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Trail’s End

c) Diverse Motor Skills

d) Embodied Navigation

Figure 1. We propose training humanoids to hike complex trails, driving integrative skill development across visual perception,
decision-making, and motor execution. Center: The humanoid robot (H1) a) equipped with vision, learns to b) anticipate near-future
local goals to guide locomotion along the trail with self-autonomy. Bubble size (large → small) indicates anticipated goal direction; color
shows temporal order (orange → green → forest). Left: Our LEGO-H framework is universal to different humanoid robots (e.g., G1, a
smaller robot) to adaptively c) emerge diverse motor skills, and d) develop embodied path exploration strategies to hike on trails with varied
terrains and obstacles. Project page: LEGO-H-HumanoidRobotHiking.github.io.

Abstract

Hiking on complex trails demands balance, agility, and
adaptive decision-making over unpredictable terrain. Cur-
rent humanoid research remains fragmented and inadequate
for hiking: locomotion focuses on motor skills without long-
term goals or situational awareness, while semantic navi-
gation overlooks real-world embodiment and local terrain
variability. We propose training humanoids to hike on com-
plex trails, driving integrative skill development across visual
perception, decision making, and motor execution.

We develop a learning framework, LEGO-H, that enables
a vision-equipped humanoid robot to hike complex trails
autonomously. We introduce two technical innovations: 1) A
temporal vision transformer variant anticipates future local
goals to guide movement, seamlessly integrating locomotion
with goal-directed navigation. 2) Latent representations of

joint movement patterns, combined with hierarchical metric
learning, enable smooth policy transfer from privileged train-
ing to onboard execution. These components allow LEGO-H
to handle diverse physical and environmental challenges
without relying on predefined motion patterns. Experiments
across varied simulated trails and robot morphologies high-
light LEGO-H’s versatility and robustness, positioning hik-
ing as a compelling testbed for embodied autonomy and
LEGO-H as a baseline for future humanoid development.

1. Introduction
Hiking [27, 29] challenges humans to master diverse motor
skills and adapt to complex, and unpredictable terrain – such
as steep slopes, wide ditches, tangled roots, and sudden el-
evation changes (Fig. 1). It demands continuous balance,
agility, and real-time decision-making, making it an ideal
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testbed for advancing humanoid autonomy and the integra-
tion of vision, planning, and motor control. Hiking-capable
robots could explore remote areas, assist in rescue missions,
and guide individuals along rugged paths.

Hiking poses challenges beyond traditional navigation,
blind locomotion, or single motor pattern learning. To suc-
ceed, humanoid robots must master three core capabilities:
1) Locomotion versatility – The ability to handle mixed
terrains like dirt, rocks, stairs, and streams, adapting dynami-
cally with skills like jumping and leaping while maintaining
balance. 2) Perceptual awareness - The ability to sense
and respond to complex 3D environments, such as stepping
over logs or navigating around trees. 3) Body awareness –
The ability to adjust in real time to local obstacles, terrain
changes, and body states by coordinating vision and motor
control for adaptive foot placement and movement.

Current humanoids struggle to meet these demands due to
the lack of a unified framework that integrates low-level mo-
tor skills with high-level navigation (Fig 2). 1) Locomotion
methods lack adaptability to terrain variation. They treat
terrain as a fixed, homogeneous, and passive background,
focusing narrowly on walking [32, 33], quasi-periodic mo-
tion patterns [20], or mimicry [30]. Advanced frameworks
for complex skills like parkour [9, 48], often depend heavily
on user commands or engineered behaviors. Such isolated
training paradigms and abstraction overlook the embodied
interaction essential for real-world locomotion, limiting gen-
eralization beyond curated environments. 2) Navigation
methods struggle with real-time adaptability. Traditional
research efforts rely on scene mapping [28] or rigid world
geometry [26]. While LLMs and VLMs can plan behaviors
and correct execution failures from textual instructions [44],
they often lack the physical grounding needed for real-world
adaptability. A robot may know it needs to step over the log,
but without real-time perception and fine-grained motor con-
trol, it cannot adjust mid-swing if the log shifts or the ground
gives way. Reflexive foot placement on uneven terrain de-
mands fast, sensor-driven adaptation - not just faster planning
- which symbolic planners struggle to provide. Bridging mo-
tor skills and navigation remains challenging due to their
inherently different response levels (fast, reactive control vs.
slower, deliberative planning) requiring tight coordination
for context-sensitive execution in complex environments.

We introduce LEGO-H, a perceptual-aware, end-to-end,
embodied learning framework for acquiring situational
visual-motor skills and path exploration strategies that en-
able humanoids to traverse complex trails autonomously
(Fig. 1). It unifies navigation and locomotion by advancing
Hierarchical Reinforcement Learning (HRL) and enhancing
Privileged Learning (PL) for effective skill development.

Our first technical contribution is task-grounded HRL
for situational visual-motor control, reformulating navi-
gation as a sequential local goal anticipation problem to
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Figure 2. Hiking requires locomotion versatility, perceptual
awareness, and body-aware planning - integrated for the first
time in our approach. Prior work considers only subsets of these
capabilities (hatched patterns), whereas LEGO-H unifies all three
within a single learning framework to enable embodied autonomy.

guide locomotion policy learning. While HRL can unify
navigation and locomotion via multi-level abstraction, exist-
ing methods often oversimplify environments [11], or restrict
low-level control to basic skills like walking [1], limiting
adaptability. We address this caveat by proposing TC-ViT,
a temporal vision transformer variant tailored for HRL that
combines tokenization with embodied reinforcement learn-
ing. Instead of treating the navigation target as a static token,
TC-ViT models 1) navigation goals and 2) temporal-spatial
relations, considering the robot’s past, present, and future
states for sequential anticipation. The locomotion policy net-
work then integrates these latent features with proprioceptive
inputs and partial anticipated navigation goals to produce
motor actions, enabling tight coordination between percep-
tion and control for navigating complex, dynamic trails.

Our second technical contribution is enhanced PL that
distills diverse motor skills while preserving action ratio-
nality. In PL, a teacher policy leverages privileged signals
such as known foothold locations to develop diverse, optimal
behaviors efficiently and safely. A student policy then learns
to replicate these behaviors using only proprioception and
onboard perception, enabling deployment in unstructured en-
vironments without privileged information. It improves skill
acquisition but complicates action learning when integrat-
ing visual inputs, increasing the risk of errors and damage
from unexpected actions. Existing distillation approaches
supervise global behaviors [40] or per-joint accuracy [18],
often ignoring inter-joint dependencies. We address this by
proposing a Hierarchical Latent Matching (HLM) metric
that distills policy based on action rationality. HLM utilizes
structured latent representations and masked reconstruction
via VAEs [16] to enforce relational consistency across joints.
This task-agnostic HLM loss set improves policy learning
across motor tasks. Crucially, the latent prior is derived from
oracle policy, not human demonstrations, allowing robot to
learn self-reliant behaviors suited to its own morphology.



To summarize, our work makes three key contributions:
1) We propose hiking as a testbed for integrative skill devel-
opment in humanoid robots. 2) We introduce LEGO-H, a
learning framework for autonomous humanoid hiking. 3) We
demonstrate LEGO-H’s robustness and versatility across di-
verse simulated trails and humanoid morphologies, establish-
ing hiking as a compelling testbed for embodied autonomy
and LEGO-H as a baseline for future humanoid research.

2. Related Work
Humanoid locomotion. Existing approaches to low-level
motor skill learning typically simplify environmental inter-
actions, abstracting terrains into static patterns at a momen-
tary scale, which neglects occlusions caused by obstacles
or dynamic environmental disruptions. Research in this do-
main has primarily focused on learning specific locomotion
skills such as walking [5, 13, 21, 32, 33], running [38, 39],
and soccer-playing behaviors [14]. These approaches of-
ten rely on highly engineered designs optimized for spe-
cific lower-body tasks. Other works employ imitation learn-
ing [20, 24, 30, 31, 41] to generate human-like behaviors
from large-scale motion datasets, but this comes at the cost
of reduced embodiment. Some frameworks attempt to push
the boundaries of robotic motor skills by exploring tasks
like parkour [9, 48], acrobatic flipping [7], or cliffside climb-
ing [47]. While impressive, these methods are often bogged
down by complex engineering, reliance on user commands
for motion planning, or lack of perceptual awareness.
Humanoid navigation. Research on this direction often
struggles to address real-time environmental constraints
while accounting for the unique mechanisms and actions of
humanoid robots. These limitations frequently lead to sub-
optimal navigation plans in complex terrains. Conventional
methods typically rely on scene mapping [8, 28] or struc-
tured world assumptions [26], which restrict adaptability
in dynamic and unstructured environments. Contact-aware
approaches [22, 23] attempt to bridge robot configurations
with environmental constraints, but they often depend on pre-
generated trajectories, limiting responsiveness. Similarly,
mapless methods [4] leverage visual inputs for navigation
but are typically constrained to basic locomotion capabilities
such as walking. Recent advancements in large language and
vision-language models have shown potential for complex
high-level planning [44], yet remain uncoupled from motor
control systems, failing to achieve autonomous perceptual
awareness and last-step feasibility required for navigating
diverse, fine-grained environments, like hiking.
Joint learning of navigation and locomotion. Integrating
navigation and locomotion into a unified framework remains
a significant challenge. In the realm of wheeled-legged
and quadruped robots, several studies [15, 19, 35, 45] have
explored paradigms that unify local navigation and loco-
motion. While these approaches provide valuable insights,

tailoring them to humanoid robots as a baseline for hiking
tasks reveals several critical gaps. First, humanoid robots
possess significantly more degrees of freedom (DoF) than
quadrupeds or wheeled-legged robots, complicating the de-
velopment of stable locomotion policies. Achieving balance
across diverse lower-body motor skills (e.g., walking, jump-
ing, and leaping etc.) within a single framework remains
an open problem. Second, the greater body height of hu-
manoid robots introduces challenges in visual perception,
expanding their field of view and capturing a broader range
of distances. This increased perceptual complexity exac-
erbates the misalignment between environmental sensing
and physical contact, further complicating decision-making,
navigation, and motor execution processes.

See Appendix for more related works on HRL and PL.

3. LEGO-H for Integrative Skill Learning

3.1. Task Definition

Drawing from human hiking paradigm [2], we consider a
humanoid robot equipped with vision and GPS. A hiking
trail is specified by start and end points (PA, PB) in GPS,
optionally with M intermediate waypoints along the trail.
We define the basic task of humanoid hiking as follows:
traversing a trail to reach the trail’s end PB with safety,
efficiency, and all-level autonomy.

The robot receives the following inputs:

1. GPS-based 2D vector Drb from robot’s current projected
2D root position PR[: 2] to end PB [: 2], which may not be
visible from start PA. This vector provides the distance
and direction of the endpoint relative to the robot.

2. GPS-based 2D vectors {Drm}Mm=1 from PR to M op-
tional intermediate waypoints. We use M =1 to study
the basic trail structure and disambiguate forks. These
points provide guidance but need not be strictly followed.

3. The onboard proprioceptive input Xpro, like joint veloci-
ties and angles, reflects the robot’s internal physical state.

4. K forward-facing depth images {Ck}Kk=1 from a head-
mounted camera. Unlike prior quadruped approaches [19,
35] assuming full local 3D information, our setup limits
vision to a frontal field, making perceptual-motor learn-
ing more realistic and challenging. Humanoids, being
taller than quadrupeds, see farther - enabling look-ahead
planning but complicating near-term action learning.

For ideal hiking, whole-body control would allow coordi-
nated use of arms and legs to maintain balance and support
denser contact points with trails. However, as a baseline
prototype for this new task – and noting that many trails
can still be traversed with leg movement alone – this study
simplifies the task by freezing humanoid’s upper-body pose,
focusing on lower-body functionality.



3.2. LEGO-H System Overview

In our setup, the robot is only given the relative position of
the endpoint. Thus, it must autonomously determine how to
traverse unknown, but locally observable trail with various
terrain changes to reach the destination safely. From a frame-
work perspective, a humanoid system must fulfill two core
requisites to succeed: 1) learn embodied path exploration
that is both target-driven and locally adaptive – the robot
must autonomously assess and adapt its local path based
on immediate sensory observations and current executable
motor skills, while maintaining alignment with the overall
goal; 2) enable emergent, context-aware, and safe motor
execution – the robot must learn a diverse set of motor skills
and execute actions that are not only safe for its body but also
feasible under local environmental constraints, like clearance
and terrain support. To this end, we propose an end-to-end,
embodied learning framework, LEGO-H (Fig. 3), short for
Let Humanoids Go Hiking.

To fulfill the first requisite, LEGO-H employs two levels
of modules within a unified policy learning pipeline (Fig. 3b),
combing a high-level navigation module (H) that encodes
trail’s latent representation and anticipates local goals, with
a low-level motor skill module (E) that learns reactive motor
policy in real time. Specifically:

1. The high-level navigation module H, implemented via
TC-ViT (Sec. 3.3), acts as a trail scout, looking ahead and
proposing local directions based on visual cues, global
goal, and motor execution. It receives the state sreal
(depth images {Ck}Kk=1, proprioception Xpro, endpoint
PB , and one middle waypoint M ), generates a latent trail
representation zuni, anticipates a sequence of N future
local navigation goals G = {gn}Nn=1, and calculates a
goal residual δg0 capturing the execution mismatch from
the previous step. Each gn ∈ [0, 2π] represents a goal
direction as a yaw angle relative to the robot’s root.

2. Then, the latent trail representation zuni, proprioception
Xpro, residual δg0 , and the next anticipated goal g1, flow
to the low-level motor skill module E to guide softly. E
plays the role of an agile trail runner, reacting in real
time to proprioceptive feedback and terrain conditions
to decide how best to execute each step. It predicts an
executable action at. Rather than strictly tracking the
sequence of local goals from H, E adapts to local terrain
and robot state to safely progress toward the endpoint.

By seamlessly leveraging visual and proprioceptive feed-
back within an RL framework, this unified pipeline reflects
HRL’s abstraction, where local goal anticipation and reactive
control jointly enable the robot to autonomously adapt local
paths within traversable regions, avoiding entrapment and
collisions in challenging trail terrains, while maintaining
steady progress toward the trail’s end.

LEGO-H achieves the second requisite by enhancing priv-

(b) Unified Hiking Policy Learning with Vision

(a) Oracle Policy Learning for Motor Skills
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Figure 3. LEGO-H framework overview. LEGO-H equips hu-
manoid robots with adaptive hiking skills by integrating navigation
H and locomotion E in a unified, end-to-end learning framework
(b). To foster the versatility of motor skills, we train the unified
policy via privileged learning from the oracle policy (a).

ileged learning scheme wrt structural rationality of actions:
1. It first trains an oracle motor skill policy πtea(a|ssim)

(Sec. 3.4) with privileged information Xpri (e.g., terrain
type, ground friction, precise state measurements) and
expert navigation goals as inputs (Fig. 3a). While vision
is not used at this stage, scandots and Xpri provide clean,
informative signals for high-quality skill acquisition.

2. Then, in the unified pipeline training, the teacher policy
is distilled into E to initialize it. Aside from basic im-
itation losses and rewards (Sec. 3.5), LEGO-H uses a
Hierarchical Latent Matching metric (Sec. 3.6) to learn
the final policy πuni(a|sreal) that balances robustness
and behavioral diversity across diverse trail terrains.

3.3. TC-ViT: Autonomous Local Goal Anticipation
The navigation module H is implemented via TC-ViT,
a variant of Temporal Information Conditioned Vision
Transformer. It serves as a central mechanism to achieve
unified policy learning with visual perception, by addressing
four critical aspects to navigation module: 1) cognize sur-
roundings with balance of short-time reactivity and final goal
alignment, adapt anticipation of local goals to local terrain
with 2) spatial precision and 3) embodied awareness, and 4)
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Figure 4. TC-ViT Architecture. Three key components: a) a
goal-orientated temporal transformer encoder for robots cognizing
surroundings with the final goal; b) a parallel process on the current
depth frame for integrating spatially precise information to reflect
the current state c) a recurrent goal adaptation mechanism that
integrates visual awareness, goal information, and proprioception.

produces representations with synchronized perception and
action (shown in Fig. 4).
1) Cognize surroundings with final goal. A common strat-
egy for environment perception assumes Markovian observa-
tions and processes adjacent depth images via methods like
3D modeling [19]/reconstruction [46], temporal features [6],
or semantic traversability [10]. However, hiking poses two
key challenges: 1) Time scale: short-term dynamics and long-
term environmental dependencies must be handled jointly. 2)
Specificity: Visual features must directly support execution
of immediate next step while aligning with final goal.

Thus, a direct solution is to integrate local perception with
a distant global goal PB , where we employ a temporal vision
transformer with goal conditioning (Fig.4a), adapted from
classic ViViT’s encoder[3]. It captures the information with
both spatial and long-range dependencies via processing
16-frame depth sequences (downsampled to 4) into spatio-
temporal tokens (from 16× 16 patches) using 6 transformer
layers with spatial and temporal attention. The final goal PB

is tiled as an additional (1,H,W ) channel (H =W =128)
and fused at tokenization. This early fusion ensures goal
awareness is preserved throughout spatio-temporal reason-
ing, yielding more task-aligned predictions. The encoder
outputs a flattened feature vector α({Ck}Kk=1, PB).

Intuitively, this part of TC-ViT serves as a trail scout
with a map in hand: it interprets what’s immediately ahead
through sequences of depth images, while constantly factor-
ing in the direction of the final destination. Embedding the
goal early - before visual abstraction — ensures the robot
always “looks” with intent, allowing it to anticipate terrain-
compatible moves that remain globally purposeful.
2) Anticipate near-future goals with spatial precision.
While aboves might be effective to support long-horizon
goal prediction in coarse, body-agnostic navigation [37], hu-
manoid hiking demands fine-grained, multi-scale decision-
making. On uneven trails with sudden obstacles (Fig. 1),
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Figure 5. Dynamic adjustments of near goal anticipation. Snap-
shots from left to right show a robot traversing mixed terrains along
a trail. TC-ViT does not provide a fixed trajectory that locomotion
module must rigidly follow. Instead, it predicts several near-future
goals (g1, g2, g3), which dynamically adapt to robot’s current state,
reflecting real-time adjustments to its navigation decisions. Bubble
size (large→ small) represents predicted local navigation direction.

precise foot placement and rapid balance adjustments are
critical - capabilities that suffer as temporal transformers ab-
stract away fine spatial structure critical for precise control.

The second component of TC-ViT (Fig. 4b) thus intro-
duces a parallel path focused on immediate perception. It
processes the current depth image Ck=t through a shallow
CNN, producing high-resolution spatial features β(Ck=t)
that capture near-field terrain details. This branch omits goal
conditioning, as its role is purely reactive.

The final representation γ combines long-range goal-
informed context α with fine-grained local perception
β via feature concatenation followed by MLPs: γ =
MLPs(concat(α,β)). Intuitively, this merges the foresight
of a trail guide - who knows where the path leads - with the
reflexes of a hiker watching their next step.
3) Adapt goals with embodied awareness. Beyond under-
standing environment, effective navigation must also account
for how motor actions and body state affect outcomes. TC-
ViT includes a third part - a recurrent goal adaptation mech-
anism (Fig. 4c) - that fuses visual features, proprioception,
and goal information to adaptively anticipate a sequence of
local goals, and produce an embodied latent representation.

Specifically, inputs including the visual representation
γ, endpoint PB , intermediate cue Drm, and propriocep-
tion Xpro are passed through a two-layer MLP and a
GRU to model temporal dependencies: zuni, δg0, G =
GRU(MLPs(γ, PB ,Drm,Xpro)). The resulting latent en-
codes perceptual context, physical embodiment. The residual
correction δg0 and near-future goals G provide soft guidance
for the locomotion module. Intuitively, this mechanism helps
the robot learn not just what it sees, but how it moves through
what it sees, adapting its local goals based on how past ac-
tions played out, and staying grounded in both vision and
bodily awareness (as shown in Fig 5).



4) Synchronize perception and control. Real-world sys-
tems operate at mismatched time scales, e.g., Unitree H1’s
depth sensing runs at 10±2 Hz with RealSense D435i, while
control executes at 50 Hz on Jetson NX. TC-ViT addresses
this latency gap with two strategies. 1. Nearest-goal forward-
ing: Only the immediate goal g1 is passed to the locomotion
module, ensuring timely response and reducing drift from
delayed decisions (see Appendix). Intuitively, this reflects
the idea that – while multiple goals are anticipated, only
the immediate one shapes action, as it reflects the step that
matters right now. 2. Latent tiling: The latent representa-
tion zuni is tiled five times per control cycle to maintain
a stable signal stream. Together, these mechanisms bridge
asynchronous modules and allow perception and action to
stay in sync despite hardware-level delays.

3.4. Oracle Policy Learning for Motor Skills
Before unifying navigation and locomotion via TC-ViT, we
pretrain an oracle locomotion policy (Fig. 3a) to acquire
diverse motor skills. The oracle takes as input proprioception
Xpro, current navigation goal, privileged state Xpri, and
latent terrain features ztea from scandots S ∈ R66×2. To
encourage upright locomotion with emergent motor behavior
rather than pre-defined modes, rewards in three aspects are
essential in this stage: 1) direction-aligned velocity tracking
rtracking, 2) soft torso height constraint rbase-height, 3) foot
airtime accumulation rair-time. See Appendix for details.

3.5. Unified Hiking Policy Learning with Vision
After training the oracle policy πtea(a|ssim), we distill
it into a unified student policy πuni(a|sreal) that jointly
learns navigation and motor control from visual input
(Fig. 3b). Specifically, TC-ViT encodes depth sequences
into latent zuni and predicts near-future goals. The tuple
(zuni, δg0 , g1) is passed to the locomotion module to com-
pute πuni(a|sreal), which outputs current action at. Both
policies are implemented as MLPs. Basic training losses
here are RL rewards (see appendix) and reconstructions for
imitation in goal, latent, and action levels from teacher stage:

Lim = w1∥ztea − zuni∥2 + w2 SmoothL1(Gtea,Guni)

+ w3 SmoothL1(atea,auni). (1)

The oracle acts as a mentor guiding student through complex
terrain. By initializing πuni via imitation and optimizing it
together with TC-ViT under RL framework, πuni learns to
align vision, planning, and control into a cohesive behavior.

3.6. Hierarchical Latent Matching Metric
Standard action imitation loss aggregates per-joint er-
rors, overlooking joint coordination. Thus, we introduce
Hierarchical Latent Matching (HLM) loss metric, which cap-
tures structural dependencies to bound the student’s action

space. We first train a masked VAE on oracle actions to
learn a latent space that encodes joint coordination. During
distillation, student policy is guided to match this latent struc-
ture, promoting physically coherent and well-coordinated
actions despite modality and representation gaps. Analogous
to feature matching in image reconstruction, this method
shifts imitation from pointwise joint matching to holistic
joint pattern matching, treating the body as a coordinated
system rather than a set of independent joints.

Specifically, during distillation, VAE is iteratively trained
on teacher actions with randomly masked joints, learning to
reconstruct full actions from partial inputs, where:

Lrec = w4LKL + w5Lself + w6Lmask (2)
LKL = KL (q(zvae|atea) ∥ N (0, I)) (3)
Lself = SmoothL1(Dec(Enc(atea)),atea) (4)
Lmask = SmoothL1(Dec(Enc(atmask)),atea) (5)

Here, wx are weighting terms, zvae is latent vector, and
atmask denotes masked teacher action. KL term follows
VAE formulation [16]. To handle joint permutation invari-
ance, we apply sine-cosine positional embeddings to each
joint. The compact latent space, regularized by the Gaus-
sian prior and enriched by masking, encourages learning of
inter-joint dependencies and structural consistency, captur-
ing coordination patterns aligned with the robot’s physical
embodiment, rather than relying on human motion priors.

Once trained, the VAE encoder defines a structured fea-
ture space for comparing teacher and student actions. We
utilize it to introduce a two-level HLM loss: full-feature
alignment and masked-subset matching.

Concretely, for each student action auni, we compute a
cosine similarity loss with the teacher action:

Lts = 1− cos_sim(Enc(atea),Enc(auni)) (6)

= 1− Enc(atea) · Enc(auni)
∥Enc(atea)∥∥Enc(auni)∥

(7)

We further apply a triplet-style consistency loss using a ran-
domly masked student action:

Ltrip = cmt(1− cos_sim(Enc(atea),Enc(aumask)))

+ cms(1− cos_sim(Enc(auni),Enc(aumask))) (8)

The combined hierarchical loss is:

Lhie = w7Lts+ w8Ltrip (9)

See Appendix for hyperparameters. As shown in Tab. 1,
without HLM, student robots can complete the task but with
frequent collisions and poor coordination. In contrast, HLM
promotes robots to exhibit more refined, collision-free move-
ments that align better with internal structural consistency.



4. Experiments

We evaluate effectiveness of LEGO-H across several dimen-
sions. First, we conduct ablations (Sec. 4.2) to assess in-
dividual components. Then, we analyze robot’s emerged
behaviors across different levels (Sec. 4.3). Finally, as a new
task, we benchmark humanoid hiking in diverse simulated
trail environments, covering LEGO-H, and other representa-
tive methodologies tailored to this task (Sec. 4.4). We detail
experimental setup on robot configurations/models/evalua-
tion metrics (Sec. 4.1). See Appendix for more details.

4.1. Experimental Settings

Robots. We use Unitree H1 [43] and G1 [42] humanoids,
chosen for their distinct differences in body scale and mecha-
nism: H1, at adult size (5.9 ft/47kg), contrasts with kid-sized
G1 (4.26 ft/35kg), with notable variations in torque density
and morphology. These inherent differences impact key
factors like visual perception range/motor stability/overall
movement complexity even within identical trails.
Implementations. Proprioception (Xpro ∈ R40): covers
lower-body joint positions, velocities, torso roll and pitch,
foot contact indicators, and previous action at−1 for both
robots. Actions (at ∈ R10): the learned policy uses position
control for joints, with positions converted to torque via a PD
controller τ = Kp(q̂ − q) +Kd( ˙̂q − q̇) with fixed gains (Kp

and Kd follow default configuration of Unitree). Training:
for both oracle and unified policy training, we use PPO [36],
supported by Dagger [34] and Actor-Critic [17] for privi-
leged learning. Rewards follow those introduced in method
section, with additional basic elements from [6, 12]. All
physics simulations perform in Isaac Gym simulator [25].
Metrics. We evaluate models based on three core criteria
with levels of granularity: goal completeness, safeness, and
efficiency. Concretely, we use 6 evaluation metrics – (1)
Goal Completeness: Success Rate (%) measuring the per-
centage of episodes where robots reach the hiking endpoint;
Trail Completion (%) indicating the portion of the trail route
a robot passed; and Traverse Rate (%) reflecting the distance
from robot’s final position (if not complete goal) to endpoint
relative to total trail length. (2) Safeness: MEV (%) as-
sessing foot-edge collisions; and TTF (seconds) evaluating
robot stability based on episode duration before a fall occurs.
(3) Efficiency: Time-to-Reach (seconds) measuring average
time required for successful episodes to reach endpoint. Un-
less specified, experiments are conducted with 512 randomly
spawned robots over 30 seconds on 5 distinct trail types,
each featuring 5 difficulty levels. Results are averaged over
5 runs to minimize random biases and verify robustness.

4.2. Ablation Study

Settings. We compare full LEGO-H with following de-
signs: (1)Oracle: trained with access to privileged info

Table 1. Ablation of LEGO-H’s main components on H1. for
best goal completeness; for most safeness; for best efficiency.

Metrics Oracle LEGO-H w TC-ViT Vanilla

Success Rate (SR) (%) ↑ 71.20± 0.72 68.40± 1.34 64.73± 2.22 42.97± 0.67
Trail Completion (TC) (%) ↑ 77.73± 0.92 52.78± 1.30 52.50± 1.52 32.01± 0.61

Traverse Rate (TR) (%) ↑ 73.60± 0.81 71.96± 2.37 72.04± 0.98 60.26± 0.94
MEV (%) ↓ 7.12± 0.92 7.84± 0.92 10.40± 1.50 9.41± 1.27
TTF (s) ↑ 7.25± 0.09 7.46± 0.17 7.00± 0.20 5.36± 0.10
T2R (s) ↓ 4.59± 0.08 4.95± 0.12 5.13± 0.12 6.50± 0.07

and expert-designed navigation goals, representing an upper-
bound performance.(2) w TC-ViT: LEGO-H trained without
Hierarchical Latent Matching (HLM) loss metric. (3)Vanilla:
LEGO-H variant where TC-ViT is replaced by a ConvGRU
to predict latent and goal, altering the navigation mechanism.
We draw key observations here. Refer to Appendix for more
detailed comparisons and analysis.
Results. Tab 1 indicates several insights. (1) TC-ViT is es-
sential for basic hiking functionality. The consistent, signifi-
cant performance advantage of w TC-ViT over Vanilla across
all metrics, except MEV, reveals the essence of balancing
the goal, physical state, and visual perception, which is cru-
cial for coordination between navigation and locomotion.(2)
Structural action behavior helps more efficient goal accom-
plishment and better stability. The absence of HLM (w
TC-ViT) results in behaviors that complete tasks but com-
promise stability, often leading to mechanical risks (worse
MEV than others). Including HLM (LEGO-H) ensures coor-
dinated joint actions that align with the robot’s physical struc-
ture, promoting both task success (SR rises from 64.73% to
68.40%) and mechanical integrity (MEV goes from 10.40%
to 7.84%, TTF increase to 7.46s), leading to more efficient
task accomplishment (T2R improves from 5.13s to 4.95s).
(3) LEGO-H rivals oracle in efficiency and safety. Com-
pared to oracle which has perfect observation conditions and
expert navigation goals, LEGO-H falls behind on success
rate and trail completion. But surprising aspects are the ef-
ficiency and safeness, where LEGO-H’s performances are
comparable to or slightly better than oracle. This stresses
again LEGO-H’s effectiveness and capacity.

4.3. Emerged Behaviors in Different Situations
We further explore the behaviors that emerge in humanoid
robots to unfold how robots autonomously adapt their motor
skills and decision-making in response to various factors.
Locomotion in diverse trail terrains. Different terrains
trigger distinct locomotion behaviors, like walking, stepping,
jumping, leaping, and leaning (Fig 6). Key observations in-
clude: (1) H1 robots typically opt for a walking gait on con-
tinuous surfaces, regardless of variations in friction, adjust-
ing their body tilt as needed to maintain balance (Fig. 6a). (2)
Irregular surfaces, like fractured or sloped terrains, prompt
gaits like stepping, jumping, or leaping, depending on slope
and gap size (Fig. 6b). (3) In tight spaces, such as cracks
between large obstacles, H1’s adapt by leaning sideways to
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Walk LeanStep Jump Leap

Figure 6. Locomotion in diverse trail terrains. Robots developed
distinct motor skills to tackle different terrains, e.g., walking on
rough surfaces/leaping across ditches/leaning away high obstacles.

Detour around Obstacle
Skip Obstacle

Figure 7. Navigation in diverse situations. Robots developed
different navigation skills, such as directly skipping a small obstacle
and detouring around a high obstacle to edge through.

Walk Down Leap Down

Figure 8. Motor behavior differences between robots. Robots
with different structures developed unique skills – H1, which is
higher and heavier, chooses to “walk down” step, while G1, which
is shorter and more lightweight, chooses to “leap down” the step.

navigate through these confined areas (Lean in Fig. 6b).
Navigation in blocked paths. Two key behaviors are evi-
dent from Fig 7: (1) When faced with tall or large obstacles,
the robots typically choose to detour, maintaining a safe
clearance from the obstacles. (2) For obstacles below hip
height, the robots initially attempt to stride or step over; if
unsuccessful, they then choose to detour. These phenomena
reveal the embodied character in high-level decisions.
Motor behavior differences between robots. As shown in
Fig 8, when encountering identical trails like transitions be-
tween platform and flat ground, H1 and G1 exhibit different
behaviors. H1 navigates down smoothly, while G1 bends its
knees to jump down. This difference highlights the impact
of physical mechanisms on emergent motor styles.

4.4. Humanoid Hiking Benchmark
Settings. Since current research does not directly support
humanoid hiking, we selected two representative quadruped
pipelines, adapting them to this task using the same input
structure and oracle policy as LEGO-H. This setup allows us
to investigate several key factors essential for effective hu-
manoid hiking. The first adapted pipeline, EP-H, represents
a modified humanoid-hiking version of EP [6]. The main

Table 2. Humanoid hiking benchmark for H1 across all trail cat-
egories. / / show best goal completeness/safeness/efficiency.

Metrics LEGO-H EP-H RMA-H RMA-B

Success Rate (%) ↑ 68.40± 1.34 28.80± 0.88 65.17± 2.05 48.11± 0.72
Trail Completion (%) ↑ 52.78± 1.30 25.98± 0.22 52.51± 1.41 41.92± 0.34

Traverse Rate (%) ↑ 71.96± 2.37 64.16± 0.48 74.61± 0.93 69.85± 1.50
MEV (%) ↓ 7.84± 0.92 12.44± 1.32 8.70± 1.55 10.74± 1.13
TTF (s) ↑ 7.46± 0.17 4.64± 0.13 6.97± 0.17 5.22± 0.03

Time-to-Reach (s) ↓ 4.95± 0.12 9.79± 0.16 4.98± 0.11 6.19± 0.05

methodological difference between EP-H and LEGO-H is
that EP-H handles visual-aware navigation and locomotion
by processing each depth frame independently, disregarding
farther depth data to avoid distributional shifts. RMA-H and
RMA-B are the adapted pipeline from RMA [18] – the for-
mer has vision inputs, and the later is blind. This pipeline
originally supports blind locomotion, and employs a frozen
oracle policy with an adapter network to map real-world
sensory data to oracle’s latent space for policy adaptation.
Results. We focus on three vital questions from the bench-
mark: 1) Is visual perception essential for integrated navi-
gation and locomotion? 2) What type of visual information
is most effective? 3) Is unified cross-level learning neces-
sary? Key findings in Tab 2 and visualizations in Appendix
revel the answers:(1) Vision is essential. Without vision,
RMA-B struggles across all metrics, highlighting the need
for visual feedback. (2) Goal-aligned, multi-scale visual
perception is critical. EP-H, which processes each depth
frame independently without continuous goal alignment, and
brute-force cutoff distance information, results in frequent
circles and fails to lock onto navigation paths. The per-
formance gap between LEGO-H and EP-H across metrics
underscores the importance of structured visual information.
(3) Unified learning is vital for adaptability. RMA-H per-
forms adequately on straight paths but fails with turns or
obstacles, showing that locomotion feedback alone is in-
sufficient for embodied-aware decision-making. A unified
learning framework supports essential cross-level interaction,
enabling adaption and effectiveness across all levels.

5. Conclusion
We propose humanoid hiking as a new testbed for advancing
research in embodied autonomy. To address the challenges
it poses, we introduce LEGO-H, a unified policy learning
framework that highlights the importance of integrative skill
development for a humanoid to autonomously accomplish
complex tasks like hiking. Experiments demonstrate effec-
tiveness of LEGO-H and also uncover promising directions
for future research, like whole-body control, long-horizon
exploration, and visual-motor coordination.
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