗
1 X̃∗

2 X̃∗ X∗
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Figure 2.12: The optimal discrete solution for K = 2. All the pixel seeds that are used

to initialize our discretization procedure lead to the same discrete optimal solution.
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1.00

ε(X̃∗)
ε(X∗)

a: number of discrete optima b: optimal objective values

Figure 2.13: Optimality of discrete solutions from our discretization procedure. The

abscissa is K for both cases. a: number of discrete solutions. The discrete solution might

depend on initialization. b: ε values for continuous optima (topmost, �), best discrete

solutions (second, �), worst discrete solutions (dashed line), and the discrete solutions

from the hierarchical initializations (in-between 4) in Fig 2.10.
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K = 4 K = 10

0.9901 0.9899 0.9881 0.9769 0.9703

K = 5 K = 11

0.9832 0.9831 0.9826 0.9712 0.9689

K = 15 K = 14

0.9548 0.8971 0.8955 0.9582 0.8977

Figure 2.14: Multiple optimal discrete solutions. Numbers are their ε values.
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Fig 2.15 shows that K-means on X̃∗ (Ng et al., 2002) can produce similar

results but it may take twice as long to converge. In (Ng et al., 2002), a perturba-

tion rationale is given for the need to normalize the eigenvectors, while the use of

K-means is unjustified. K-means’ similar results are a consequence of the con-

tinuous optima greatly reducing the chance for misclustering. Yet we observe that

a good initial estimation is crucial for K-means, whereas our method is robust to

a random initialization. This is not surprising because K-means introduces addi-

tional unwarranted assumptions, while our principled account has a clear criterion

φ to optimize, which guarantees the near global optimality of discrete solutions

under the orthogonal invariance of continuous optima.

−0.03 0.00 0.03
0

0.5

−1.5 0.0 1.5
0

0.1

a: difference in ε b: difference in time

Figure 2.15: Performance comparison to K-means clustering on X̃∗. Both are estimated

probability distribution of the relative difference between the two methods: g−gKmeans

g
,

where g is ε in a and running time in b. These statistics are collected over 100 Berkeley

test images. Each image is segmented into 2 to 20 classes. Both codes are optimized to

take advantage of the unit lengths of all data points, with the same initialization method.

We ran our algorithm on 450+ real images. Fig 2.16 and Fig 2.17 are samples

of our results on a set of fashion pictures and Berkeley test set. The number of

classes K is manually chosen. We also tried various automatic selection methods.

ε
′′

K(X∗) seems to be most informative. However, this requires further research.
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Figure 2.16: Multiclass segmentation on New York Spring 2002 fashion pictures.
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Figure 2.17: Multiclass segmentation on Berkeley test images.
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2.4 Summary

We gave a principled account of multiclass normalized cuts, starting from a re-

laxed continuous solution to the final discretization. It clarifies the role of eigen-

vectors as a generator for all continuous optima, based on which we developed a

fast and flexible discretization procedure for finding a nearly global-optimal par-

titioning. We tested our method on real image segmentation and found results

promising.

Our account also applies to various average cuts criteria since they only dif-

fer in the definitions of the normalization term (Shi and Malik, 2000), which is

nonessential to all the developments here. We expect the use of our algorithm to

improve those spectral methods as well.
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Chapter 3

Repulsion and Regularization

Visual processing starts by extracting local features such as oriented edges. The

features detected at an early stage are then grouped into meaningful entities such

as regions, boundaries and surfaces. The goal of pre-attentive visual segmentation

(Li, 2000) is to mark conspicuous image locations which most likely demand

further processing. These locations not only include boundaries between regions,

but also smooth contours and popout targets in a background (Fig 3.1).

a: boundary. b: contour. c: popout.

Figure 3.1: The goal of pre-attentive segmentation is to mark conspicuous image loca-

tions, which could be caused by a: region boundaries, b: smooth contours and c: popout

targets. In these examples, the similarity of features within figure and ground are con-

founded with the dissimilarity between figure and ground.

It has long been assumed that regions are foremost characterized by features

which are homogeneous within the areas. Their values are then compared in
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neighbourhoods to locate boundaries between regions (Li, 2000). This view of

feature discrimination for grouping is supported by evidence in neurophysiol-

ogy on elaborate feature detectors in visual cortex (van Essen, 1985), in psy-

chophysics on visual search (Treisman, 1985) and in modeling on texture seg-

mentation (Julesz, 1984; Bergen and Adelson, 1988; Malik and Perona, 1990).

Some other approaches of texture segmentation go beyond the analysis of fea-

tures obtained from image filters by also modeling the interactions between fil-

ters (Zhu et al., 1998). These Markov random field models (Geman and Ge-

man, 1984) capture contextual dependencies and other statistical characteristics

of texture features.

a: boundary. b: incoherent. c: disconnected.

Figure 3.2: Local feature contrast alone is sufficient to perceptually link dissimilar ele-

ments together. a: Boundary by local orientation contrast. b: Figure without curvilinear-

ity. c: Spatially disconnected figure with low inter-element similarity.

However, it has been shown that when feature similarity within an area and

feature differences between areas are teased apart, the two aspects of percep-

tual organization, association and segregation, can contribute somewhat indepen-

dently to grouping (Beck, 1982; Julesz, 1986; Sagi and Julesz, 1987; Nothdurft,

1993). In particular, when feature values change continuously in areas, it is the

local feature contrast, rather than the feature properties themselves, that is more

important for the perceived grouping (Fig 3.2). These results have motivated a few

models of pre-attentive vision which directly localize region boundaries through

lateral interactions between edge detectors (Nothdurft, 1997; Li, 2000).

Such contextual feature analysis for grouping can be modeled in a graph-
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theoretic framework, where each element is denoted by a node and the relation-

ships between the elements are described by weights attached to the edges con-

necting the nodes. For example, Gestalt grouping factors, such as proximity, sim-

ilarity, continuity and symmetry, can be first evaluated through a comparison of

feature values associated with the elements, then combined into a measure sum-

marizing the overall grouping compatibility (Wu and Leahy, 1993; Shi and Malik,

1997; Puzicha et al., 1998; Gdalyahu et al., 1998; Sharon et al., 2000). While

Gestalt laws have always stressed the similarity of elements in grouping, the ef-

fect of local feature contrast cannot be captured in a framework that only models

similarity grouping. Fig 3.2c gives an example where completely dissimilar ele-

ments that are spatially disconnected can be perceived as a figure simply because

they are locally dissimilar to a common background.

In this chapter, we integrate such dissimilarity cues into a conventional method

that only groups by similarity. We generalize the normalized cuts criterion (Shi

and Malik, 1997) to handle both types of cues. Using a simplified scenario, we

derive necessary and sufficient conditions for our model to segregate figure from

ground. This helps us to understand perceptual popout and its relationship to gen-

eral grouping problems. We demonstrate these concepts on image segmentation.

3.1 Grouping with Attraction and Repulsion

In graph approaches for segmentation, an image is described by a weighted graph

G = (V, E), where each pixel becomes a node and a measure of feature similarity

between two pixels is attached to the edge connecting their nodes. For an image

of N pixels, all such pairwise comparisons are summarized in an N × N weight

matrix W . W is assumed nonnegative and symmetric. To segment an image into

K regions is to partition all nodes into K disjoint sets. We denote a K-way node

partitioning as ΓK
V = {V1, . . . , VK}, where V = ∪K

l=1Vl and Vl ∩ Vk = ∅, l 6= k.

There are many criteria for selecting a good graph partitioning. Here we will

use the normalized cuts criterion (Shi and Malik, 1997). However, the concepts to

be developed also apply to other criteria.
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A brief account of normalized cuts is as follows. For node sets P, Q ⊂ V,

let links(P, Q; W ) be the total connections from P to Q; let degree(P; W ) be the

total connections from P to all the nodes in the graph; let linkratio(P, Q; W ) be

the connection ratio from P to Q:

links(P, Q; W ) =
∑

p∈P,q∈Q

W (p, q), (3.1)

degree(P; W ) = links(P, V; W ), (3.2)

linkratio(P, Q; W ) =
links(P, Q; W )

degree(P; W )
. (3.3)

In particular, linkratio(P, P; W ) + linkratio(P, V \ P; W ) = 1. The so-called

normalized associations and normalized cuts criteria are defined as:

knassoc(ΓK
V ; W ) =

1

K

K
∑

l=1

linkratio(Vl, Vl; W ) (3.4)

kncuts(ΓK
V ; W ) =

1

K

K
∑

l=1

linkratio(Vl, V \ Vl; W ). (3.5)

Since knassoc(ΓK
V ; W ) + kncuts(ΓK

V ; W ) = 1, maximizing the associations and

minimizing the cuts are equivalent.

3.1.1 Representation

We use two nonnegative weight matrices, A and R, to describe respectively the

feature similarity and dissimilarity between all pairs of nodes in the graph.

There might be some confusion at this point: why do we need these two mea-

sures which seem to imply each other? The fact is that these numbers encode not

just the degree of similarity or dissimilarity, but also its confidence. Therefore,

one measure alone inevitably has ambiguity. For example, there are two possible

interpretations to weight A(i, j) = 0: either i and j are not similar at all, or we

are not certain about their similarity.

Consider a concrete example in image segmentation. We choose A(i, j) to be

a Gaussian function of intensity difference between pixels i and j. Such com-

parisons would introduce erroneous grouping cues for pixels far away from each
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other. We thus restrict the evaluation to nearby pixels and set A(i, j) = 0 for

all pairs of pixels beyond a certain distance. This zero value does not mean two

pixels are not similar, but rather we don’t know whether they are similar or not.

Therefore, A and R complement each other precisely because similarity mea-

surements have different certainties. If the range of all measurements is between 0

and 1, then A(i, j) = 0.1 is not equivalent to R(i, j) = 0.9. The reason is that the

former is associated with a very low confidence, while the latter is associated with

a high confidence. For images or any other data, we often derive cues with differ-

ent levels of confidence, some leaning toward an attraction nature, some toward a

repulsion nature. Such a pair of representations is not redundant.

3.1.2 Criteria

Intuitively, attraction indicates association and repulsion indicates segregation. A

good clustering maximizes within-group associations and between-group segre-

gation, but minimizes their complements (Fig 3.3). Quantitatively,

1 2

3 4

1 2

3 4

a: association by attraction A b: segregation by repulsion R

Figure 3.3: Grouping criteria. Γ2
V = {{1, 2}, {3, 4}}. A good grouping maximizes

connection ratios of thick-lined edge weights and minimizes those of dotted-lined weights.

a: Large within-group associations and small between-group associations are desired. b:

Large between-group segregation and small within-group segregation are desired.

linkratio(P, P; A): within-group association

linkratio(P, V \ P; R): between-group segregation.
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Therefore, for each of the K partitions, we combine attraction and repulsion by:

knassoc(ΓK
V ) =

1

K

K
∑

l=1

[

linkratio(Vl, Vl; A) · degree(Vl; A)

degree(Vl; A) + degree(Vl; R)
+

linkratio(Vl, V \ Vl; R)· degree(Vl; R)

degree(Vl; A) + degree(Vl; R)

]

, (3.6)

kncuts(ΓK
V ) =

1

K

K
∑

l=1

[

linkratio(Vl, V \ Vl; A)· degree(Vl; A)

degree(Vl; A) + degree(Vl; R)
+

linkratio(Vl, Vl; R) · degree(Vl; R)

degree(Vl; A) + degree(Vl; R)

]

. (3.7)

Again the duality is maintained since knassoc + kncuts = 1. Therefore the two

goals are equivalent. We make no distinction further and denote ε = knassoc.

3.1.3 Computational Solution

We use partition matrix X = [X1, . . . , XK] to represent ΓK
V , where Xl is a binary

membership indicator for group l. Since a pixel is only assigned to one partition,

there is an exclusion constraint on X: X 1K = 1N , where 1d denotes the d × 1

vector of all 1’s.

We define the equivalent weight matrix Ŵ and equivalent degree matrix D̂:

Ŵ = A − R + DR, (3.8)

D̂ = DA + DR, (3.9)

where DW = Diag(W1N) is the degree matrix of W . We use Diag to denote

a diagonal matrix made from its vector argument and diag to denote a column

vector made from the diagonal of its matrix argument.

We introduce scaled partition matrix Z, where Z = X(XT D̂X)−
1

2 . It natu-

rally satisfies ZT D̂Z = I , where I is an identity matrix.
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With these symbols, we rewrite the normalized cuts criterion as:

maximize ε(ΓK
V ) =

1

K

K
∑

l=1

XT
l ŴXl

XT
l D̂XT

l

=
1

K
tr(ZT ŴZ), (3.10)

subject to ZT D̂Z = I (3.11)

X ∈ {0, 1}N×K, X 1K = 1N . (3.12)

This program is in the same form as conventional normalized cuts, thus the same

computational procedure applies. That is, we first ignore the discrete constraints

on X and obtain an optimal solution of Z by solving a generalized eigenvalue

problem. Let (V, S) be the eigenvectors of (Ŵ , D̂), where S = Diag(s) has

nonincreasingly ordered eigenvalues. Based on Gershgorin’s theorem, we have

|sl| ≤ 2, ∀l. All maximizers of ε in the relaxed continuous domain are generated

by the eigenvectors corresponding to the K largest eigenvalues:

max
Z

ε(Z) = ε([V1, . . . , VK]) =
1

K

K
∑

l=1

sl (3.13)

We then transform these optima to the space of X by a normalization proce-

dure. Next we solve a discretization problem, where a discrete solution satisfying

Eqn (5.6) yet closest to the continuous optima is sought (Yu and Shi, 2003).

We examine two extreme cases. When there is no repulsion, Ŵ = A and

D̂ = DA. This case is reduced to the conventional normalized cuts (Shi and Malik,

1997), where 1N is the eigenvector of (Ŵ , D̂) with the largest eigenvalue of 1.

suggesting that all nodes are one group. When there is no attraction, Ŵ = DR−R

and D = DR. 1N is the eigenvector of (Ŵ , D̂) with an eigenvalue of 0. When

we have both attraction and repulsion, 1N is no longer an eigenvector. Indeed,

attraction tends to bind elements together, while repulsion tends to break elements

apart. The optimal partitioning results from the balance of these two factors. We

also see that the often considered trivial eigenvector 1N is coincidental. It only

happens when the weight matrix is entirely attraction.
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3.2 Negative Weights and Regularization

Given a symmetrical weight matrix W , let

W = W+ − W− = A − R, (3.14)

where W+ and W− contain the absolute values of all positive and negative entries

of W respectively. We regard W+ as attraction A and W− as repulsion R, and

interpret normalized cuts on A and R as that on W . The equivalent eigensystem

(Ŵ , D̂) is thus

Ŵ = W + DW−
, (3.15)

D̂ = DW+
+ DW−

. (3.16)

With the introduction of repulsion, we no longer require weight matrices to be

nonnegative for graph partitioning. Furthermore, Eqn (3.14) is not the only way

to decompose a symmetric matrix into attraction and repulsion. In general, with

an arbitrary nonnegative matrix ∆, we have:

W = (W+ + ∆) − (W− + ∆) = A − R. (3.17)

The previous case corresponds to ∆ = 0. If we interpret W using A = W+ + ∆

and R = W− + ∆, the continuous optimum is then given by the eigenvectors of

(Ŵ + D∆, D̂ + 2D∆). (3.18)

We see that, no matter how much variation the entries of ∆ take, the only effect

∆ has on the solution is through D∆. We choose D∆ = δ · I , where δ is a scalar.

This extra degree of freedom provides us with a means to regularize the so-

lutions of spectral methods. When D̂ has near-zero values for some nodes, the

segmentation by the eigenvectors of (Ŵ , D̂) is numerically unstable. This situa-

tion occurs when a coherent figure is embedded in a random background. In the

attraction case, this problem can be remedied by the addition of a small constant

baseline connection weight. However, such a technique lacks any theoretical jus-

tification and alters the measurements of pairwise affinity. In our current frame-

work, we can introduce a baseline connection to both the attraction component
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W+ and the repulsion component W−, so that their effects are canceled out while

the stability of grouping is improved.

In other words, with the dual representation, we can encode the value of simi-

larity and the value of confidence independently. Adding a non-zero ∆ to W+ and

W− amounts to increasing the confidence without changing the value of similar-

ity measures, so that we have more certainty about the grouping for nodes with

near-zero connections. A regularized solution thus reveals more stable groups.

How does the grouping change with the amount of regularization? This ques-

tion is related to the limiting behavior of the eigensolution at δ = ∞.

Theorem 2 (Regularization at Limit ). Let ∆ = δI , δ > 0. Let (V δ, Sδ) be the

eigenvectors and eigenvalues of the normalized weight matrix P δ, where

P δ = (D̂ + 2D∆)−1(Ŵ + D∆), (3.19)

Let (U, Λ) be the eigendecomposition of P 0 − Diag(diag(P 0)). Then we have:

(V δ, Sδ) ≈ (U, Λ + 0.5 I), δ � max D̂. (3.20)

V ∞ = any N × N orthogonal matrix (3.21)

S∞ = 0.5 I. (3.22)

Proof. From Eqn (3.19), V δ and Sδ are equivalently the generalized eigenvectors

and eigenvalues of (Ŵ +D∆, D̂+2D∆) since (Ŵ +D∆)V δ = (D̂+2D∆)V δSδ,

i.e. they are the optimal normalized cuts solutions in the continuous domain.

When δ � max D̂, we have:

P δ(i, i) =
Ŵ (i, i) + δ

D̂(i, i) + 2δ
=

1

2
· Ŵ (i, i) + δ

0.5D̂(i, i) + δ
≈ 1

2
(3.23)

P δ(i, j) =
Ŵ (i, j)

D̂(i, i) + 2δ
= P 0(i, j) · D̂(i, i)

D̂(i, i) + 2δ
≈ P 0(i, j) · 1

2δ
, j 6= i (3.24)

Therefore, when δ is sufficiently large,

P δ − 0.5 I ≈
[

P 0 − Diag(diag(P 0))

]

· 1

2δ
, (3.25)
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i.e. P δ − 0.5 I becomes a scaled version of a constant matrix. Since subtracting a

scaled identity matrix (0.5I) does not change the eigenvectors (but shifts eigenval-

ues by the same scale constant), the eigensolution of P δ remains as (U, Λ+0.5 I)

until 1
2δ

becomes vanishingly small so that P δ − 0.5 I = 0. In other words,

P∞ = 0.5 I. (3.26)

The conclusions result.

We can consider δ sufficiently large when δ = 10 maxD. If µ is the minimum

floating number of a digital representation, then when δ > 1
2µ

, P δ ≈ P∞. For

δ ∈ [10 maxD, 1
2µ

], (V δ, Sδ) stays the same. In short, regularization admits a

wide range of δ, a fact that will be verified in the experiments section.

3.3 Algorithm with Repulsion and Regularization

Given weight matrix W or pair (A, R), and regularization parameter δ:

1. Compute degree matrices for attraction and repulsion:

W = A − R = W+ − W−

DA = Diag(A1), DR = Diag(R1).

2. Compute the equivalent weight and degree matrices with regularization:

Ŵ = W + DR + δ · I
D̂ = DA + DR + 2δ · I .

3. Compute the K largest eigenvectors of (Ŵ , D̂).

4. Compute a discrete partition matrix X from the eigenvectors.
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3.4 Understanding Popout

We study the simple 4-node graph in Fig 3.3. Let

W =











0 x y y

x 0 y y

y y 0 z

y y z 0











, X =











1 1 1 0

1 0 0 0

0 1 0 1

0 0 0 0











, (3.27)

where x, y, z denote figure-to-figure, figure-to-ground, ground-to-ground connec-

tions respectively (Amir and Lindenbaum, 1998b; Amir and Lindenbaum, 1998c).

Each column of X gives a 2-class partitioning. Due to symmetry, we only need to

consider the four cases in X . We determine the conditions on x, y and z so that

the partitioning Γ2
V = {{1, 2}, {3, 4}} is guaranteed.

z y x

1 (−∞, 0) (1 − y −
√

1 − 2y + 9y2, +∞)

1 [0, 1] (
2y2

1 + y
, +∞)

δ = 0 1 (1, +∞) (−y + 2y2, +∞)

−1 (−∞, −1) (
−2y2

1 − y
,
−1 + 2y + 8y2

2
)

−1 [−1, −1
2
] (−y − 2y2,

−1 + 2y + 8y2

2
)

1 (−∞, 0) (−1 + 2y, +∞)

1 [0, 1] (max(0,
−1 + 8y

7
), +∞)

δ = ∞ 1 (1, +∞) (−7 + 8y, +∞)

−1 (−∞, −1) (
1 + 8y

7
, +∞)

−1 [−1, −7
8
] (7 + 8y, +∞)

−1 [0, +∞) (1 + 2y, +∞)

Table 3.1: Feasible sets of parameters for Eqn (3.27) and Fig 3.3.
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Since scaling W does not change the grouping, we assume z = 1. By requir-

ing ε for the first column of X to be larger than that for any other column, after a

lengthy derivation, we obtain the feasible sets of x and y. They are given in Table

3.1 and plotted in Fig 3.4.

In Fig 3.4, repulsion and regularization greatly expand the regions of affinity

values that lead to the desired grouping. These effects are summarized in Table

3.2. With negative figure-ground connections arising from figures defined by local

feature contrast, repulsion allows a figure with weak between-element similarity

to pop out. With negative ground-ground connections arising from fragmented

background, regularization allows a coherent foreground to stand out.

The problem of fragmented background has led (Perona and Freeman, 1998)

to adopt an unbalanced criterion which emphasizes the coherence within the fig-

ure but not the ground. However, an unbalanced criterion tends to favor small

local clusters and thus miss global grouping structures. Here we show that the

same goal can be achieved with a balanced criterion in the attraction-repulsion

framework.

3.5 Experiments

We use a Mexican hat function of feature difference to calculate both attraction

and repulsion between data points. It is implemented as the difference of Gaus-

sians:

h(x; σ1, σ2) = G(x, σ1) − G(x, σ2) (3.28)

G(x, σ) =
1√
2πσ

exp− 1

2
( x

σ
)2 (3.29)

h(r0; σ1, σ2) = 0, r0(σ1, σ2) = σ1

√

2 ln(σ1

σ2
)

(σ1

σ2
)2 − 1

(3.30)

h(r−; σ1, σ2) = min
x

h(x; σ1, σ2), r−(σ1, σ2) =
√

3 · r0(σ1, σ2). (3.31)

h(x) is attraction if positive, repulsion if negative and neutral if zero. There are

two critical points, r0, where the affinity changes from attraction to repulsion; and
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z = 1 z = −1

δ = 0

−3 x

y

−3 x

y

δ = 5

−3 x

y

−3 x

y

δ = ∞
−3 x

y

−3 x

y

Figure 3.4: Repulsion and regularization help figure-ground segregation. Here x, y and

z are figure-figure, figure-ground and ground-ground affinity. The shaded areas indicate

feasible regions for figure-ground segregation. The darker areas are those with attraction

alone. When z = 1, the ground is made of similar elements. When y > 0, x has

to increase rapidly (quadratic). However, if y < 0, x can be even more repulsive than

y. Therefore, with attraction, only coherent figures pop out, while with repulsion, even

incoherent figures can pop out. When z = −1, the ground is incoherent. If y is attraction,

no coherent figure (x > 0) can be segmented. If y is repulsion, then a figure pops out

even if x < y. With regularization, measured by δ, the solution space in general expands.

In particular, a sufficiently coherent figure (with a linear x − y relationship) can pop out

from a random ground,which would be otherwise impossible.
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figure \ ground coherent incoherent

coherent

attraction regularization

incoherent

repulsion

Table 3.2: Perceptual popout illustrates distinct major contributions of attraction, repul-

sion and regularization. Attraction is most effective for detecting a coherent figure against

a coherent ground. With repulsion, dissimilar elements pop out against a common ground.

With regularization, a coherent figure pops out from a random ground.

r−, where the affinity is the largest repulsion (Fig 3.5).

For synthetic images, we compute affinity for pairs of pixels within a city-

block distance r. We first illustrate the effects of repulsion on a toy example,

where x is the intensity difference of two pixels. Fig 3.6 shows that repulsion not

only binds heterogeneous objects, but also requires fewer local feature compar-
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0

0

σ
1

r
0

r
− σ

2

σ
1
 : σ

2
 = 1 : 5

G(x,σ
1
)                

G(x,σ
2
)                

G(x,σ
1
) − G(x,σ

2
)

Figure 3.5: Calculate pairwise attraction and repulsion using Mexican hat functions

based on difference of Gaussian. If x denotes the distance between two data points, then

there is zero affinity (neither attraction nor repulsion) at x = r0, maximum repulsion at

r−, and maximum attraction at 0.

isons. For attraction, since zero could mean either two pixels are highly dissimilar

or they are not neighbours, the result with r = 1 has graded values over the back-

ground and the larger object. With a larger r, zero attraction is disambiguated and

both objects come out as different groups until r = 7. If the objects have opposite

contrasts, attraction cannot possibly group them, whereas repulsion – capturing

local feature contrast – readily unites them against a common ground.

Fig 3.7 shows grouping results on bar configurations, where the feature we

use is the orientation of bars. Attraction is good at grouping similar elements, but

poor at detecting salient outlier groups. When the ground is coherent, repulsion

between figure and ground can greatly reduce the pressure on figural coherence.

Dissimilar elements pop out as one group from the background.

Fig 3.8 shows that neither attraction nor repulsion can segregate a coherent

figure from a random ground. Under such circumstances, weights are highly un-

balanced: figural nodes have large connections, while background nodes have

nearly zero connections. A slight advantage in the weights of a few background
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image A only (A, R)

λ2 = 0.9989 λ2 = 0.9945 λ2 = 0.9865 λ2 = 0.9731 λ1 = 1.0003

λ2 = 0.9988 λ2 = 0.9941 λ2 = 0.9861 λ2 = 0.9774 λ1 = 1.0001

r = 1 r = 3 r = 5 r = 7 r = 1

Figure 3.6: Repulsion can bind multiple objects with less computation. We use σ1 = 0.1

to evaluate affinity by intensity, 3% of which become negative with β = 5. Column #2-

5: results with attraction measured by G(x;σ1) with increasing r’s. Column #6: result

with affinity measured by h(x;σ1, 5σ1). Row #1: the image has two rectangles of equal

average intensity 0.8 against background of 0.5, added by Gaussian noise with standard

deviation 0.03. A much larger neighborhood size is needed for attraction to achieve a

comparable result with repulsion. Row #2: the smaller object now has an average intensity

of 0.2. Even with a large r, the two objects cannot be united by attraction.

nodes would lead to one particular partitioning. Regularization of the weights,

however, can improve the resistance to such perturbation, by increasing the de-

grees of the nodes without changing the relative sizes of the weights. As a result,

only the relatively stable figure-ground organization could emerge.

Fig 3.8 also shows that the eigensolution changes little when δ increases from

10 to 1014. It finally breaks down at δ = 1015. Since the maximum degree of all

the nodes is about 2 and the floating point relative accuracy in our MATLAB is

2.2 × 1016, these results corroborate the claim made in Theorem 2.

For real images, pixel affinity A is evaluated using the Gaussian function (stan-

dard deviation σe) of the largest magnitude of edges crossing the line connecting

two pixels (Malik et al., 2001). This computation is restricted to all pixels within
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Figure 3.7: Pre-attentive segmentation on line segments. Row #1: stimuli. Row #2:

eigenvector results by attraction. Row #3: eigenvector results with repulsion. σ1 = 15◦,

σ2 = 45◦ are used for orientation. r = 3.

a distance of r. We derive repulsion by offsetting these values with a constant β:

W = A − β · (A > 0), (3.32)

Now small affinity of A becomes repulsion in W , which happens for pixels across

strong edges, either at region boundaries or in a textured area.

A comparison of attraction and repulsion is given in Fig 3.9 to Fig 3.13. For

all real images, we set σe = 0.05, β = 0.1, δ = 2.5. A very small neighbourhood

radius, r = 2, is used in calculating the pixel affinity. Otherwise, our simple for-

mula to derive repulsion introduces too many wrong grouping cues. For attraction

alone to achieve good results, a larger radius shall be used. However, even with a

larger radius, as we have already seen in Fig 3.6, attraction would not be able to

group small regions interspersed in a background.

The emergence of new grouping patterns with increasing repulsion and reg-

ularization is illustrated in Fig 3.14. Most evident in the phaseplots, where each
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δ = 0 δ = 0.01 δ = 0.1 δ = 1 δ = 10 δ = 102

A

AR

δ = 105 δ = 107 δ = 109 δ = 1011 δ = 1013 δ = 1015

A

AR

Figure 3.8: Regularization helps a coherent figure to pop out from a random background.

Row #1: stimulus. Row #2,4: eigenvectors by attraction. Row #3,5: those with repulsion.

Across the columns varies the amount of regularization δ. σ1 = 15◦, σ2 = 45◦ are used

for orientation. r = 1.
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Figure 3.9: Segmentation with attraction and repulsion. Row #1: image size 120 × 80.

Row #2,4,6: results with attraction. Row #3,5,7: results with repulsion. Columns #1,2:

first two eigenvectors. Columns #3,4: two-class spectral segmentation based on the two

eigenvectors shown in the same row.
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Figure 3.10: More results on 2-class spectral segmentation. Same convention as Fig 3.9.
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image region 1 region 2

Figure 3.11: 2-class spectral segmentation with both attraction and repulsion.
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image region 1 region 2

Figure 3.12: 2-class spectral segmentation with both attraction and repulsion.
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Figure 3.13: 3-class segmentation. Same convention as Fig 3.9 but no eigenvectors.
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Figure 3.14: Refine segmentation with repulsion and regularization. The amount of

repulsion β and regularization δ are varied in segmenting the first image in Fig 3.12. The

results are presented in three sets of two rows: 1) one image region, 2) the continuous

partitioning for this region, 3) 2-class continuous solution in phaseplots.
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axis corresponds to one of the 2-class partitions in the continuous domain, repul-

sion pushes pixels into a wider range of values and regularization consolidates

those values into chunks.

From these examples, we see that the inclusion of repulsion to affinity helps

sharpen boundaries in segmentation and bring disconnected regions together. It

greatly enriches the set of plausible partitions with only a few eigenvectors. For

certain types of images, especially those comprised of small parts across a coher-

ent background, the addition of repulsion effectively accentuates salient structures

over a large region. The use of regularization helps discover stable groups in a seg-

mentation, which is especially important for segmenting images with rich textures

based on edge features.

3.6 Summary

We developed a grouping method unifying dual procedures of association by at-

traction and segregation by repulsion. Within this framework, we provided a the-

oretical basis for regularizing solutions of spectral graph partitioning algorithms.

We showed that all popout phenomena can be modeled with a balanced crite-

rion, with attraction capturing feature similarity, repulsion capturing local feature

contrast and regularization improving grouping stability.

We expanded graph partitioning to weight matrices with negative values, which

provide a representation for negative correlations in constraint satisfaction prob-

lems. Efficient solutions to such formulations are thus possible.
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Chapter 4

Grouping with Depth Orders

Figure-ground organization is a central problem in perception and cognition. It

consists of two major processes: 1) depth segregation - the segmentation and or-

dering of surfaces in depth and assignment of border ownerships to relatively

proximal objects in a scene (Kanizsa, 1979; Nakayama and Shimojo, 1992; Nakayama

et al., 1989); 2) figural selection - the extraction and selection of a figure among

a number of “distractors” in the scene. Evidence for both of these processes have

been found in the early visual cortex (Knierim and van Essen, 1992; Lamme,

1995; Lee et al., 1998; Zhou et al., 2000; Dobbins et al., 1998).

In computer vision, figure-ground segregation is closely related to image seg-

mentation and has been studied from both contour processing and region process-

ing perspectives. Contour-based approaches perform contour completion by us-

ing good curve continuation (Grossberg and Mingolla, 1985; Heitger and von der

Heydt, 1993; Mumford, 1993; Ullman, 1976; Williams and Jacobs, 1997), whereas

region-based approaches perform image partitioning by using surface properties

(Nitzberg et al., 1993; Shi and Malik, 1997; Zhu and Yuille, 1996). The formation

of a global depth percept from local occlusion cues and the computation of layer

organizations has also been modeled as an optimization process with a surface dif-

fusion mechanism (Geiger and Kumaran, 1996; Geiger et al., 1998; Madarasmi

et al., 1994; Yu et al., 2001).

It has long been recognized that there are strong connections between grouping
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and figure-ground processes. For example, they can be both derived from lumi-

nance, motion, continuation and symmetry (Palmer, 1999); closure in grouping

is closely related to convexity, occlusion, and surroundedness in figure-ground:

when a pair of symmetrical lines are grouped together, it essentially implies that

the region between the contours is the figure and the surrounding area is the back-

ground.

However, depth segregation is not well integrated with image segmentation in

computer vision. Either they are dealt with at separate processing stages (Blake

and Zisserman, 1987; Wildes, 1991), or they are unified in a general formulation

(Belhumeur, 1996) that has too many parameters to afford a tractable computation.

The difficulty of integrating figure-ground cues in a general grouping frame-

work lies in the different natures of grouping cues. While grouping mainly looks

at the association by feature similarity, figure-ground emphasizes the segregation

by feature dissimilarity, and this dissimilarity could sometimes be directional. For

example, local occlusion cues suggest some pixels to be in front of the others.

In this chapter, we develop a partitioning method in spectral graph theory that

incorporates ordering cues. We propose a representation in which all possible

pairwise relationships are characterized in two types of directed graphs, each en-

coding positive and negative correlations between data points. We generalize the

normalized cuts criterion (Shi and Malik, 1997) to handle directional grouping

cues. We show that the global-optima in the continuous domain can be obtained

by solving generalized eigenvectors of Hermitian matrices in the complex do-

main. The real and imaginary parts of Hermitian matrices encode reciprocal and

ordering relationships respectively. The phase angle separation defined by the

eigenvectors in the complex plane determines the partitioning of data points, and

the relative phase advance indicates the ordering of partitions.

4.1 Grouping on Directed Graphs

Compared to the reciprocal similarity cues on intensity, color, texture and mo-

tion, occlusion cues encapsulate two distinct attributes: repulsion and asymmetry.

74



To integrate depth segregation with image segmentation, we need to generalize a

grouping method in two ways: one is the inclusion of repulsion and directional

cues; the other is a criterion for an ordered partitioning.

4.1.1 Representation of Asymmetric Relationships

We use two directed graphs to encode pairwise attraction and repulsion relation-

ships: G = {GA, GR}, GA = (V, EA, A), GR = (V, ER, R), where V is the set

of all nodes to be grouped; E is the set of all edges defining pairwise relationships

between nodes; A and R contain weights attached to these edges. Both A and R

are nonnegative, but they can be asymmetric. See an example in Fig 4.1.
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Figure 4.1: Directed graph representation with nonnegative asymmetric weights.
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Whereas directed repulsion can capture the asymmetry of relative depth orders

between figure and ground, directed attraction might describe general compatibil-

ity between two pixels. For example, a pixel with reliable features is more likely

to attract a pixel with ambiguous features, but not the other way around.

4.1.2 Criteria for an Ordered Partitioning

We recall a few definitions related to graph cuts (Yu and Shi, 2003). The links

between node sets P, Q ⊂ V are the total connections from P to Q; the degree

of a set is its total connections to all the nodes; and the linkratio(P, Q) is the

proportion of the connections from P to Q over all those P has:

links(P, Q; W ) =
∑

p∈P,q∈Q

W (p, q) (4.1)

degree(P; W ) = links(P, V; W ) (4.2)

linkratio(P, Q; W ) =
links(P, Q; W )

degree(P; W )
. (4.3)

A K-way node partitioning is denoted by ΓK
V = {V1, · · · , VK}, where V is de-

composed into K disjoint sets, i.e., V = ∪K
l=1Vl and Vk ∩ Vl = ∅, k 6= l.

The normalized associations and normalized cuts criteria are the average of K

linkratio’s:

knassoc(ΓK
V ; W ) =

1

K

K
∑

l=1

linkratio(Vl, Vl; W ) (4.4)

kncuts(ΓK
V ; W ) =

1

K

K
∑

l=1

linkratio(Vl, V \ Vl; W ). (4.5)

When W = A, the associations measure the average within-group similarity and

the cuts measure the average between-group similarity.

How do we formulate a partitioning that favors between-group relationships

in one direction? There are two issues in defining such a criterion. First, we

need to evaluate within-group connections regardless of the asymmetry of internal

connections. Secondly, we need to reflect our directional bias on between-group

connections.
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For these two purposes, we decompose 2 W into a non-directional component

Wu and a purely directional component Wd (Fig 4.2):

2 W = Wu + Wd, Wu = (W + W T ), Wd = (W − W T ). (4.6)

For each edge, Wu has the sum of the weights in both directions. The total con-

nections for W are thus exactly those of Wu. Wd is a net difference of W between

weights attached to edges pointing in opposite directions.
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Figure 4.2: Decomposition of Fig 4.1 into directed and undirected parts.

In Fig 4.2, we can clearly identify {1, 3, 5} as the figure and {2, 4} as the

ground because: there are large within-group connections for Au, large between-

group connections for Ru, and all directed edges pointing from figure to ground.

With directed relationships, we seek an ordered bipartitioning (V1, V2) that

not only has tight connections within groups and loose connections between groups,

but most directed edges also go from V1 to V2. Below is one choice that meets
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these conditions:

knassoc(A, R; β) =
β

2
·

2
∑

l=1

links(Vl, Vl; Au) + links(Vl, V \ Vl; Ru)

degree(Vl; Au + Ru)
+

1 − β

2
· links(V1, V2; Ad + Rd) − links(V2, V1; Ad + Rd)
√

degree(V1; Au + Ru) · degree(V2; Au + Ru)
,

(4.7)

kncuts(A, R; β) =
β

2
·

2
∑

l=1

links(Vl, V \ Vl; Au) + links(Vl, Vl; Ru)

degree(Vl; Au + Ru)
+

1 − β

2
· links(V2, V1; Ad + Rd) − links(V1, V2; Ad + Rd)
√

degree(V1; Au + Ru) · degree(V2; Au + Ru)
.

(4.8)

An interpretation of these definitions is as follows. For the non-directional

component, links(Vl, Vl; Au) are the association by attraction; links(Vl, V\Vl; Ru)

are the segregation by repulsion. We desire both of them to be maximized, after a

proper normalization using the degree of the node set.

For directional component, only the difference in connections matters. That is

what links(V1, V2; Ad +Rd)− links(V2, V1; Ad +Rd) measure. Since these cross

connections involve two node sets, we normalize them by the geometrical average

of their total connections. Similar to linkratio(P, Q; W ), this again is a unit-less

connection ratio.

As functions of (A, R), these partitioning criteria favor both attractive and re-

pulsive edges from V1 to V2. The directions can also be different for A and R.

For example, the ordered partitioning based on knassoc(AT , R; β) favors repul-

sion from V1 to V2, but attraction from V2 to V1.

Finally, β is a parameter modulating the relative importance between undi-

rected and directed graph partitioning. When β = 1, the partitioning ignores the

asymmetry in connection weights, while when β = 0, the partitioning only cares

about the asymmetry in graph weights. Note that the duality between knassoc and

kncuts is maintained as knassoc + kncuts = β. We will not differentiate the two

criteria further and denote our objective as ε = knassoc.
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4.2 Solving an Ordered Partitioning

Let X = [X1, X2] be a binary partition matrix, where Xl(i) = istrue(i ∈ Vl).

istrue(·) is a boolean function, which returns 1 if the argument is true and 0

otherwise. Since a node is only assigned to one partition, there is an exclusion

constraint on X: X 12 = 1N , where 1d denotes the d × 1 column vector of 1’s.

We define an equivalent degree matrix D̂, equivalent weight matrices U and

V for the undirected and directed components respectively:

D̂ = DAu
+ DRu

(4.9)

U = β · (Au − Ru + DRu
) (4.10)

V = (1 − β) · (Ad + Rd), (4.11)

where DW denotes the degree matrix of W :

DW = Diag(W1N). (4.12)

Diag and diag are the conjugate operators that form a diagonal matrix and extract

the diagonal of a matrix respectively. Note that U is symmetric: U = U T , and V

is skew-symmetric: V = −V T .

With these symbols, we translate Eqn (4.7) into the following program PNC:

maximize ε(X) =
1

2





2
∑

l=1

XT
l UXl

XT
l D̂Xl

+
XT

1 V X2 − XT
2 V X1

√

XT
1 D̂X1 · XT

2 D̂X2



 (4.13)

subject to X ∈ {0, 1}N×2, X 12 = 1N . (4.14)

In Eqn (4.13), the first term measures the symmetric connections within groups,

which is used for an undirected graph partitioning, while the second term favors

the connections from V1 to V2, which is used for a directed graph partitioning.

These two components are taken into account at the same time.

Following a procedure similar to (Yu and Shi, 2003), we solve PNC in two

steps: first find all global optima in the continuous domain and then find a discrete

solution closest to the continuous optima.
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4.2.1 Finding Continuous Optima

We introduce a scaled partition matrix Z, which has a one-to-one mapping to X:

Z = f(X) = X(XT D̂X)−
1

2 (4.15)

X = f−1(Z) = Diag(diag(ZZT ))−
1

2 Z. (4.16)

We simplify Eqn (4.13) as a function of Z:

ε(Z) =
1

2
tr

(

ZT UZ ·
[

1 0

0 1

]

+ ZT V Z ·
[

0 −1

1 0

])

, (4.17)

where tr denotes the trace of a matrix. The 2 × 2 matrix constants are known to

be the matrix representation of the units of complex numbers: 1 and i =
√
−1.

Let H denote the conjugate transpose operator. Noting that ZT UZ is diagonal and

ZT V Z has zero diagonal, we reduce ε(Z) further as:

ε(Z) =
1

2
tr



ZT UZ ·
[

1

i

][

1

i

]H

− ZT V Z · i ·
[

1

i

][

1

i

]H


 (4.18)

=
1

2





[

1

i

]H

ZT U Z

[

1

i

]

−
[

1

i

]H

ZT iV Z

[

1

i

]



 (4.19)

=
zHŴ z

2
, (4.20)

where Ŵ is the equivalent complex weight matrix:

Ŵ = U − i · V. (4.21)

and z is a column vector with a one-to-one mapping to Z:

z = g(Z) = Z

[

1

i

]

= Z1 + i · Z2 (4.22)

Z = g−1(z) = [re(z), im(z)]. (4.23)

re and im denote the real and imaginary parts of complex numbers respectively.
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In Eqn (4.21), we see that ordering cues complement reciprocal cues along

an orthogonal dimension. This generalizes graph partitioning from a symmetric

weight matrix to an arbitrary Hermitian weight matrix.

Based on its definition, Z has a natural constraint: ZT D̂Z = I , where I is an

identity matrix. This constraint is transferred to z as:

zHD̂z =

[

1

i

]H

ZT D̂Z

[

1

i

]

=

[

1

i

]H [

1

i

]

= 2. (4.24)

Putting it all together, we have an optimization program in z:

maximize ε(z) =
1

2
· zHŴ z (4.25)

subject to zHD̂z = 2. (4.26)

Since both Ŵ and D̂ are Hermitian, the Rayleigh-Ritz theorem states that the

optimal value of this program is given by the largest generalized eigenvalue of

(Ŵ , D̂), and it is achieved by the corresponding eigenvector:

ε(z∗) = λ, Ŵ z∗ = λD̂z∗. (4.27)

Assuming that λ is non-repeating, the set of all global optima is given by:

{z = z∗eiθ : θ ∈ [−π, π]}, (4.28)

since an eigenvector multiplied by a complex number is still an eigenvector.

Next we transform z back to Z using g−1, and then to X using f−1. Since

f−1(g−1(z∗eiθ)) = f−1

(

g−1(z∗)

[

cos θ sin θ

− sin θ cos θ

])

= f−1
(

g−1(z∗)
)

[

cos θ sin θ

− sin θ cos θ

]

,

the continuous optima in Eqn (4.28) are mapped to:
{

X̃∗R : X̃∗ = f−1(g−1(z∗)), R =

[

cos θ sin θ

− sin θ cos θ

]

, θ ∈ [−π, π]

}

. (4.29)
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In other words, all continuous optima are linked by arbitrary rotations in the 2D

plane. Compared to a non-directional graph partitioning (Yu and Shi, 2003),

where R is an arbitrary orthogonal matrix, Eqn (4.29) allows rotations but no

reflections, through which the identities of V1 and V2 as figure and ground are

preserved in their relative phases. Ideally, according to Eqn (4.22), ground nodes

have a 90◦ counterclockwise phase advance relative to figure nodes.
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Figure 4.3: Phase encoding of an ordered partitioning. Each plot has 5 points, corre-

sponding to the components of the leading eigenvector of (Ŵ , D̂), where β is varied from

0 to 1. All five cases have two clusters: {1, 3, 5} and {2, 4}, with the latter advancing in

phase. The amount of phase difference varies with the amount of directed weights: from

90◦ for directed weights only, to 180◦ for undirected edges only.

For Fig 4.2, the equivalent degree matrix and weight matrix with β = 0.5 are:

D̂ =

















37 0 0 0 0

0 25 0 0 0

0 0 35 0 0

0 0 0 26 0

0 0 0 0 31

















, (4.30)

Ŵ =
1

2

















10 −8 10 3 12

−8 10 0 10 3

10 0 11 −7 10

3 10 −7 11 −2

12 3 10 −2 4

















+
i

2
·

















0 −4 0 −1 0

4 0 0 0 1

0 0 0 −5 0

1 0 5 0 2

0 −1 0 −2 0

















. (4.31)
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We expect that the first eigenvector of (Ŵ , D̂) on {1, 3, 5} exhibits a phase lag

with respect to {2, 4}. This is verified in Fig 4.3, where the increase of β from

0 to 1 gradually increases the phase lag from 90◦ to 180◦. When the phase lag is

180◦, we can no longer tell which group is the figure.

4.2.2 Finding a Discrete Solution

The second step in solving PNC is to get a discrete solution by locating one in the

feasible set of PNC that is closest to the continuous optima.

Theorem 3 (Optimal Discretization for Ordered Partitioning). Given X̃∗ =

f−1(g−1(z∗)), an optimal discrete partition X∗ is considered the one satisfying

the following program called POD:

minimize φ(X, θ) = ‖X − X̃∗R‖2 (4.32)

subject to X ∈ {0, 1}N×2, X 12 = 1N (4.33)

R =

[

cos θ sin θ

− sin θ cos θ

]

, θ ∈ [−π, π], (4.34)

where ‖M‖ denotes the Frobenius norm of a matrix: ‖M‖ =
√

tr(MMT ). A

local optimum (X∗, θ∗) of this bilinear program can be solved iteratively.

Given θ∗ hence R∗, POD is reduced to program PODX in X:

minimize φ(X) = ‖X − X̃∗R∗‖2 (4.35)

subject to X ∈ {0, 1}N×2, X 12 = 1N . (4.36)

Let X̃ = X̃∗R∗. The optimal solution is given by non-maximum-suppression:

X∗
1 = istrue(X̃1 > X̃2), X∗

2 = 1 − X∗
1 . (4.37)

Given X∗, POD is reduced to program PODR in R hence θ:

minimize φ(θ) = ‖X∗ − X̃∗R‖2 (4.38)

subject to R =

[

cos θ sin θ

− sin θ cos θ

]

, θ ∈ [−π, π], (4.39)
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and the solution can be expressed as the angle of a complex number:

θ∗ = ∠

(

g(X̃∗)Hg(X∗)
)

= ∠





[

1

i

]H

X̃∗T X∗

[

1

i

]



 . (4.40)

Proof. First we note: φ(X, θ) = ‖X‖2 + ‖X̃∗‖2 − tr(XRT X̃∗T + XT X̃∗R) =

2N − 2 tr(XRT X̃∗T ). Thus minimizing φ(X, R) is equivalent to maximizing

tr(XRT X̃∗T ). For PODX, given R = R∗, as each entry of diag(XR∗T X̃∗T ) can

be optimized independently, Eqn (4.37) results. For PODR, given X ∗, we rewrite

the objective as

2 tr(X∗RT X̃∗T ) = g(X∗)Hg(X̃∗)eiθ + g(X̃∗)Hg(X∗)e−iθ

= aei·(−α+θ) + aei·(α−θ), where aeiα = g(X̃∗)Hg(X∗)

= 2a cos(θ − α),

which is maximized as 2a when θ∗ = α. The larger a is, the closer X̃∗ is to X∗.

The conclusion results.

The above discretization procedure has already taken into account the relative

phase relationship between groups. The final solution X ∗ is not just a discrete

partitioning, but an ordered partitioning, with X∗
1 indicating the figure V1, and X∗

2

indicating the ground V2.

4.2.3 Algorithm

Given attraction A and repulsion R, given weight β:

1. Decompose graph weights:

Au = A + AT , Ad = A − AT

Ru = R + RT , Rd = R − RT .

2. Compute equivalent weight matrix and degree matrix:
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Ŵ = β · (Au − Ru + DRu
) − i · (1 − β) · (Ad + Rd)

D̂ = DAu
+ DRu

.

3. Find the eigenvector z∗ with the largest eigenvalue by: Ŵz∗ = λD̂z∗.

4. Find the corresponding continuous optimal partition matrix:

X̃∗ = Diag(diag(z∗z∗H))−
1

2 [ re(z∗), im(z∗)].

5. Initialize θ∗ = π
4
− ∠X̃∗

[

1

i

]

and φ̄∗ = 0.

6. Rotate the continuous optimum:

X̃ = X̃∗

[

cos(θ∗) sin(θ∗)

− sin(θ∗) cos(θ∗)

]

.

7. Find the optimal discrete solution X∗ by:

X∗
1 = istrue(X̃1 > X̃2), X∗

2 = 1 − X∗
1 .

8. Compute the optimal rotation θ∗ by:

z =

[

1

i

]H

X̃∗T X∗

[

1

i

]

φ̄ = ‖z‖2

If |φ̄ − φ̄∗| < machine precision, then stop and output X∗

φ̄∗ = φ̄

θ∗ = ∠z.

9. Go to Step 6.

Step 5 rotates the center of g(X̃∗) to align with 45◦ so that the next discretiza-

tion step would split all nodes into two groups. This heuristic is effective but not

essential. In Step 6, cos(θ∗) and sin(θ∗) can also be computed without evaluating

θ∗ first.
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4.3 Experiments

Fig 4.4 and Fig 4.5 show that attraction and repulsion complement each other and

their interaction gives a better segmentation. We use spatial proximity for attrac-

tion. Since intensity similarity is not considered, we cannot possibly segment this

image with attraction alone. Repulsion is determined by relative depths suggested

by the T-junction at the center. The repulsion strength falls off exponentially along

the direction perpendicular to the T-arms. We can see that attraction alone is not

indicative at all since no segmentation cues are encoded. Repulsion only makes

boundaries stand out. However, when they work together, repulsion pushes two

regions apart at the boundary, while attraction carries this segregation further to

the interior of each region thanks to its transitivity.

eigenvector normalization rotation discretization
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figure
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Figure 4.4: Progression of our algorithm. The first plot is the largest eigenvector of

(Ŵ , D̂), whose image versions are shown in Row #1-2 of Column #4 in Fig 4.5. Examin-

ing the images with the plot, we can identify that the top (bottom) cluster corresponds to

the right (left) part of the T-junction. Each point is then normalized to unit lengths. This

maps the optimum from the Z- to the X-space. We rotate these points to align their center

with the 45◦ dashed line. A discrete segmentation is obtained by dividing all points with

this line: those above it are the ground and those below it are the figure.

Fig 4.6 shows three objects ordered in depth. We compute pairwise affinity

based on intensity difference. Partitioning with attraction finds the object of the

highest contrast only; with non-directional repulsion, all objects against a com-

mon background pop out. If we add in directional repulsion based on occlusion

cues, the three objects are further segregated in depth.
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image A: Z∗
1 R: re(z∗) (A, R): re(z∗)

1

2

3

4

A: Z∗
2 R: im(z∗) (A, R): im(z∗)

attraction at four marked pixels
1

2

3

4

repulsion at four marked pixels
1

2

3

4

Figure 4.5: Collaboration of attraction and repulsion. Row #1-2: image and eigenvector

results with attraction, repulsion, and both of them. Rows #3-4: attraction and repulsion

fields at the four marked locations. Attraction is determined by proximity, thus has the

same pattern for all pixels. Repulsion is determined by the T-junction at the center. Most

repulsion is zero, while pixels of positive (negative) values are in front of (behind) the

marked pixel. Lighter gray for larger values.
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Unlike attraction, repulsion is not transitive. If object 3 is in front of object 2,

which is in front of object 1, object 3 is not necessarily in front of object 1. We

infer from Fig 4.6 that object 1 is in front of object 3 instead, since relative depth

between object 3 and 1 is not known to our model.

image attraction: V2 + repulsion: z∗

0

1

2

3

+ depth: re(z∗) im(z∗)

� �� � � � � � � �� �� �� ��� � �� �� �� �� �� �� � � �� �� � ��

��� ����
����

����
����
���
�

���

��
���

���

���

����
���

���

����
����
����
��

���

��

����
����

����
����

�

���
��
�

���
����
��

�

��
�
��

����
�

��

����
���

�

��
�

��

����
�

�

��
����
�

��

���
���

����
����
��

���
����
��

����
��
�

����
��

���

��
��

���

��

���

�

����

���
�

���

�

���

���

����

�

���

��
��

����

�
��
�

���

�

�

��� ����
� ��

� ��
��

��� ��� � � �

0

1

2

3

Figure 4.6: Roles of repulsion and depth cues. Image size: 31 × 31. The background

and three objects are marked from 0 to 3, with average intensities of 0.6, 0.9, 0.2 and

0.9. Gaussian noise with standard deviation 0.03 is added. Object 2 has the highest

contrast. Attraction and undirected repulsion are computed by the difference of Gaussian

(σ1 = 0.1, σ2 = 0.3) on intensity difference. The neighborhood radius is 2. Row #1:

image and results with attraction and undirected repulsion. Row #2: results when directed

repulsion from relative depth at the T-junctions is incorporated.

In (Yu and Shi, 2001c), a simple real image example was given where depth

ordering was manually derived from T-junctions. However, not only detecting
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corners and junctions is not well solved in computer vision, but most importantly,

T-junctions in real images rarely result from occlusion, hence they do not indicate

depth ordering. A good application of our method is yet to be seen.

4.4 Summary

We developed an ordered partitioning method in spectral graph theory. Two

directed graphs are used to represent general asymmetric relationships between

grouping elements. The weights of the graphs encode either attraction by feature

similarity or repulsion by feature dissimilarity. For an ordered bi-partitioning, we

desire more connections from one group to the other.

We generalized normalized cuts to such a pair of directed graphs. Our formu-

lation leads to a Rayleigh quotient of a Hermitian matrix, where the imaginary

part is the difference of weights on two edges of opposite directions, and the real

part is the total weights along both directions, with positive numbers for attrac-

tion and negative numbers for repulsion. The global optimum in the continuous

domain can be computed by eigendecomposition. An ordered partitioning is then

encoded in the phases of the complex eigenvector: the angle separation determines

the partitioning, while the relative phase advance indicates the ordering.

We illustrated our method on synthetic image segmentation, where asymmet-

ric repulsion naturally represents relative depth orders arising from occlusion cues.

Therefore, surface cues and depth cues can be treated equally in one framework,

allowing image segmentation and figure-ground segregation to be computed in

one step.

Although our formulation is given for bipartitioning, our formulation in Eqn (4.13)

can be extended to 2K-way directional partitioning:

maximize ε(X) =
1

2K





2K
∑

l=1

XT
l UXl

XT
l D̂Xl

+
K
∑

l=1

XT
l V XK+l − XT

K+lV Xl
√

XT
l D̂Xl · XT

K+lD̂XK+l





subject to X ∈ {0, 1}N×2K, X 12K = 1N .
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That is, we divide all nodes into 2K disjoint sets and they form two camps:

{V1, . . . , VK} and {VK+1, . . . , VK+K}. The 2K sets have tight within-group con-

nections and loose between-group connections in terms of undirected weights, but

more connections from the first camp to the other in terms of directed weights, in

corresponding nodeset pairs of (Vl, VK+l), l = 1, . . . , K. The continuous op-

timal solution is then generated by the first K eigenvectors of (Ŵ , D̂), and the

discretization procedure can be extended accordingly. We leave the details to the

future when such computational models can be employed to solve some real ap-

plication problems.
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Chapter 5

Grouping with Bias

A good image segmentation respects not only the structural properties of the im-

age (Witkin and Tenenbaum, 1983) but also the needs of later visual processing

such as object recognition (Xu et al., 2000). In this chapter, we will develop a

method that integrates both data-driven and task-driven knowledge for making a

global decision on segmentation.

We consider the type of task-driven knowledge presented as partial grouping

information. For example, in Fig. 5.1, based on intensity distribution and view-

ers’ expectation, we expect a set of bright pixels to be foreground and a set of dark

pixels to be background for the image with the tiger, and pixels near image bound-

aries to be background for the image with the fashion-model. Such information

provides bias to a natural grouping process based solely on data themselves.

In our work, we are concerned with the following issue: what is a simple and

principled approach for incorporating these often sparse partial grouping cues

directly into low-level image segmentation?

A straightforward answer to this question that we adopt in our work is to for-

mulate it as a constrained optimization problem, where the goodness of a segmen-

tation is based on low-level data coherence, and the feasibility of a segmentation

is based on partial grouping constraints. For the normalized cuts criterion (Shi

and Malik, 1997) in spectral graph theory, we show that this straightforward for-

mulation leads to a constrained eigenvalue problem. By generalizing the standard
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Rayleigh-Ritz theorem, we can compute a near-global optimum efficiently.

image + partial grouping ⇒ segmentation

Figure 5.1: Segmentation under partial grouping constraints. We desire an algorithm that

integrates partial grouping cues with natural grouping based on data coherence and out-

puts an object segmentation. In the middle column, white pixels are unlabeled, whereas

marked or gray pixels are a priori known to be in the same group. These cues are derived

from feature-driven or location-driven attentional maps. That is, the regions of interest

here are defined based on pixel intensities or prior expectation of object locations.

We then show through a simple point set example that segmentation perfor-

mance breaks down especially when partial grouping cues are sparse. This obser-
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vation leads to a new formulation with smoothed constraints. In the spectral graph

framework, the smoothing operator is readily derived from the existing pairwise

relationships between grouping elements. We present numerous image segmen-

tation examples to demonstrate the efficacy of the new formulation. Finally, we

conclude with a discussion on the connections to related data clustering methods.

5.1 Basic Formulation

Given an image of N pixels, the goal of segmentation is to assign one of K pre-

scribed labels to each pixel. Let V = [N ] denote the set of all pixels, where [n]

denotes the set of integers between 1 and n: [n] = {1, 2, . . . , n}. To segment an

image is to decompose V into K disjoint sets, i.e., V = ∪K
l=1Vl and Vk ∩Vl = ∅,

k 6= l. We denote this K-way partitioning by ΓK
V = {V1, . . . , VK}.

Let ε(ΓK
V ; f) be an objective function that measures the goodness of group-

ing for the image data f , e.g. f(i) is the intensity value at pixel i, i ∈ V. In

Markov random field (MRF) approaches for image segmentation (Geman and Ge-

man, 1984), the objective function is the posterior probability of the segmentation

ΓK
V given the observation f :

εMRF (ΓK
V ; f) = Pr(ΓK

V |f) = Pr(f |ΓK
V ) · Pr(ΓK

V ). (5.1)

The first term Pr(f |ΓK
V ) describes data fidelity, which measures how well a gen-

erative model explains the observed image data, and the second term Pr(ΓK
V ) de-

scribes model complexity, which favors the segmentation to have some regularity

such as piecewise constancy. In discriminative approaches for segmentation (Shi

and Malik, 2000), the objective function is some clustering measure which in-

creases with within-group feature similarity and decreases with between-group

feature similarity.

Consider partial grouping information represented by n pixel sets: Ut, t ∈ [n],

each containing pixels known to belong together. However, we do not know which

labels should be assigned to these sets of pixels, nor do we require these groups

to take distinct labels. For a unique representation of Ut’s, we assume there is no
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common pixel between any two sets: Us ∩Ut = ∅, s 6= t. In other words, if there

is a common pixel, then the two sets should be merged into one.

The most straightforward way to incorporate the partial grouping information

is to encode it as constraints. With a little abuse of notation, we use Γk
V(i, l)

to denote a boolean function that returns 1 if i ∈ Vl. Among the segmentations

partially determined by Ut’s, we seek one that optimizes the goodness of grouping

measured by ε:

maximize ε(ΓK
V ; f) (5.2)

subject to ΓK
V (i, l) = ΓK

V (j, l), i, j ∈ Ut, l ∈ [K], t ∈ [n]. (5.3)

Since partial grouping cues are encoded as hard constraints, they have to be

reliable enough to be enforced. Fig. 5.1 illustrates two basic scenarios where we

can derive such cues. The first type is feature-driven, where pixels conforming

to a particular generative model are biased together. For example, we probably

perceive a white object against a dark background before we realize that it is a

tiger in a river. In this case, U1 contains pixels of the brightest intensities and U2

the darkest. The second type is solely location-driven, it reflects our expectation

as to where an object is going to appear. For example, pictures taken in a fashion

show often have fashion models at the center. To segment out the fashion models,

we consider pixels at image boundaries in U1 as the background group. Such

seemingly insignificant information provides long-range binding cues which are

often lacking in low-level grouping.

For some particular forms of ε, such as the above mentioned probability cri-

teria using generative models and minimum cuts criteria in discriminative ap-

proaches (Ishikawa and Geiger, 1998; Roy and Cox, 1998; Boykov et al., 1999),

the constraints in Eqn (5.3) can be trivially incorporated in an algorithm that op-

timizes the objective. For the former, Markov Chain Monte Carlo is a general

solution technique and the constraints can be realized by generating legitimate

samples (Zhu, 1999). For the latter, assuming that U1 and U2 take distinct labels,

we can solve Eqn (5.3) using maximum-flow algorithms, in which two special

nodes called source and sink are introduced, with infinite weights set up between
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the source and nodes in U1, the sink and nodes in U2 (Ishikawa and Geiger, 1998).

For others such as the normalized cuts criterion (Shi and Malik, 2000), it is not

clear whether the solution can be obtained using the same technique as the uncon-

strained problem. We will explore this criterion further.

5.2 Constrained Normalized Cuts Criterion

A weighted graph is specified by G = (V, E, W ), where V is the set of all nodes,

E is the set of edges connecting nodes, and W is an affinity matrix, with weights

characterizing the likelihood that two nodes belong to the same group.

In graph theoretic methods for image segmentation, an image is first tran-

scribed into a weighted graph, where each node represents a pixel, and weights

on edges connecting two nodes describe the pairwise feature similarity between

the pixels. Segmentation then becomes a node partitioning problem. A good seg-

mentation desires a partitioning that has tight connections within partitions and

loose connections across partitions. These two goals can both be achieved in the

normalized cuts criterion (Shi and Malik, 2000). We give a brief self-contained

account of this criterion below.

5.2.1 Representation

Given weight matrix W , the multiclass normalized cuts criterion tries to maximize

the average of all K linkratio’s (Yu and Shi, 2003):

εNC(ΓK
V ) =

1

K

K
∑

l=1

linkratio(Vl) ==
1

K

K
∑

l=1

∑

i∈Vl,j∈Vl
W (i, j)

∑

i∈Vl,j∈V W (i, j)
. (5.4)

The linkratio is the fraction of the total weights within a group to the total weights

all the member nodes have. This criterion favors both tight connections within

partitions and loose connections between partitions.

We use an N×K partition matrix X to represent ΓK
V , where X = [X1, . . . , XK]

and X(i, l) = 1 if i ∈ Vl and 0 otherwise. Xl is a binary indicator for partition
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Vl. Since a node is only assigned to one partition, there is an exclusion constraint

on X: X 1K = 1N , where 1d denotes the d × 1 vector of all 1’s.

For t ∈ [n], partial grouping node set Ut produces |Ut| − 1 independent con-

straints, where | · | denotes the size of a set. Each constraint can be represented by

an N × 1 vector Uk with only two non-zero elements: Uk(i) = 1, Uk(j) = −1,

i, j ∈ Ut for instance. Let U = [U1, . . . , Un̄], where n̄ =
∑n

t=1(|Ut| − 1). Then

the partial grouping constraints in Eqn (5.3) become: U T X = 0. U obtained as

such has a full rank.

Finally, we introduce the degree matrix D, defined to be the total connections

each node has: D = Diag(W1N), where Diag denotes a diagonal matrix formed

from its vector argument.

With these symbols and notation, we write the constrained grouping problem

in Eqn (5.3) for the normalized cuts criterion as program PNCX:

maximize εNC(X) =
1

K

K
∑

l=1

XT
l WXl

XT
l DXl

(5.5)

subject to X ∈ {0, 1}N×K, X 1K = 1N (5.6)

UT X = 0. (5.7)

5.2.2 Computational Solution

We introduce a scaled partition matrix Z to make Eqn (5.5) more manageable:

Z = X(XT DX)−
1

2 . (5.8)

Then εNC(X) = 1
K

tr(ZT WZ), where tr denotes the trace of a matrix. Given the

definition in Eqn (5.8), Z naturally satisfies: ZT DZ = I , where I is an identity

matrix. The grouping constraint in Eqn (5.7) is equivalent to:

UT Z = UT X(XT DX)−
1

2 = 0. (5.9)
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Ignoring Eqn (5.6) for the time being, we relax PNCX into program PNCZ:

maximize εNC(Z) =
1

K
tr(ZT WZ) (5.10)

subject to ZT DZ = I (5.11)

UT Z = 0. (5.12)

PNCZ is a constrained eigenvalue problem (Gander et al., 1989) in the continuous

domain and it can be solved by linear algebra.

In principle, we can solve PNCZ by applying the standard Rayleigh-Ritz the-

orem to its unconstrained version:

maximize εNC(Y ) =
1

K
tr(Y T W yY ) (5.13)

subject to Y T DyY = I, (5.14)

where Y is an (N − n̄) × K coefficient matrix of Z using an orthonormal basis

U⊥ of the feasible solution space, i.e.,

Z = U⊥Y, UT U⊥ = 0, (5.15)

and W y = (U⊥)T WU⊥ and Dy = (U⊥)T DU⊥ are the equivalent weight and

degree matrices for Y . This is a standard Rayleigh quotient optimization problem.

If (V y, Sy) is the eigendecomposition of the matrix pair (W y, Dy), where Sy =

Diag(sy) with nonincreasingly ordered eigenvalues, then the global optimum is

given by the eigenvectors corresponding to the first K largest eigenvalues, and

εNC([V y
1 , . . . , V y

K]) =
1

K

K
∑

l=1

sy(l) = max
Y T DyY =I

εNC(Y ). (5.16)

From Eqn (5.15), we recover the global optimum Z∗ = U⊥[V y
1 , . . . , V y

K].

The introduction of Y gets rid of the constraint in Eqn (5.12) and turns pro-

gram PNCZ into an unconstrained eigenvalue problem. However, it requires find-

ing an orthonormal basis for the feasible space first. Given that n̄ � N , this pro-

cess has a space and time complexity of O(N 2) and O(N 3) respectively, which is

prohibitively expensive for a large N . We have to find another way out.
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There is such an alternative through the use of matrix projectors. Q is called

a projector if it is idempotent, i.e., Q2 = Q. If Q is a projector onto the space of

feasible solutions of PNCZ, then QZ is the projection of Z on the feasible space.

The key property of QZ is that QZ = Z if and only if Z is feasible. Therefore,

we can guarantee the feasibility of a solution by projecting it to the feasible set in

the original space without resorting to any re-parameterization in a reduced space.

We introduce a few symbols to simplify notation. Let π be any set of K distinct

integers from [N ]. For any eigenvector matrix V and its corresponding eigenvalue

matrix S = Diag(s), let Vπ = [Vπ1
, . . . , VπK

] and Sπ = Diag([sπ1
, . . . , sπK

]).

Theorem 4 (Generalized Rayleigh-Ritz Theorem). Let (V, S) be the eigende-

composition of matrix QPQ, where P is the row-normalized weight matrix and Q

is a projector onto the feasible solution space:

QPQV = V S, S = Diag(s) (5.17)

V T DV = I (5.18)

P = D−1W (5.19)

Q = I − D−1U(UT D−1U)−1UT . (5.20)

For any local optimum candidate Z∗ to program PNCZ, there exists an index set

π and an orthonormal matrix R such that:

Z∗ = VπR, RT R = I (5.21)

ε(Z∗) =
1

K
tr(Sπ). (5.22)

Assuming that the eigenvectors are ordered according to their eigenvalues, where

s1 ≥ · · · ≥ sN , any global optimum of PNCZ can thus be specified by the first K

largest eigenvectors and an orthonormal matrix:

Z∗ = V[K], RT R = I (5.23)

ε(Z∗) =
1

K
tr(S[K]) = max

ZT DZ = I

UT Z = 0

ε(Z). (5.24)
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Proof. We define a Lagrangian for PNCZ:

L(Z, Λ, Θ) =
1

2
tr(ZT WZ) − 1

2
tr(ΛT (ZT DZ − I)) − ΘT UT Z,

where Λ is a K × K symmetric matrix and Θ is an n̄ × K matrix. An optimal

solution (Z∗, Λ∗, Θ∗) must satisfy:

LZ(Z, Λ, Θ) = WZ − DZΛ − UΘ = 0, (5.25)

LΛ(Z, Λ, Θ) = ZTDZ − I = 0, (5.26)

LΘ(Z, Λ, Θ) = UT Z = 0. (5.27)

Multiplying Eqn (5.25) with UT D−1 leads to:

Θ∗ = (UT D−1U)−1UT D−1WZ∗, (5.28)

where D and UT D−1U are invertible since both D and U assume full ranks. Elim-

inating Θ in Eqn (5.25) by Eqn (5.28), we obtain

QPZ∗ = Z∗Λ∗. (5.29)

From Eqn (5.27), we also have QZ∗ = Z∗. Substituting it into the above equation,

we obtain QPQZ∗ = Z∗Λ∗. Therefore, there are three necessary conditions for

the optimality: Λ∗ is symmetric and

QPQZ∗ = Z∗Λ∗, Z∗T DZ∗ = I. (5.30)

Next we show that there exists an eigendecomposition (V, S) of QPQ that

not only meets these conditions but can also generate all such solutions through

orthonormal matrices.

Noting that QPQZ∗ = Z∗Λ∗ is equivalent to:

D
1

2 QD− 1

2 · D 1

2 PD− 1

2 · D 1

2 QD− 1

2 · D 1

2 Z∗ = D
1

2 Z∗ · Λ∗, (5.31)

we rewrite Eqn (5.30) using a transformed variable Z̄:

Q̄P̄ Q̄Z̄ = Z̄Λ∗, Z̄T Z̄ = I, (5.32)

Z̄ = D
1

2 Z∗ (5.33)

P̄ = D
1

2 PD− 1

2 = D− 1

2 WD− 1

2 (5.34)

Q̄ = D
1

2 QD− 1

2 = I − D− 1

2 U(UT D−1U)−1UT D− 1

2 . (5.35)
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Since both P̄ and Q̄ are symmetric, Q̄P̄ Q̄ is symmetric, which means that all

its eigenvectors are real and orthogonal. Therefore, if (V̄ , S) is an orthonormal

eigendecomposition of Q̄P̄ Q̄, then any distinct K eigenvectors and their eigen-

values form a solution, (V̄π, Sπ), to Eqn (5.32).

If (Z̄, Λ∗) is a solution that satisfies Eqn (5.32) with Z̄ orthonormal and Λ∗

symmetric, since V̄ is a complete basis in the N -dimensional space, there exists

an index set π and an orthonormal matrix R such that

Z̄ = V̄πR, RT R = I (5.36)

Λ∗ = RT SπR. (5.37)

Multiplying Eqn (5.25) with Z∗T and using tr(AB) = tr(BA), we derive:

εNC(Z∗) =
1

K
tr(Z∗T WZ∗) =

1

K
tr(Λ∗) =

1

K
tr(Sπ). (5.38)

Therefore, {(V̄π, Sπ) : π} produce all possible local optimal values. The global

optimal value is thus given by the average of the first K largest eigenvalues. Trans-

forming Z̄ back to the Z space based on Eqn (5.33), we have V = D− 1

2 V̄ and S

as exactly an eigendecomposition of QPQ. This completes the proof.

When there is no constraint, Q = I , then QPQ = P can be considered as a

transition probability matrix of random walks, and the normalized cuts criterion

is equivalent to a maximum conductance problem where subsets of states only

occasionally visit each other (Meila and Shi, 2001). When there are constraints,

Q 6= I , QPQ usually has negative entries and it no longer has a transition prob-

ability interpretation. In other words, the solution to constrained grouping can no

longer be cast as the equilibrium of a natural diffusion process.

To summarize, the optimal solution to PNCZ is not unique. It is a subspace

spanned by the first K largest eigenvectors of QPQ by orthonormal matrices:

Z∗ ∈ {V[K]R : QPQV[K] = V[K]S[K], R
T R = I}. (5.39)

Unless all K eigenvalues are the same, V[K]R are no longer the eigenvectors of

QPQ. Yet all these solutions have the optimal objective value.
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After we compute (V[K], S[K]) from QPQ, the same procedure for the un-

constrained normalized cuts (Yu and Shi, 2003) can be applied to find a near

global-optimal discrete solution to PNCX. The only difference is that now the

eigenvectors are from QPQ rather than P .

5.2.3 Algorithm

Given weight matrix W and constraint matrix U , below is the algorithm to find

the optimal eigensolution V[K] for constrained K-way normalized cuts. A final

segmentation can be obtained using the same discretization procedure for uncon-

strained solutions (Yu and Shi, 2003).

D = Diag(W1N)

P̄ = D− 1

2 WD− 1

2

Ū = D− 1

2 U

H = (ŪT Ū)−1

(I − ŪHŪT )P̄ (I − ŪHŪT )V̄[K] = V̄[K]S[K], V̄ T
[K]V̄[K] = I

V[K] = D− 1

2 V̄[K].

We avoid directly computing Q̄P̄ Q̄ since it can become a dense matrix with

even sparse U and P . Specifically, we modify the innermost iteration formula in

an eigensolver. For that, we only need to precompute Ū = D− 1

2 U , which is as

sparse as U , and H = (ŪT Ū)−1, which is an n̄ × n̄ matrix. Ū and H are the only

two other matrices apart from those already used for unconstrained cuts. During

each iteration of x := Q̄P̄ Q̄x, we compute:

z := Q̄x = x − ŪHŪT x (5.40)

y := P̄ z (5.41)

x := Q̄y = y − ŪHŪT y. (5.42)

If P̄ has an average of k non-zeros per row, then Eqn (5.41) has O(Nk) multipli-

cations. Eqn (5.40) and Eqn (5.42) each requires O(2Nn̄ + n̄2) multiplications,
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and they are the extra computation needed for constrained cuts. Given that n̄ � N

but comparable to k, the increase in time complexity is linear. However, since the

solution space is reduced, fewer iterations are needed to converge to the largest

eigenvectors. Therefore, the net increase in the computational space and time is

negligible if the number of constraints n̄ is small. We can reduce the complexity

further by sampling the constraints.

5.3 Propagating Constraints

The basic formulation works reasonably well if there are enough partial grouping

cues. This is not very useful since in reality only a few such cues are given. Sparse

cues expose an inherent flaw in the formulation, however, there is a remedy to it.

5.3.1 Point Set Example

In Fig 5.2, points are naturally organized into four clusters based on proximity.

Since the vertical gap is larger than the horizontal gap, an ideal 2-class clustering

is obtained by a horizontal cut that divides the four clusters into top and bottom

groups. Now if a few points at the horizontal boundary are grouped together a

priori, the horizontal cut violates the partial grouping constraints and the vertical

cut becomes optimal. However, when the number of grouping cues is reduced,

the formulation in Eqn (5.3) fails to produce the desired vertical cut that divides

the four clusters into left and right groups. In particular, the labeled points tend to

stand out, while having little impact on the grouping of the rest points.

5.3.2 Why Simple Constraints Are Insufficient

When we pre-assign points from top and bottom clusters together, we do not just

want a group to lose its labeled points to the other group (Fig 5.2c), but rather

we desire a grouping process that explores their neighbouring connections and

discovers the left-right division instead.
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Figure 5.2: Three grouping scenarios illustrating the problem of integrating sparse

grouping cues into a grouping engine. Row #1: 12 × 14 dots with a minimum inter-

point distance of 1. Pairs of linked points are known to belong together. The weights are

computed using a Gaussian function of distance with a standard deviation of 3. Row #2:

the continuous optimum V2 for normalized cuts. For sparse grouping cues, we no longer

have the desired vertical cut as the optimal solution.

The formulation in Eqn (5.3), however, does not entail the desire of propa-

gating grouping information on the constrained data points to their neighbours.

Often, a slightly perturbed version of the optimal unbiased segmentation becomes

the legitimate optimum (Fig 5.3).

There are two reasons for such a solution to be undesirable. First, the solution

is not smooth. One of the biased data points takes a label that is very different
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Figure 5.3: Undesired grouping from sparse constraints. In the 2-class grouping based

on proximity, the horizontal division is optimal while the vertical division is suboptimal.

When two pairs of points from top and bottom groups are linked together, the vertical

division is desired. However, perturbation on the unconstrained optimum can lead to a

partitioning that satisfies the constraints while producing the maximum objective value ε.

from its nearby points. This is not acceptable especially to those neighbours with

which it has high affinity. In other words, we need to explicitly encode data-driven

smoothness into our discriminative formulation.

The second reason is that such a biased grouping lacks fairness with regard to

labeled points. Intuitively, if two labeled points, i and j, have similar connections

to their neighbours, we desire a fair segmentation so that if i gets grouped with

i’s friends, j also gets grouped with j’s friends. In Fig 5.3, the two points in a

labeled pair have similar affinity patterns to their nearby points, yet their local

segmentations are dissimilar in any solution resulting from the perturbation of the

unbiased optimal grouping.

These two conditions, smoothness and fairness of a segmentation on a pair

of labeled data points, can condition a grouping to the extent that many trivial

near-optimal unbiased grouping solutions are ruled out from the feasible solution

space. Formally, rather than strictly enforcing equal labels on the biased data
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points themselves, we desire their average labels to be the same. The average

labels take the labels of other data points into account. The more similar a data

point is to the biased ones, the heavier the weight is for the label corresponding to

the point in the average. Thus the biased data points are prevented from taking a

label that is different from what other similar data points have.

Let g ◦ f be the compound function of g and f . Let Sf denote a smoothing

function contingent on data f . We modify the formulation in Eqn (5.3) to be:

maximize ε(ΓK
V ; f)

subject to Sf ◦ Γk
V(i, l) = Sf ◦ Γk

V(j, l), i, j ∈ Ut, l ∈ K, t ∈ [n]. (5.43)

The observation we made in Fig 5.3, the need of propagating constraints,

stands on a universal ground from the optimization point of view. Therefore, it

holds for all choices of ε. The basic formulation, although straightforward, is

inherently flawed.

Our new formulation is not equivalent to the introduction of smoothness priors

in a generative approach. There, prior knowledge such as piecewise constancy is

usually imposed on the solution independently of goodness of fit (Geman and

Geman, 1984), whereas ours is closely coupled with the data coherence. Our

essential message in this regard is that an effective propagation of priors requires

an intimate interaction with data themselves.

5.3.3 Smooth Constraints for Normalized Cuts

A natural choice of Sf for normalized cuts is the normalized weight matrix P :

Sf ◦ Γk
V(i, l) =

∑

j

PijX(j, l), i ∈ V, l ∈ [K]. (5.44)

This value measures the average density of Vl from node i’s point of view, with

nodes of high affinity to it weighted more in the density. This discourages i to take

a label different from those of its close neighbours. We may not know in advance

what this density is for the optimal partitioning, but the fairness condition requires
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it to be the same for the labeled pair (i, j): Sf ◦ΓK
V (i, l) = Sf ◦Γk

V(j, l). The partial

grouping constraints in Eqn (5.7) then become:

UT PX = (P TU)T X = 0. (5.45)

Since the only change here is that the constraint matrix U becomes P TU , the

same solution technique applies. That is, the eigensolution to the program PNCZ

is given by the eigenvectors of QPQ, where Q is a projector onto the solution

space specified by (P T U)T X = 0 instead of UT X = 0.

In Fig 5.4, we show new results with the smoothed constraints. In addition to

the basic results in Fig 5.2, we also consider two other alternatives that directly

utilize partial grouping cues. The simplest case of encoding the labeled pair (i, j)

is to modify their weights so that

Wij = Wji := 1, (5.46)

where an originally vanishingly small value increases to the maximum affinity.

The influence of this change depends on the number of connections all nodes

have. For example, if node i connects to 10 other nodes, this one more connection

would matter little after being normalized by the total connections. Unlike mini-

mum cuts, where a change in one link can change the global optimum completely,

normalized cuts are insensitive to perturbation in weights. Another approach is to

let the pre-assignment of i and j bridge their neighbours together:

Wik = Wki = Wjk = Wkj := max(Wik, Wjk), k ∈ V. (5.47)

Short-circuiting labeled nodes as well as their neighbours produces a similar result

as the simple biased grouping in Fig 5.2. Their common problem is that only the

labeled nodes expand their neighbourhoods significantly, which make them dis-

tinct from the rest unlabeled data. If we extend Eqn (5.47) to modify the weights

among the neighbours of labeled points, we can overcome the discontinuity of the

segmentation. That’s what Eqn (5.45) does, and in a principled way.

The inherent flaw in our basic formulation is also evident in the undesirable

results from even dense grouping cues. Though it is unclear for this point set
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Figure 5.4: Propagate partial grouping constraints. Row #1: QPQ values for one labeled

point (N) in Fig 5.2c and one unlabeled point (•). They are superimposed, with darker

gray for larger values. a: Direct modification according to Eqn (5.46) only adds the other

labeled point as its neighbour. b: direct modification according to Eqn (5.47) doubles the

neighbourhood size for the labeled point. c: smoothed constraints allow the labeled point

to have extensive correlations with all the nodes yet still maintaining fine differentiation

toward its own neighbours and those of its labeled peer. The QPQ values on the unlabeled

point change little. Row #2: the continuous optimum V2 for normalized cuts.

what the best 4-class clustering is with either dense or sparse partial grouping

cues, as shown in Fig 5.5, the labeled data points never stand out with smoothed

constraints. In general we don’t know how many classes there are and whether the

partial grouping cues are sufficient; it is important to always use data coherence

to smooth partial grouping constraints.
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Figure 5.5: The importance of smoothing partial grouping constraints. Each row shows

three leading eigenvectors. Row #1 are those for the dense grouping case in Fig 5.2b,

with simple constraints U . Row #2 are those for the sparse grouping case in Fig 5.2c,

with smoothed constraints P T U . The first uniform eigenvectors (1N ) are omitted.

5.4 Experiments

We calculate pixel affinity using a Gaussian function on the maximum magnitude

of intensity edges separating two pixels. W (i, j) is low if i, j are on the opposite

sides of a strong edge (Malik et al., 2001). Using this simple feature, we will

demonstrate how simple extra-image knowledge can improve low-level segmen-

tation and how smoothed partial grouping constraints make a difference.

In Fig 5.6, we derive partial groupings based on brightness values, e.g. the

foreground is more likely to be lighter and the background is darker. We choose
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173 × 109 no bias simple bias smoothed bias

Figure 5.6: Segmentation with partial grouping from brightness. Column #1: edge mag-

nitudes and biased nodes (29 pixels marked as �, 8 pixels marked 4) having extreme

intensities. Columns #2-4: the second eigenvector and foreground images obtained with

no constraints, simple constraints U and smoothed constraints P T U respectively.

two thresholds to find the pixels at the two intensity extremes and then use mor-

phological operations to further remove pixels appearing in the other set due to

noise. As we have already seen in in Fig 5.2, with simple constraints, biased pix-

els stand out in segmentation, while with smoothed constraints, they bring their

neighbours along and change the segmentation completely. This image has rich

texture against a relatively simple background. Compared to segmentation using

morphological operations on such images, our method can fill the holes caused by
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thresholding without losing thin structures or distorting region boundaries.

Partial grouping cues can also be derived from motion cues in a video se-

quence. In Fig 5.7, for every image, we compute its difference with two preceding

images in a video sequence, threshold and then apply morphological operations

to the difference image to create a mask for the foreground. Our constrained seg-

mentation can effectively shrink it to the head in motion.

Figure 5.7: Segmentation with partial grouping from motion. A sequence of 120 ×
160 images taken every 40 frames from a head tracking system. Row #1: images with

peripheries masked out (contrast reduced) according to the difference with neighbouring

images. The peripheries are pre-grouped together. Row #2: the second eigenvectors of

constrained normalized cuts. Row #3: foreground images from discrete segmentation.

Partial grouping cues can come not only from low-level cues, but also from

high-level expectation. For fashion pictures featuring a fashion model at the cen-

ter, we choose the background to be: 4-pixel wide at left and right sides, and

7-pixel high at top and bottom sides. Fig 5.8 and Fig 5.9 show the results with and

without such background knowledge. Notice that all eigenvectors of QPQ satisfy
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the constraints, and pixels at the four image sides always have similar values in the

eigensolutions. Through these constraints, the large uniform background is never

broken up in a segmentation, which focuses on the more interesting foreground-

background separation or a division within the foreground itself.

V2 V3 V4 V5 V6

0.9990 0.9983 0.9977 0.9961 0.9936

0.9978 0.9935 0.9927 0.9913 0.9909

Figure 5.8: Segmentation with partial grouping from spatial attention. Image size: 180×
90. Row #1-2: leading eigenvectors of unconstrained and constrained normalized cuts

respectively. Uniform V1’s are omitted. Numbers are eigenvalues. It takes 27.2 and 19.7

seconds respectively to compute these eigenvectors in MATLAB on a PC with 1GHz CPU

and 1GB memory.
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K = 2 K = 3 K = 4 K = 5 K = 6

Figure 5.9: Multiclass segmentation derived from the eigenvectors shown in Fig 5.8.

Row #1: unconstrained cuts. Row #2: constrained cuts.

Using the same spatial mask and the same set of parameters for computing

pixel affinity, we apply our constrained normalized cuts to other fashion pictures

and Berkeley image datasets (Martin et al., 2001). See Fig 5.10 and Fig 5.11.

The number of classes K is chosen manually. When there is an object in the

center of the image, such spatial priors always help a segmentation to pick out

the object. If the prior is wrong, for example, when the background spatial mask

touches the object of interest, e.g. the tip of shoes in the rightmost fashion picture,

the final segmentation also removes the feet from the foreground. The extent of
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this detrimental effect depends on the connections of the constrained nodes, since

partial grouping information is propagated to neighbouring nodes that they have

large affinity with. Our formulation can neither spot nor correct mistakes in priors.

Figure 5.10: Segmentation without (row #1) and with (row #2) partial grouping at image

boundaries, where contrast is reduced. Pictures are from New York Spring 2002 fashion

shows.

Technically, Eqn (5.45) can be replaced by an up-to s-th order smoothness

condition or a subset of it: Sf = [P 0, P 1, ..., P s]. However, higher-order smooth-

ness constraints propagate the partial grouping further at the cost of more com-
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Figure 5.11: Segmentation without (row #1,3) and with (row #2,4) partial grouping at

image boundaries, where contrast is reduced. Images are from Berkeley data sets.
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putation. In our experiments, we also observe no significant improvement over

Sf = P in the eigensolutions.

5.5 Summary and Discussions

We developed a method that integrates both bottom-up and top-down information

in a single grouping process. The former is based on low-level cues presented in

the image itself, whereas the latter is based on partial grouping cues known a pri-

ori; the former defines the goodness of a segmentation, whereas the latter defines

the feasibility of a segmentation. The two are unified in a constrained optimiza-

tion problem. We showed that it is essential to propagate sparse partial grouping

cues based on the coherence exhibited in the data themselves. In particular, we

developed an efficient solution for such constrained normalized cuts and applied

the method successfully to segmenting a wide range of real images.

Our work can be regarded as a small step toward bridging generative ap-

proaches and discriminative approaches for grouping. Generative models, includ-

ing Markov random fields (Geman and Geman, 1984) and variational formulations

(Blake and Zisserman, 1987; Mumford and Shah, 1985), can be naturally cast in

a Bayesian framework, where data fidelity and model specificity are at equal foot-

ing. However, they are sensitive to model mismatches and are usually solved by

Markov Chain Monte Carlo methods, which often find local optima with slow

convergence.

Discriminative methods, for example graph approaches on image segmenta-

tion (Amir and Lindenbaum, 1996; Gdalyahu et al., 1998; Puzicha et al., 1998;

Perona and Freeman, 1998; Sharon et al., 2000; Shi and Malik, 1997), achieve

a global decision based on local pairwise relationships. These algorithms often

have efficient computational solutions. These local pairwise comparisons can en-

code general grouping rules such as proximity and feature similarity. Promising

segmentation results on a wide range of complex natural images were reported in

(Malik et al., 2001). Such pairwise comparisons, however, often have difficulty in

deriving reliable long-range grouping information.
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Attempts have been made to find MRF solutions by graph partitioning algo-

rithms (Greig et al., 1989; Ferrari et al., 1995; Boykov et al., 1998; Roy and Cox,

1998; Ishikawa and Geiger, 1998). In particular, sufficient and necessary condi-

tions on the properties of energy functions that can be solved by minimum cuts

have been proven in (Kolmogorov and Zabih, 2002b; Ishikawa, 2003). The work

here shows that prior knowledge can be used to guide grouping for discrimina-

tive criteria such as normalized cuts (Shi and Malik, 1997), and that their global

optima in the continuous domain can be solved algebraically with little extra cost.

Our work is also closely linked to the transduction problem, the goal of which

is to complete the labeling of a partially labeled dataset (Joachims, 1999; Jaakkola

et al., 1999; Nigam et al., 1999; Szummer and Jaakkola, 2001). If the labeled data

set is rich enough to characterize both the structures of the data and the classifica-

tion task, then using the induced classifier on the labeled set and interpolating it

to the unlabeled set shall suffice, which is a supervised learning problem that has

many efficient algorithms. However, usually the labeled set is small, so the prob-

lem becomes how to integrate the two types of information from both sets to reach

a better solution. In (Joachims, 1999), the classification problem is formulated in

the support vector machine (SVM) framework and labeled data are treated simi-

larly to the rest except that their labels have been instantiated. In (Jaakkola et al.,

1999), information about the labeled data is encoded in the prior distribution of

the labeling and the goal is to find a projection of the best SVM discriminator onto

the prior space. Through model averaging, partial labeling constraints are softly

enforced. In (Nigam et al., 1999), class-dependent data generation models are as-

sumed and the labeled data can be used to estimate the parameters involved in the

models. This might be the most effective way to propagate priors. However, these

generative models are often too simple to be realistic. In (Szummer and Jaakkola,

2001), the class-dependent probability models are hidden in the pairwise affin-

ity matrix of all the data points. Again, the labeled set is used to estimate the

class-dependent label generation process.

Though our work was initially motivated by the gap between discrimina-

tive and generative approaches, we are aware of other works that put similar
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constraints into clustering algorithms such as K-means (Wagstaff et al., 2000;

Wagstaff et al., 2001). Two types of constraints, must-link and cannot-link, are

considered. An earlier version of our work (Yu and Shi, 2001a) also considered

cannot-link constraints, that is, two nodes cannot assume the same label. It in-

volves approximation and is not included here.

Our work is distinct from all these methods in two aspects. Rather than in-

stantiating the labels or the constraints on labeled data points, we use them to

regulate the form of a segmentation. We gave an intuitive computational account

for the need of constraint propagation and provided a principled way to implement

it. Secondly, we can solve near-global optima of our formulation, whereas most

other works can only guarantee local optimality.

Our experimental results on image segmentation demonstrate that simple group-

ing bias can approach figure-ground segregation without knowing what the object

is. Our spatial priors effectively take advantage of the asymmetry between figure

and ground (Amir and Lindenbaum, 1998a). In other words, since the outcome

of a grouping depends on global configuration, figure-ground segregation can be

obtained not only by enhancing the saliency of object structures, but also by sup-

pressing background structures, the latter of which is often easier than the former.

Our next step is to explore the integration of more complicated priors in order to

segment out only objects known a priori.
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Chapter 6

Object Segmentation

The problem we want to solve in this chapter is illustrated in Fig 6.1: partition an

image into foreground and background, with objects of interest in the foreground

and unknown clutter in the background.

knowledge + input ⇒ output

Figure 6.1: The goal of object segmentation.

In most object segmentation formulations, only one type of object is consid-

ered and object knowledge is employed to overcome data noise. It is often used

when the object of interest is known to be present and some initial estimation of

the size and location can be obtained. For example, in the deformable template

approach (Xu et al., 2000), a deformable prototype is used with a deformation

space modeled from training data. Some well-known applications are: detecting

the eye and mouth (Yuille et al., 1989), tracking shapes in motion (Blake and Is-

ard, 1998), and segmenting anatomical parts in medical images (McInerney and

119



Terzopoulos, 1996).

An alternative to deformable templates for object segmentation is proposed

in (Borenstein and Ullman, 2002). Instead of a globally constrained template,

object knowledge is represented using pairs of image fragments and their figure-

ground labeling from a training set. The problem of segmentation becomes one

of finding an optimal cover on a test image with a set of training fragments whose

appearances match the image and whose labeling patterns are locally compatible.

This exemplar-based approach is appealing for its flexible representation of

objects. However, the authors only show results on low-resolution (40 × 30) im-

ages, each of which has an object occupying the center, with little background.

There are a few problems not easily addressed in their framework:

1. Hallucination. If falsely detected fragments happen to align well locally,

there is no way to prevent a wrong segmentation. This occurs very often

when the background has significant clutter.

2. Imprecision. Since the segmentation of a test image comes from a collection

of local segmentations of training images, details of object boundaries in the

test image are inevitably lost.

3. Restricted to single object. Their energy function is only suitable for one

object present in an image, not for multiple objects from either the same or

different classes. It is not trivial to relate cover scores from different objects

such that partial covers from multiple objects are always inferior to a whole

cover for one true object.

All these top-down object segmentation approaches require image data to con-

form to object models, whether encoded in templates or fragments. Here, adopt-

ing image patches as a representation, we propose a concurrent segmentation and

recognition system that also addresses the above mentioned problems.

Our basic idea is that image segmentation should take into account both low-

level feature saliency and high-level object familiarity (Peterson, 1994). With

the guidance of object knowledge, segmentation will not get lost in image noise
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image

patches object knowledge edges

patch grouping associations pixel grouping

segmentation

Figure 6.2: Our approach. A set of patches are identified with object parts in a training

set. Patches of consistent spatial configurations are sorted in patch grouping. Every object

part hypothesis is also associated with a local segmentation of pixels. Here we show an

overlay of such local segmentations. Dark for figure, white for background, gray for the

non-committed. At the low-level, edges are first detected. Pixels of similar intensities

are sorted in pixel grouping. Object segmentation is obtained by coupling the patch and

pixel grouping in their solution space, where the consistency endowed by the patch-pixel

associations is enforced.
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and background clutter. With the verification of low-level feature saliency, we

prevent the hallucination of falsely detected object parts standing out from their

surroundings.

We formulate our method in a graph-theoretic framework. As illustrated in

Fig 6.2, we first detect patches and edges, and then we build two relational graphs

for patch and pixel grouping. They share the same representation and grouping

criterion, except that the former has patches as nodes and hypothesis compatibility

as affinity between two nodes, while the latter has pixels as nodes and feature sim-

ilarity as affinity between two nodes. We optimize a combined grouping criterion

in a reduced solution space where patch-pixel correspondence is encoded. These

constraints facilitate figure-ground segregation to produce object patches and their

pixels in the foreground group, and the rest in the backgroud group. Built upon

our earlier work on constrained cuts (Yu and Shi, 2001a), we can solve near-global

optimal solutions efficiently.

6.1 Integration Model

In this section, we focus on the integration problem, i.e., given pixel grouping

cues, patch grouping cues, pixel and patch correspondence cues, how do we inte-

grate them for image segmentation? We will illustrate what these cues represent

here, and defer the issue of obtaining these cues until the next section.

6.1.1 Representation: Affinity and Indicators

In a graph-theoretic approach, a graph is specified by nodes, edges and their asso-

ciated weights. Nodes represent the elements to be grouped. Every pair of nodes

are connected by an edge, with a weight describing the likelihood of the two ele-

ments belonging together. We assume this weight is nonnegative and symmetric.

The pairwise relationships between N nodes and M other nodes can be summa-

rized in an N × M matrix, called affinity matrix. When they are the same set of

nodes, the affinity matrix becomes symmetric.
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A

B

C

Figure 6.3: Graph representation. Each pixel and patch in the image is a node in the

graph. A: connections between pixels. They are derived from an edge map, with low

values for pixels on the opposite sides of an edge. The affinities of a set of regularly

spaced pixel nodes to their neighbours are superimposed on the edge map of the image.

Darker gray for larger values. B: connections between patches. They are derived from

object models, with low values for patches misaligned spatially. Thicker lines for larger

affinity. C: connections between pixels and patches. Each pixel has different associations

to different patches. Here is a summation of the associations to all patches. Darker gray

for larger association to some object parts.
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We formulate our grouping problem by graph G = {V, U; A, B, C}, where

node set V = {1, . . . , N} denotes a total of N pixels, node set U = {N +

1, . . . , N + M} denotes a total of M patches, affinity matrix AN×N denotes

pixel similarity, affinity matrix BM×M denotes patch compatibility, affinity ma-

trix CN×M denotes pixel-patch associations. See Fig 6.3.

Object segmentation now becomes a node partitioning problem. Given node

set V, let ΓK
V = {V1, . . . , VK} denote a division of V into K disjoint sets: V =

∪K
l=1Vl, Vk ∩ Vl = ∅, k 6= l. Our goal is to find consistent ΓK

V and ΓK
U so that ∀l,

Vl and Ul contain either corresponding object pixels and patches, or background

pixels and patches. The ordering is inconsequential.

We introduce probabilistic group indicators to represent a partition. Let X =

[X1, . . . , XK], where Xl(i) = Pr(i ∈ Vl). Similarly, we define Y = [Y1, . . . , YK]

for patch grouping ΓK
U .

6.1.2 Criterion: Goodness of Grouping

Partitioning within V or U itself is a basic grouping problem, for which we adopt

the normalized cuts criterion (Yu and Shi, 2003). Take pixel grouping as an ex-

ample. We maximize the average within-group connections defined by:

ε(ΓK
V ; A) =

1

K

K
∑

l=1

linkratio(Vl, Vl; A) (6.1)

linkratio(Vl, Vl; A) =
links(Vl, Vl; A)

degree(Vl; A)
(6.2)

degree(Vl; A) = links(Vl, V; A) (6.3)

links(P, Q; A) =
∑

i∈P,j∈Q

A(i, j). (6.4)

Due to the normalization, normalized cuts also minimize the average between-

group connections at the same time. See details in (Yu and Shi, 2003). Likewise,

for patch grouping, we desire a partitioning that maximizes ε(ΓK
U ; B).

Given ΓK
V and ΓK

U , our joint criterion ε̄ takes both individual goodness and
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relative importance into account:

ε̄(ΓK
V , ΓK

U ; A, B) =
1

K

K
∑

l=1

linkratio(Vl, Vl; A) · degree(Vl; A)

degree(Vl; A) + degree(Ul; B)

+
1

K

K
∑

l=1

linkratio(Ul, Ul; B) · degree(Ul; B)

degree(Vl; A) + degree(Ul; B)
.

(6.5)

The combination coefficients of the connection ratios make sure that weights with

a larger unit are weighed more in the criterion. The above definition, however, is

different from a direct convex combination of ε(ΓK
V ; A) and ε(ΓK

U ; B). Here we

weigh each pair, Vl and its counterpart Ul, separately. In fact, we have:

ε̄(ΓK
V , ΓK

U ; A, B) = ε

(

ΓK
V∪U;

[

A

B

])

, (6.6)

i.e., cuts using the joint criterion ε̄ are equivalent to the normalized cuts on the

joint graph with the joint weight matrix.

We introduce further notation. For any nonnegative matrix A, let DA denote

its degree matrix. It is a diagonal matrix with DA(i, i) =
∑

j A(i, j), ∀i. We

rewrite Eqn (6.5) using group indicators X and Y , assuming that they are binary:

ε̄(X, Y ; A, B) =
1

K

K
∑

l=1

ZT
l WZl

ZT
l DWZl

, (6.7)

Z =

[

X

Y

]

, W =

[

A

B

]

, DW =

[

DA

DB

]

. (6.8)

We use this formula to extend the definition of ε̄ in Eqn (6.5) to the real domain

so that it gives a meaningful value when X and Y are probabilistic.

6.1.3 Criterion: Feasibility of Grouping

The objective value ε̄ cannot guarantee the consistency between pixel grouping

and patch grouping. That is, its optimum might not be interpretable in an object
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segmentation. Ideally, patches in Ul have their pixels in Vl, and vice versa. When

such grouping correspondence is enforced, we have a smaller but meaningful set

of segmentations to look at. Among these feasible solutions, the one yielding the

best ε̄ is the desired grouping.

a: Y → X b: X → Y

Figure 6.4: Consistency between high-level and low-level grouping. The foreground

probabilities of nodes at one level are influenced by their neighbours at the other. a: when

a set of patches all support the presence of an object, their common pixel is likely to

be foreground; when in conflict, patches compete to claim the common pixel with their

association strengths. b: for pixels within a coherent region, they unanimously bring their

common patch into the counterpart patch group. Otherwise, the patch is drawn to the

patch group that pairs with the pixel group to which its dominant pixels belong.

If the spatial configuration of some patches are consistent with their roles as

object parts, then they belong in the same patch group, e.g. Uk. This decision

so far has nothing to do with the low-level pixel grouping; it is entirely based on

high-level object knowledge. However, the implication of this patch grouping on
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pixels is clear. Pixels of these patches are more likely to be in Vk, regardless of

their dissimilarity in low-level features. Conversely, if a set of pixels with similar

features belong to Vk in pixel grouping, patches claiming these pixels are more

likely to be grouped in Uk, regardless of their incompatible spatial displacement.

See Fig 6.4. This often happens for falsely detected parts, which occupy areas

without a boundary delineation in terms of low-level features, thereby we can

easily pull these patches into the background.

Such double competition between high-level and low-level grouping can be

described by constraints on the two group indicators X and Y through the asso-

ciation affinity C. Detailed in the next section, C reflects expected local segmen-

tations, object vs non-object, within detected patches. That is, the value C(i, p)

is large if pixel i is likely to be an object pixel of patch p. We first encode the

between-patch competition by re-weighting among patches:

C̄(i, p) = C(i, p) · C(i, p)

maxq C(i, q)
. (6.9)

For pixel i, its association with patch p does not change if it is the strongest among

all the patches; otherwise, C(i, p) gets damped by its proportion to the maximum

weight so that weak connections become even weaker.

After the non-maximum suppression among patches, we consider between-

pixel competition by normalizing weights among pixels:

Y = D−1
C̄

C̄X. (6.10)

This equation links the probabilities for nodes in one set to the other. For example,

given the foreground probability of every pixel, the foreground probability of a

patch is the weighted average of those of its member pixels. If the majority of

these pixels belong to Vk, then this patch as well as any other patch claiming most

of these pixels is probably in Uk. Eqn (6.10) can be rewritten as

LZ = 0, L = [D−1
C̄

C̄,−I]. (6.11)

where I is an identity matrix and L is assumed full rank.
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6.1.4 Solution: Constrained Optimization

Putting the goodness and feasibility of grouping together, we have a constrained

optimization problem:

Z∗ = arg max ε̄(Z; W ), subject to LZ = 0. (6.12)

Our low-level pixel grouping and high-level patch grouping are coupled in their

solution space through pixel-patch interactions. We have a modular computational

framework, yet it is not at all feedforward.

Note that our formulation is not the same as maximizing ε(ΓK
V ; A+ B̄), which

is a simple addition of two grouping processes, with the patch affinity B con-

verted into an equivalent pixel affinity matrix B̄ = (D−1
C̄

C̄)T B(D−1
C̄

C̄) using the

constraint in Eqn (6.10).

Eqn (6.12) is in the form of a constrained optimization problem that we have

already considered in (Yu and Shi, 2001a) and its near-global optima can be solved

efficiently. There, simple partial pixel grouping cues were fixed a priori. Here,

these cues are specified with respect to a set of patches, the groups to which they

belong are not known themselves. The uncertainty in the pixel and patch member-

ships is removed after a joint optimization process that respects both the grouping

criterion and the consistency constraints.

To summarize, below is an overview of our algorithm.

1: Detect edges.

2: Evaluate pixel feature similarity A.

3: Detect patches.

4: Evaluate patch compatibility B.

5: Evaluate pixel-patch association C.

6: Form constraint matrix L.

7: Solve constrained normalized cuts on W and L by eigendecomposition.

8: Discretize the eigenvectors for a final segmentation.
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6.2 Implementations

An image is first convolved with oriented filters to extract edge magnitudes. Pixel

affinity A is evaluated using a Gaussian function (with standard deviation σe) on

the maximum magnitude of edges crossing the line connecting two pixels. A(i, j)

is low if i, j are on the opposite sides of a strong edge (Malik et al., 2001).

Figure 6.5: Samples of object parts in a training set. There are 15 objects in total

(Fig 6.1). Each object is represented using 18 training images. These training images

were acquired at 2 scales and 9 viewing directions that were 20◦ apart from each other.

For patches, we use the nearest neighbour object part detector described in

(Mahamud, 2002), but without the final verification of whole object hypotheses.

Shown in Fig 6.5, parts are represented by exemplars obtained from a few angles

and scales. Local color, intensity, and orientation histograms are computed as fea-

tures. Based on an optimal distance measure d learned from a training set in order

to maximize the discrimination among objects, patch p is labeled with the nearest

neighbour p′ with score d(p, p′). See Fig 6.6. There could be multiple patches
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detected at the same location, corresponding to multiple object part hypotheses of

the same local area in the image.

E = 0.6

E = 1.0

E = 0.0

Figure 6.6: Patches have high affinity if their corresponding object silhouettes overlap.

We measure the quality of detected patches in two terms. One is the credibility

of each individual patch denoted in a diagonal matrix BO:

BO(p, p) = exp

(

− 1

2σ2
p

[

d(p, p′) − dmin

dmax − dmin

]2
)

, (6.13)

where dmax and dmin are the minimum and maximum d values of all patches in

image f . The more similar patch p is to the object part p′ in the training set,

the better the credibility. The other is the compatibility of a patch with nearby

patches. Let S(p′, p) be the binary object silhouette of the training image to which

part p′ belong, registered to the location p in image f . Two patches p and q are

consistent if S(p′, p) and S(q′, q) overlap well. This measure increases with the

distance between p and q:

BS(p, q) = exp

(

− 1

2σ2
s

[

1 − ||S(p′, p) ∧ S(q′, q)||1
||S(p′, p) ∨ S(q′, q)||1

]2
)

·
[

1 − exp

(

− 1

2σ2
d

· −
||p − q||22
r(p) · r(q)

)]

,

(6.14)
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where ∧ and ∨ are the logical and/or operators, || · ||k is Lk-norm, r(p) is the

radius of patch p, and p is the coordinates of the center of patch p in the image.

In particular, BS(p, q) = 0 if p = q. Multiplying a patch’s own credibility and its

compatibility with others together, we obtain patch affinity as:

BM = BT
O · BS · BO. (6.15)

This value is high when a patch is not only similar to an object part in the training

set, but also spatially aligned with other detected patches for the same object. As

a result, an isolated falsely detected patch has very low patch affinity. Finally, to

balance the units between pixel and patch grouping in our joint grouping criterion,

we scale the patch affinity with a constant so that the total degrees match between

pixel and patch graphs:

B =
1T

NA1N

1T
MBM1M

· BM , (6.16)

where 1d denotes the d × 1 vector of all ones.

CS CM

Figure 6.7: Pixel-patch associations. CS is a projection of local segmentations from

object models. After diffusion with both pixel and patch affinity, CM is refined and prop-

agated. Each pixel has different associations to different patches. Here we show the

summation of its weights to all patches. Dark gray for foreground, white for background.

The object silhouette S(p′, p) also projects an expected local segmentation of

pixels at the detected patch location. We denote it by matrix CS , each column of
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which has N pixels, taking the corresponding values of S(p′, p) within a window

25% larger than the patch itself: +1 for object pixels and −1 for background

pixels. Taking an average of CS based on affinity with neighbouring pixels and

patches, we refine this initial estimation by:

CM = A · CS · B. (6.17)

After such diffusion on the signed representation for projected local segmenta-

tions, the associations between pixels and object patches are weakened near false

boundaries expected at an edge-less region (Fig 6.7). The final pixel-patch asso-

ciations are established between patches and their object pixels only:

C = CM � (CM > 0), (6.18)

where � denotes the element-wise product.

In total, we have four parameters for the Gaussian functions used to evaluate

the affinity measures, and they are fixed for all test images: σe = 0.02, σp = 0.33,

σs = 0.08, σd = 0.17.

6.3 Experiments

In Fig 6.8, we compare grouping in three conditions: 1) low-level pixel grouping

only, where ε(Γ2
V; A) is maximized; 2) a scheme in which object detection is

used to narrow down a region of interest (ROI) which contains several candidate

objects, and then ε(Γ2
V; A) is maximized for these pixels; 3) a joint pixel-patch

grouping. Low-level grouping alone segments out a large region, which, although

coherent in the low-level features, is irrelevant to our objects of interest. With

focus of attention, low-level grouping picks out a small area, which, although

well separated from its surroundings, corresponds to a region of falsely detected

object patches. Only with the guidance of patch grouping, the object of interest,

despite its weak contrast at the boundaries, pops out from the rest of the clutter.

Our method of enforcing constraints in the solution space is often contrasted

with a straightforward alternative where the patch grouping interacts with pixel
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pixel only pixel w/ ROI pixel-patch

541s 150s 110s

Figure 6.8: Comparison of pixel grouping, focused pixel grouping and pixel-patch

grouping. Row #1: optimal eigenvectors. Row #2: segmentations. The MATLAB running

times are given with 1GHz CPU and 1GB memory.

grouping directly in the weight matrix (Yu et al., 2002):

W =

[

A C

CT B

]

, (6.19)

and we then simply seek normalized cuts on this weight matrix. There are two rea-

sons why this alternative is inferior. First, weights of C as interactions between

two processes are of a different nature from those between pixels or between

patches and there is no obvious way to account for this with a reasonable joint

criterion. Therefore, although we can still run normalized cuts on the resulting

graph, we do not know what we are actually optimizing. Secondly, such pixel-

patch associations can cause hallucination regardless of pixel grouping (Fig 6.9).

Of course, the degree of hallucination depends on the relative weights among A,

B, C and whether the pixel-patch associations agree with the low-level group-

ing. In general, however, such associations emphasize pixels linked to detected
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patches, causing these pixels to stand out, a phenomenon we have already ob-

served in biased grouping (Yu and Shi, 2001a).

a: density of patches b: eigenvector c: segmentation

Figure 6.9: Direct pixel-patch associations as in Eqn (6.19) provide wrong bias with

falsely detected patches. a: overlay of object silhouettes weighted by the degrees of the

patches DB . The false detections happen to align well so that they overshadow the real

object parts. b,c: spectral clustering results if these pixel-patch associations are directly

included in the affinity matrix. Pixels associated with patches are heavily biased, which

cause the hallucination of a non-existent object, ignoring evidence in pixel grouping.

We apply our method to over 400 test images. Fig 6.10 to Fig 6.12 are a sample

of the results. There are about 800 patches detected in total, however, as seen in

the patch density images, only a few (about 30 − 50) patches have significant

connections to other patches. Most patches either score low in matching object

parts in the training images, or have no nearby patches detected for the same object

at a similar scale and pose.

When the object has well-defined boundaries in the test image (e.g. Fig 6.10

#1,2,5), then it can be segmented despite occlusion, imprecision in measurements

of part location, orientation and scale. However, since an object is represented

with a few patches, which, although selected to maximumly discriminate between

the 15 objects, do not necessarily cover the whole object or can all be detected. As

a result, when an object has strong interior edges (e.g. Fig 6.10 #3), only the area

inside its strong edges are segmented. When an object has very weak contrast at

its boundaries (e.g. Fig 6.10 #4, Fig 6.11 #1, 2), it is often segmented with a piece

of the background that shares similar low-level features. When none of the object
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image patch density segmentation

Figure 6.10: 2-class object segmentation. Patch density is defined as in Fig 6.9.
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image patch density segmentation

Figure 6.11: 2-class object segmentation. Same convention as Fig 6.10.
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Figure 6.12: Multiple object segmentation results.
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parts are detected (Fig 6.11 #5), a region resembling another object (the iron in

Fig 6.1) becomes the foreground object. Sometimes, the object parts are not well

localized (e.g Fig 6.11 #4), thus the object boundaries are obscured, causing the

object to merge into background. These problems are also evident with multiple

objects. See Fig 6.12.

Right arm: 7 Right leg: 3 Head: 4 Left arm: 4 Left leg: 9

Figure 6.13: Human body part detection. 27 patches are detected, each labeled by one of

the five part detectors for arms, legs and head. False positives cannot be validated on two

grounds: they are not distinct from their surroundings or incompatible with nearby parts.

We apply our method to articulated objects, i.e. human body segmentation in a

single image (Yu et al., 2002). My colleague Ralph Gross developed an algorithm

to detect human body parts. He manually labeled five body parts (both arms, both

legs and the head) of a person walking on a treadmill in all 32 images of a complete

gait cycle. Using the magnitude thresholded edge orientations in the hand-labeled

boxes as features, a linear Fisher classifier (Fukunaga, 1990) is trained for each

body part. In order to account for the appearance changes of the limbs through the

gait cycle, two separate models are used for each arm and each leg, bringing the

total number of models to 9. Each individual classifier is trained to discriminate

between the body part and a random image patch. The classifiers are iteratively

re-trained using false positives until the optimal performance is reached over the

training set. In addition, linear color-based classifiers are learned for each body

part to perform figure-ground discrimination at the pixel level. Alternatively a

general model of human appearance based on filter responses as in (Sidenbladh

and Black, 2001) could be used. Fig 6.13 shows detected parts for a test image.
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pixel-patch CS segmentation alone: 68s segmentation-recognition: 58s

Figure 6.14: Spectral segmentations for the 261 × 183 image in Fig 6.13. The results

are shown with both the second eigenvector of normalized cuts and the optimal discrete

segmentation based on the eigensolution.

For articulated objects, there is no simple formula for patch affinity. We show

some preliminary results in Fig 6.14. Though the pixel-patch affinity matrix CS ,

derived from the color classifier, is neither precise nor complete, and the edges are

weak at many object boundaries, the two processes complement each other in our

pixel-patch grouping system and output a reasonably good object segmentation.

6.4 Summary

We have developed a joint optimization model to integrate detected edges and

object parts to produce an object segmentation. Our results show that it does not

hallucinate object boundaries like most top-down object segmentation approaches,

nor does it get lost in irrelevant regions of rich features as do most low-level image

segmentation approaches. Imprecision in patch detection and poor contrast of

edges are tolerated to a certain degree.

However, the experimental results are far from being satisfactory for a number

of reasons. First, detecting and localizing enough patches is not always possi-

ble. To be detected and to be indicative of a particular object, an image patch

must have distinctive low-level features. For the purpose of segmentation, we

also desire these patches to be sensitive to the pose of the object. There might
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not be enough such patches available for the object of interest, especially when

they are small (e.g. mugs), symmetrical across rotations (e.g. lamps), or have re-

peating texture patterns (e.g. vases). Secondly, the computed patch affinity is not

always reliable. Without a flexible representation for the geometrical configura-

tions between object patches, the errors in patch locations and poses can be easily

amplified in the object silhouettes, leading to wrong affinity values. Finally, with-

out a model of object shapes, textures of the object and weak contrasts at object

boundaries can interfere with the segmentation.

To handle object shapes, we could include another process – contour grouping

into object segmentation (Yu and Shi, 2001b). With the guidance of object models,

we might also eliminate the major problem in low-level contour grouping: random

continuation of edgels (Williams and Jacobs, 1997). How to get a good estimation

of grouping correspondence also warrants further research.

On the other hand, our formulation can be considered an integration frame-

work for node grouping and hyper-edge grouping. Instead of viewing patches as

independent nodes, we can regard them as hyper-edges defined on basic elements

– pixel nodes. The interaction matrix describes their incidence relationships. This

provides a way to include high-order relationships into a grouping framework that

only deals with pairwise relationships. It has already been noted that pairwise

relationships are not enough to describe grouping constraints. For example, we

need to describe cues or hypotheses that depend on other cues. Our work could

potentially provide such a representation.
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Chapter 7

Conclusions

Why does the human vision system perceive the world so effortlessly and in-

stantly? Our answer to this question is that our perceptual organization pops out

sensory information that is ecologically relevant. Such sensory information can

be roughly divided into two categories: that due to novelty and that due to famil-

iarity. Popout by novelty helps us to immediately detect potential dangers in the

world, while popout by familiarity prompts us for an immediate reaction to friends

and foes. Both novelty and familiarity can be driven by low-level and high-level

cues. For example, red among blue is novel; an exotic object among common-

place objects is also novel. Likewise, familiarity can be as general as good curve

continuation, or as specific as a particular face.

These two perceptual phenomena, popout by novelty and popout by familiar-

ity, are what we studied computationally in this thesis. We considered novelty

cues triggered in a bottom-up mechanism, where pixels with large local feature

contrast with neighbouring pixels become one outlier group that demands further

processing. We also considered familiarity cues triggered in a top-down mecha-

nism, where only the objects we know a priori form the foreground that demands

further object identification.

In our computational models of perceptual popout, we took a discriminative

approach rather than a generative approach. For generative approaches, organiz-

ing objects into groups is equivalent to understanding all aspects of the objects.
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For example, segmenting out an orange would require knowing that oranges are

usually yellow, round, and lightly textured. Such details are often not needed, e.g.

if the orange is embedded in a background with nothing yellow or round. What

discriminative approaches require, on the other hand, are exactly such cues from

local comparisons, indicating whether two visual elements are in the same group.

That’s why discriminative approaches are more suitable for modeling popout.

Our ideas are in contrast with the traditional computational models of per-

ceptual organization, where only feature similarity is emphasized and the whole

process is thought of as a precursor independent of specific object knowledge. We

support the view that perceptual processing is an interactive process that involves

perceptual organization and object recognition simultaneously. Built within the

framework of spectral graph theory, we were able to achieve what most other

interactive processing methods fall short of one way or another:

1. We clearly stated a criterion gauging the goodness of perceptual organiza-

tion, which provide us a clear understanding of the structure of the solutions

without being distracted by any solution techniques.

2. We developed an efficient and principled algorithm for finding the solutions

to our criterion. Our solutions in the continuous domain are global optima,

which guarantee that the discrete solutions obtained as the closest ones to

the continuous optima are near global optima to our criterion.

3. We demonstrated the use of our approach on segmenting a wide range of

real images.

Specifically, we developed a set of simple yet realistic interactive processing

models for real image segmentation. As demonstrated on hundreds of real images,

we were able to understand more about the computational principles underlying

perceptual popout; we were able to unify grouping cues, figure-ground cues and

depth cues in one grouping framework; finally, we were able to achieve object

segmentation with cues derived from spatial and object attention (Fig 7.1).

We achieved these contributions by empowering current spectral graph mod-

els of perceptual organization with a richer representation of grouping cues, a
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1

2

3

4 figure

ground

+ ⇒

+ ⇒

Figure 7.1: What we achieved about image segmentation in this thesis. One row for each

computational model: multiclass, repulsion, depth, bias and object segmentation.
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a: grouping cues

attraction repulsion regularization depth

b: grouping techniques
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Figure 7.2: Computational tools developed in this thesis. They can be divided along

two lines of development: grouping cues and grouping techniques, although some are

inter-related. a: We expanded the repertoire of grouping cues from attraction to repulsion

(Chapter 3) and depth (Chapter 4), and in the framework of attraction and repulsion,

we can enhance the confidence of grouping cues by regularization (Chapter 4). b: We

extended the grouping techniques to multiclass (Chapter 2), ordered partitioning (Chapter

4), constrained partitioning (Chapter 5) and joint partitioning (Chapter 6).

grouping criterion that accounts for all cues simultaneously, and a computational

solution that finds near-global optima efficiently (Fig 7.2).

There are a few important issues worth further exploration.
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1. Automatic selection of the number of classes for image segmentation. How

many groups are there? This problem is seemingly rather subjective. How-

ever, we find that analyzing how our objective value changes over the num-

ber of classes can give a set of candidate answers.

2. A model-based view of spectral clustering. Recently a model-based view

(Kamvar et al., 2002) was given to other clustering algorithms such as K-

means and hierarchical agglomerative algorithms. Likewise, a related crite-

rion in graph partitioning, minimum cuts, has an intimate relationship with

Markov random fields (Boykov et al., 1999; Kolmogorov and Zabih, 2002a)

and thus a generative interpretation. This leaves spectral clustering alone as

a technique unexplained in terms of generative models. Such a model-based

view can provide insights on predicting the behavior of an algorithm and

also reveal its connections to other methods.

3. A criterion for comparing two segmentations. Automatic evaluation of im-

age segmentation is desired as the demand to process huge image datasets

increases. Some heuristics, for example, the normalized correlation be-

tween two labeling matrices in a formula such as |A ∩ B|/|A ∪ B|, have

been used. Such a pixel-to-pixel comparison does not take the structural

similarity of two segmentations into account. Because of that, even if we

have a “gold standard” such as manual segmentation, the numbers we come

up with may still be meaningless.

4. Closing a feedback loop. Though we have provided a method for integrating

top-down information, we have not developed a mechanism for monitoring

mistakes caused by bad priors or bad data. On the other hand, it has been

demonstrated that the human vision system can ignore incongruent depth

cues so long as the 2D projections make up a familiar object (Bulthoff et al.,

1998). Incorporating a feedback mechanism would probably involve the

comparison of alternative grouping results in order to correct the adverse

influence of bad cues.
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5. Object representation. Despite the flexibility of exemplar patches in repre-

senting the appearance of arbitrary objects, they fall short of capturing the

geometrical configurations of arbitrary objects, especially for objects with

articulation. Finding a good representation for objects remains a fundamen-

tal problem in computer vision.

6. Scaling up. Larger images, more objects, more complex cues. This might

require an efficient non-uniform sampling technique, a compact representa-

tion of objects, and most likely a good representation of scene context.
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