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Abstract

Real-world visual perception requires invariance
to diverse transformations, yet current methods
rely heavily on specialized architectures or train-
ing on predefined augmentations, limiting gener-
alization. We propose FOCAL, a test-time, data-
driven framework that achieves robust perception
by leveraging internet-scale visual priors from
foundation models. By generating and optimizing
candidate transformations toward visually typical,
“canonical” views, FOCAL enhances robustness
without retraining or architectural changes. Exper-
iments demonstrate improved robustness of CLIP
and SAM across challenging transformations, in-
cluding 2D/3D rotations, illumination shifts (con-
trast and color), and day-night variations. We also
highlight potential applications in active vision.
Our approach challenges the assumption that
transform-specific training is necessary, instead
offering a scalable path to invariance. Our code is
available at: https://github.com/sutkarsh/focal.

1. Introduction
A robot navigating a cluttered home or a self-driving car
cruising down a street must perceive objects consistently
across many physical transformations – fluctuating view-
points, orientations, lighting conditions, and more. This
capability, known as invariant visual perception, separates
fragile algorithms from robust real-world systems.

However, despite being trained on hundreds of millions
of images, even leading foundation models such as Ope-
nAI’s CLIP (Radford et al., 2021) are brittle against such
transformations (Figure 1) – CLIP misclassifies images with
unexpected viewpoint shifts, and SAM (Kirillov et al., 2023)
fails to produce the correct segmentation on unexpectedly
rotated images. One hypothesis for this brittleness is that
internet-scale training data overrepresents certain poses and
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Figure 1. Introducing a test-time approach to invariance for
complex and diverse transforms: We propose FOCAL, a gen-
eral test-time framework for achieving approximate invariance to
complex transformations at scale. Given variations in viewpoint,
illumination, environment, and rotation, FOCAL leverages founda-
tion model priors to select a visually-typical version of the input.
As depicted in the bottom, out-of-distribution inputs can lead to
incorrect predictions on CLIP (“bench”) and incorrect segmenta-
tions on SAM (not getting the whole vase) that are corrected when
running CLIP and SAM on the FOCAL canonicalized versions.
Thus, FOCAL offers a scalable, data-driven method for robust
perception across diverse transforms.

lighting most commonly encountered by humans in day-to-
day life, leaving models unprepared for atypical (or out-of-
distribution) inputs often seen in broader embodied settings
(Madan et al., 2024). This phenomenon is sometimes re-
ferred to as the photographer’s bias.

Data augmentation (DA) and equivariant networks have
thus emerged as valuable tools to improve robustness to
out-of-distribution transformations. DA trains models on
carefully designed augmentations (rotations, crops, etc.)
(Bouchacourt et al., 2021), while equivariant networks (Co-
hen & Welling, 2016) bake mathematical symmetries (e.g.,
2D rotations) into architectures. These approaches succeed
when transformations are known a priori and well-sampled

1

https://github.com/sutkarsh/focal


Test-Time Canonicalization by Foundation Models for Robust Perception

during training. However, they face inherent limitations in
open-world scenarios: DA struggles with rare classes (Zhou
et al., 2022) and distribution shifts unseen during training,
while equivariant architectures cannot handle complex real-
world transforms like 3D viewpoint shifts. Importantly, both
methods require designers to anticipate all possible transfor-
mations during training, a difficult requirement for systems
operating in diverse environments.

We instead propose Foundation-model guided
Canonicalization (FOCAL), a training-free frame-
work that reasons about transforms through test-time
optimization (Figure 1). Our key insight is that the visual
priors learned by foundation models can guide us toward
the most visually-typical view of any input, much like how
humans mentally transform objects to familiar orientations
before recognition (Shepard & Metzler, 1971). FOCAL thus
follows a “vary and rank” scheme (Figure 2): it produces
candidate transforms (e.g., novel views using a generative
model like Xiang et al. (2024)) and selects the most visually
typical instance by minimizing an energy function based on
CLIP and Stable Diffusion. These “canonicalized” views
are then passed on to downstream models.

This optimization-driven approach enables robust visual
perception across a wide range of challenging conditions,
including changes in viewpoint, lighting, and environ-
ment, without requiring additional training or architectural
changes. Unlike prior canonicalization approaches that re-
quire transform-specific training (Mondal et al., 2023), FO-
CAL works for diverse transforms and datasets. Our method
is similar to the recent test-time compute scaling work that
uses a learned ranker to pick the best among many out-
puts (Snell et al., 2024). FOCAL reframes invariance as a
search over the implicit priors encoded in foundation mod-
els, thus offering a scalable, data-driven method for robust
perception across diverse transforms.

We evaluate FOCAL on 3D-viewpoint, illumination, and
day-night changes, as well as 2D rotations. We find that FO-
CAL successfully canonicalizes these transforms, improv-
ing out-of-distribution performance of downstream founda-
tion models such as CLIP (Radford et al., 2021) on Ima-
geNet (Deng et al., 2009) scale datasets. To our knowledge,
this is a significant improvement in dataset size and transfor-
mation complexity compared to previous canonicalization
work. Remarkably, FOCAL consistently matches or out-
performs task-specific canonicalizers like PRLC (Mondal
et al., 2023) even in their trained settings, despite being a
completely test-time approach.

Contributions: (1) FOCAL: A test-time, data-driven frame-
work using the visual priors of foundation models for invari-
ance; (2) An approximate invariance method that scales to
complex transforms such as 3D viewpoint shifts, lighting
changes, and environmental variations; (3) Evaluations on

Figure 2. Foundation Model Guided Canonicalization: Our
method works in two steps: Vary and Rank. We first produce
transformed variations of the input image and then rank them
using energy functions derived from CLIP and Stable Diffusion.
The minimizer of this energy function is the most visually typical
version, which we refer to as the “canonical”. This approach is
training-free, transformation-agnostic, and highly generalizable.

modern models such as CLIP, OV-Seg, and SAM on datasets
like ImageNet, COCO, Objaverse-LVIS, and CO3D.

Our results challenge the prevailing assumption that invari-
ance requires specific training or architectures, offering a
path toward robust perception for embodied agents. By
bridging insights from human mental rotation and modern
test-time compute scaling (Zaremba et al., 2025), FOCAL
shows that test-time optimization can be used for general,
scalable, and physically robust perception.

2. Robust Perception by Minimizing
Foundation Model Energy Functions

We begin with a motivating example: a rotated image. When
presented with an upside-down photograph, humans natu-
rally mentally rotate it to understand its contents (Shepard
& Metzler, 1971). How can we automatically find such
“canonical” (or visually-typical) representations based on
the priors in foundation models?

2.1. Problem setting

We denote the input image by x ∈ X , where X is the
space of images. Images may undergo transformations t :
X → X , such as rotations. We denote the set of such
transformations (e.g., the group of image rotations) by T .

Given an image, we may want to process it using an existing
neural network (e.g., for recognition or segmentation). We
denote this operation with a function f : X → Y with
inputs x ∈ X and outputs y ∈ Y , where Y is the space of
outputs (e.g., classes or masks).

For recognition, we want the function f to be invariant to
the transformations in T , meaning that it should produce
the same output regardless of how the input is transformed.
For example, if we rotate an image, the recognition function
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Figure 3. Transformation distributions define a slice through the distribution of natural images, enabling us to use foundation
models to canonicalize. Given the complex distribution of natural data, which spans many transformations, we propose a common
solution that applies across arbitrary transformation-based slices of the distribution (left). Given a particular slice (red curve in the example
above), we simulate different versions of the input image along this slice of the distribution (e.g., color variations), using energy functions
built on CLIP (Radford et al., 2021) and Stable Diffusion (Rombach et al., 2021) models for each sample (model energies in the figure
above). We minimize the total energy to predict the canonical version (right, with the optimum shown by a star). In summary, our method
uses internet-scale priors learned by foundation models to canonicalize diverse transformations.

should still recognize the object in the image:

Invariance: f(t(x)) = f(x) ∀t ∈ T

For segmentation, we want the function to be equivariant
to the transformations in T , meaning that the output should
change predictably when the input is transformed. For ex-
ample, if we rotate an image, the segmentation mask should
also be rotated:

Equivariance: f(t(x)) = t′(f(x)) ∀t ∈ T

where t′ is the corresponding transformation in the output
space Y , like the segmentation mask rotating with the input.

We next explain how canonicalization achieves these
desiderata in the context of recent work by Kaba et al. (2022)
with simplified notation and more general transformations.

Canonicalization: Canonicalization refers to the process
of transforming an input into a fixed “canonical” version
regardless of the transformations applied. For rotations, this
might look like uprighting an image so that it is always
presented in a standard orientation.

Kaba et al. (2022) formalize this with a canonicalizer func-
tion h : X → T that maps the input to the transformation
needed to “canonicalize” it. The core idea is that the canon-
ical image h(x)(x) is the same regardless of the input’s
transform, i.e., h(t(x))(t(x)) = h(x)(x) for all t ∈ T .

Thus, for invariance, it is sufficient to apply the canonicalizer
to the input before processing it with the function f :

let x̃ : = t(x)

f(h(x)(x)) =f(h(x̃)(x̃))

Here, h(x) effectively undoes the transformation on x,
achieving invariant output.

But how do we construct such a canonicalizer h? Under
mild conditions, Kaba et al. (2022) show that if the canoni-
calizer h is defined as an energy minimizer over transforma-

tions, then it achieves the desired invariance and equivari-
ance properties. Specifically, they show that the canonical-
izer can be defined as:

h(x) = argmin
t∈T

E(t(x)) (1)

where E : X → R is a real-valued function referred to
as the “energy function”. Strikingly, this result does not
require E or f to be equivariant or invariant themselves.
Instead, the canonicalizer h emerges from the minimization
process over the energy function E.

Caveat: This framework guarantees invariance for invert-
ible transformations, but many important transformations
are non-invertible (e.g., viewpoint shifts). However, in prac-
tice, we find that generative models can still provide approx-
imate invariance for some easier cases (Figure 5).

Secondly, invariant doesn’t imply correct: The chosen
canonical can be out-of-distribution for the downstream
model, leading to low accuracy. Mondal et al. (2023) at-
tempt to fix this by training the canonicalizer on the target
dataset. We instead pick the most visually typical (likely
in-distribution) version with foundation model priors.

2.2. Key Insight: Slices of Natural Image Distribution

Building on this foundation, we make a crucial observation:
an image x and all its transformed versions t(x) ∀t ∈ T
define a slice through the natural image distribution pdata(x)
(Figure 3). Within this slice, some versions appear more
frequently in real-world data than others. We find the most
likely version with visual priors in foundation models.

If we define an energy function E ≈ − log pdata, then min-
imizing E over the transformed versions of x effectively
finds the most probable version of the image within that slice.
Denoting the ‘best’ transform t∗ = argmint∈T E(t(x)),
the canonical image x∗ = t∗(x) is likely the most visually
typical or informative version of the image. For example,
if x is a rotated image, the canonical form x∗ is likely the
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Figure 4. Foundation Model Guided Canonicalization in contin-
uous and multi-dimensional transform spaces: Given an input
image, we generate different transformed versions of the image
(candidates). Each is ranked by a combined energy function as
shown in Figure 3, with the minimum of this grid representing the
canonical form. However, brute-force search is infeasible for con-
tinuous or multi-dimensional transform spaces such as color shift.
Thus, we apply Bayesian Optimization for efficient optimization
in such spaces. Black crosses show the locations of BO guesses,
and the yellow star shows the location of the found optimum. BO
finds the optimum without using hundreds of evaluations. Thus,
combining energy functions and Bayesian optimization provides a
general approach to canonicalization.

upright version of that image. For a color-shifted image, the
canonical form is likely the version in typical lighting.

Since modern foundation models like CLIP and Stable Dif-
fusion are trained on vast datasets of natural images, they
implicitly learn visual priors about natural data. We can
therefore extract energy functions E ≈ − log pdata from
these models to guide canonicalization.

Note that in our instance, the “canonicalized” views do not
necessarily need to be exactly “upright” - the idea is simply
that we try to map all inputs to the same, optimized view
for invariance. As long as such a view is in-distribution, it
is suitable for downstream recognizers and segmenters.

Next, we formalize energy functions and describe how to
extract them from foundation models.

2.3. Energy Functions from Foundation Models

We extract energy functions from pre-trained foundation
models, which can be readily combined with each other and
with hand-designed priors.

Energy-based models: Any probability distribution Pθ(x)
for a random variable x ∈ RD can be written as:

Pθ(x) =
1

Z(θ)
e−Eθ(x)

where Z(θ) is the normalizing constant and Eθ : RD → R
is the energy function. Small values of Eθ(x) correspond to
more likely x.

CLIP Energy: Following Grathwohl et al. (2020), any clas-
sifier can be seen as an energy-based model. The classifier
energy for fθ with input x and output y is the negative logit:

Eθ(x, y) = −fθ(x)[y]

For unconditional energy, Grathwohl et al. (2020) use log-
sum-exp over all labels, but we simplify this using a combi-
nation of mean and max logits:

ECLIP(x;α, β) =
(
α ·mean−β ·max

)
c∈1,2,...,|C|

(
fθ(x)[c]

)
where α, β ∈ R are hyperparameters and fθ(x)[c] is the
class c logit. We use CLIP ViT-H-14 (Ilharco et al., 2021)
with cosine similarity of image & text embeddings as logits.

Diffusion Energy: Following Graikos et al. (2022), dif-
fusion models provide effective image priors through free
energy minimization:

Ediff(x) =
1

T

T∑
t=1

Eϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t)∥2

]
(2)

where xt =
√
ᾱtx+

√
1− ᾱtϵ is the noisy input, ϵθ is the

pre-trained diffusion model, and ᾱt =
∏t

i=1(1− βi) with
denoising schedule βt. We use SD-2-base (Rombach et al.,
2021), finding that 5− 10 steps are usually sufficient.

2.4. Foundation Model Guided Canonicalization

‘Vary’ and ‘Rank’: Our method consists of two steps: Vary,
where we produce variations of an input image, and Rank,
where we rank the variations (Figure 2). More formally, we
optimize the FOCAL energy function over transformations
of the input image x:

t∗ = argmin
t∈T

EFOCAL

(
t(x)

)
(3)

y = f(t∗(x)) (4)

where T is the set of transformations, EFOCAL is the energy
function defined below, and y is the invariant output.

Combining energy functions: We minimize the combined
energy EFOCAL

(
t(x)

)
over all transformations t ∈ T to find

the canonical version of the input image x. This is done by
solving the following optimization problem:

EFOCAL

(
t(x)

)
= γ1ECLIP(t(x)) + γ2Ediff(t(x)) (5)

where α, β, γ1, γ2 ∈ R are hyperparameters.

Intuitively, CLIP energy focuses on semantics, selecting the
image that most closely resembles a predefined category,
while SD energy acts as a general appearance-based prior.
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Figure 5. Viewpoint canonicalization improves accuracy by improving viewpoint robustness: (Left) Example renderings from
Objaverse-LVIS before (original) and after (canonicalized) applying FOCAL. The canonicalized views provide more informative
perspectives for object recognition. (Middle) Energy plot showing different elevations (y axis) and azimuths (x axis). Locations with
lower energy (darker purple) correspond with more canonical views that can be more easily classified correctly (green box). In contrast,
locations with high energy (yellow) tend to be incorrect (red box). Star denotes the optimal, selected view. (Right) Accuracy on
quality-filtered Objaverse-LVIS across different viewpoints ranked by difficulty, with easier viewpoints on the left and harder viewpoints
on the right. The finetuned CLIP model (OV-Seg) (purple line) exhibits a steep accuracy drop for difficult viewpoints, whereas FOCAL

(orange line) maintains more stable performance, achieving 50% higher accuracy for difficult views. Examples on the right depict a truck
render at difficulty percentiles ranging from 0 (easiest) to 100 (hardest). In summary, we find that FOCAL identifies more visually typical
versions of input images, enabling higher performance on bad input 3D viewpoints.

Assumptions: For invariance, we assume that the transfor-
mation is invertible. Under mild conditions used in Kaba
et al. (2022), the energy optimization produces invariant out-
puts. For high downstream accuracy, we assume: (1) there
is at least one in-distribution image in the set of transformed
images, (2) the foundation models can be used as a prior
where in-distribution images have lower energy than out-of-
distribution ones, and (3) the downstream model performs
best in-distribution. If the first two assumptions hold for a
given sample, the energy minimization scheme returns an
image that is in-distribution. If the third assumption holds,
this process is likely to result in higher accuracy.

Bayesian Optimization for Efficient Search: While ex-
haustive search can be used to minimize the energy function
in Section 2.4 for a small number of transformations (e.g.,
8 rotations around the circle), it is infeasible for continu-
ous and higher-dimensional transformations. This is critical
since many common transformations are high-dimensional:
color transformation (Figure 7) is 2D, “active vision” setting
is 6D, and combining transforms is even higher-dimension.

Fortunately, this problem can be handled by Bayesian Opti-
mization (BO) (Nogueira, 2014; Frazier, 2018) (Figure 4),
a well-established method for efficient optimization in both
low and mid-dimensional spaces. BO utilizes a probabilistic
model, such as a Gaussian Process (GP), to approximate the
objective function based on a few evaluations. We utilize
Bayesian Optimization (BO) with a Gaussian Process (GP)
using an RBF kernel and the Expected Improvement (EI)
acquisition function (Jones et al., 1998) to balance explo-
ration and exploitation. This approach balances exploring

uncertain regions with exploiting promising areas, typically
finding good solutions in 50-100 evaluations.

BO is commonly used for optimization problems like hy-
perparameter search and has been successfully applied to
high-dimensional problems such as optimization in the la-
tent space of generative models (Maus et al., 2022; Gómez-
Bombarelli et al., 2018; Castro et al., 2022; Tripp et al.,
2020). For even higher-dimensional problems, gradient-
based optimization is another potential alternative. We leave
the exploration of gradient-based methods to future work.

3. Experiments
This section outlines our experimental settings and results.
We pick classification and segmentation as standard tasks
and test FOCAL on diverse transformations (viewpoint shift,
color, contrast, day-night, active vision). We find that FO-
CAL generalizes across many different settings and even
beats PRLC (Mondal et al., 2023) on 2D rotations with their
jointly-trained classifiers. These results show the generaliz-
ability and wide applicability of FOCAL as a canonicalizer.

3.1. 3D Viewpoints

We evaluate FOCAL as a method for approximate invariance
to viewpoint transforms on Objaverse-LVIS (Deitke et al.,
2023) and CO3D (Reizenstein et al., 2021). Objaverse-LVIS
dataset contains 46K 3D assets and CO3D contains 19K
real multiview video sequences with object segmentations.

We begin by filtering datasets to ensure high-quality objects
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Figure 6. Viewpoint canonicalization improves accuracy on
CO3D. For each CO3D video, we randomly sample a frame with a
ground truth label probability below two different difficulty thresh-
olds (0.3, 0.5). (Left) We show two examples on the left of an input
image that is incorrectly classified at first but is correctly classified
as a chair after running through FOCAL. (Right) Accuracy com-
parison. FOCAL (orange) outperforms finetuned CLIP (OV-Seg)
(purple), highlighting its ability to (approximately) canonicalize
viewpoints in realistic settings.

and viewpoints. For Objaverse-LVIS, we noticed cases
of misleading and overlapping labels and thus filtered out
such objects. For CO3D, we use sequences with sufficient
variation in viewpoint quality. Given the filtered videos, we
then sample one of the poor viewpoints (i.e., ground truth
probability of < t for some threshold t) and filter out images
with blurriness or segmentation errors (Appendix B.1).

We use TRELLIS (Xiang et al., 2024) to produce view-
point variations for each input. Specifically, we render
views on the sphere at 30◦ intervals for the “vary” stage
(Appendix B.1). We rank these renders using FOCAL en-
ergy and pick the view with the minimum energy. Since
TRELLIS generates background-removed images, we use
OV-Seg (Liang et al., 2023), a version of CLIP (Radford
et al., 2021) fine-tuned on background-removed images, as
our downstream classifier.

Objaverse-LVIS: We include example renders and accuracy
plots over viewpoints in Figure 5. We find that FOCAL often
canonicalizes input images from out-of-distribution views
to canonical forms, increasing accuracy. We demonstrate
this by ranking viewpoints by ground truth classification
probability (best to worst) and computing average accuracy
per rank. Figure 5 shows that FOCAL significantly improves
classification accuracy for difficult viewpoints (12.0% to
62.0% on the worst viewpoints) and improves the overall
stability (max accuracy - min accuracy).

This result shows the generalizability of FOCAL to 3D view-
point transformations. To our knowledge, this result rep-
resents a significant step forward in invariance methods
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Figure 7. FOCAL canonicalizes illumination (color & contrast)
We evaluate FOCAL using CLIP on two different datasets (CI-
FAR100, ImageNet-1K) and transformations (color, contrast). (a)
FOCAL improves CLIP’s accuracy on color-shifted images by
9.9% on average and nearly 15% for larger shifts. (b) FOCAL

improves CLIP’s accuracy under contrast changes by 4.1% on
average and nearly 12% for larger contrast shifts. These results
highlight FOCAL’s ability to handle lighting transformations.

applied to viewpoint transformations. We include further
comparisons against test-time augmentation (TTA) and in-
teresting findings that suggest that TRELLIS (Xiang et al.,
2024) itself can canonicalize to an extent on inputs near its
training distribution in Appendix A.2.

CO3D: We then test FOCAL’s ability to improve the accu-
racy of our selected CO3D frames. We show in Fig. 6 for
both a threshold of t = 0.3 and a threshold of t = 0.5 that
FOCAL improves the accuracy of our frames by 43.8% and
26.8%, respectively. We also show example renders and
additional comparisons in the Appendix (Figure 11 and A.7).
This result further shows our capability to canonicalize over
3D viewpoints on real-world images.

3.2. Lighting (color and contrast)

We evaluate chrominance (color) and contrast transforma-
tions on CIFAR100 (Krizhevsky et al., 2010) and Ima-
geNet (Deng et al., 2009) with CLIP (Radford et al., 2021).
Unlike classic methods, FOCAL achieves invariance with-
out requiring specialized architectures trained on curated
ground truth (Hernandez-Juarez et al., 2020).

As shown in Figure 7, FOCAL improves accuracy by 9.9%
for color shifts and 4.1% for contrast shifts over vanilla
CLIP, with gains reaching 15% and 12% for extreme trans-
formations. While not surpassing supervised approaches
like (Barron & Tsai, 2017; Hernandez-Juarez et al., 2020)
(Appendix A.9), FOCAL maintains stable accuracy across
variations (details in Appendix B.2), demonstrating lighting
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Figure 8. FOCAL beats PRLC on their image classification eval-
uations: We evaluate FOCAL on 2D rotations following the setting
of Mondal et al. (2023). (a) Left plot shows classification accuracy
gains relative to rotation augmentation baseline across multiple
datasets (CIFAR10, CIFAR100, STL10) using both ResNet-50 and
ViT architectures. Each paired line represents a different evaluation
setting, with FOCAL (Ours) consistently matching or outperform-
ing PRLC in each setting. (b) We evaluate each of PRLC’s trained
canonicalizers on an unseen dataset (ImageNet-1K) and pick the
best canonicalizer for each architecture. We find that FOCAL still
beats them as PRLC’s canonicalizers struggle to generalize outside
their training setting. This showcases FOCAL’s generalizability
across datasets. In short, FOCAL outperforms trained canonicaliz-
ers of Mondal et al. (2023) on seen as well as unseen datasets.

canonicalization without specific training or architecture.

3.3. 2D Rotation (Comparison against PRLC)

Classification: We compare against PRLC (Mondal
et al., 2023) on their 2D rotation settings (C8) using
PRLC-trained ViT (Dosovitskiy et al., 2021) and PRLC-
trained ResNet50 (He et al., 2016) models across CI-
FAR10 (Krizhevsky et al., 2010), CIFAR100 (Krizhevsky
et al., 2010), and STL10 (Coates et al., 2011).

We report accuracy on upright images, rotated images (on
C8 rotations), pose accuracy (i.e., did the canonicalizer pick
the correct C8 rotation), and pose error (i.e., the average
error in degrees) (details in Appendix, Table 3, summary in
Figure 8). We find that FOCAL matches or beats PRLC’s
specially trained canonicalizers on every one of their evalu-
ated settings zero-shot (Figure 8).

We extend this setting further to CLIP and ImageNet (Deng
et al., 2009), finding that FOCAL generalizes much better to
this setting (by up to +11%) than PRLC, which struggles to
generalize beyond its training scope (Figure 8 and Table 5).

We also benchmark how our method helps in combination
with DA. We train a ResNet-32 on CIFAR10 for 100 epochs
with LR 10−3. The C8 rotated accuracy is 72% with just
DA, 72.1% with just FOCAL, and 73.2% with FOCAL+DA.

Figure 9. FOCAL can canonicalize day-night transformations.
We evaluate the CLIP energy function as we interpolate between
the day-night image pairs in the latent space of a diffusion model,
finding that FOCAL prefers day images with 91% accuracy. We
also plot the energy function (purple) and the histogram (yellow)
of the energy optimum for 5000 pairs, showing that the chosen
images are close to daytime. Thus, FOCAL can choose more
visually typical and informative daytime images in the day-night
transformation setting in the latent space of a diffusion model.

We leave a rigorous study of this setting to future work.

Segmentation: We also evaluate PRLC’s segmentation set-
ting with SAM (Kirillov et al., 2023) using the pre-trained
SAM canonicalizer supplied by the authors. Here, we find
that our method matches their pre-trained canonicalizer in
mAP (65.9) while achieving +2.1% better pose accuracy.

These results show that FOCAL not only matches PRLC’s
performance on their trained datasets without requiring any
training but also outperforms PRLC in novel settings be-
yond their original training scope. Further cross-dataset and
cross-classifier generalization results are in Appendix A.

3.4. Day-Night transformation

We apply FOCAL on day-night transformations modeled
by UrbanIR (Lin et al., 2024), a state-of-the-art relighting
model. We use their pre-trained KITTI (Geiger et al., 2012)
checkpoints and relighting code to render 2000 pairs of day-
night frames. Since it is unclear what classes should be used
for CLIP energy, we simply use 1 single class “street.” This
energy picks day images 91% of the time.

To further study FOCAL’s energy function, we create more
variations of each scene that lie between day and night im-
ages by interpolating their latent vectors in the latent space
of Stable Diffusion 2 (Rombach et al., 2021). This pro-
cess creates a restricted latent space containing variations
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Figure 10. Applying FOCAL to active vision: We optimize a 6-DoF camera pose (x, y, z, yaw, pitch, roll) in a 3D virtual environment.
We use Bayesian optimization to minimize FOCAL energy, and plot the results above along with randomly chosen poses for comparison.
We find that the camera naturally focuses on salient objects and tends to maintain upright angles, reflecting behaviors observed in simpler
settings (green underline). Although some failure cases remain (red underline), these results illustrate FOCAL ’s ability to generalize to
significantly more complex transformations and viewing conditions in a zero-shot manner.

of the scene. We plot the energy function over this space
(Figure 9). We then use FOCAL to canonicalize this trans-
form by optimizing the energy function in the latent space,
finding that the canonicals concentrate around day images.

3.5. Active vision

We also show an exploratory application of FOCAL’s energy
function to a more realistic 3D setting: optimizing camera
parameters in a virtual environment (modeled by a Gaussian
splat (Kerbl et al., 2023)). This setting models a robotic
agent navigating the scene. It has 6 degrees-of-freedom: 3
translational axes (x,y,z), and 3 rotations (yaw, pitch, roll).
The camera then moves around the virtual scene, searching
for the view that optimizes FOCAL energy.

We pick 8 scenes (Figure 10) and use the same translation
([−3, 3]) and rotation range (full rotations) for each scene.
We use ImageNet classes to compute CLIP energy and mini-
mize it using 150 iterations of BO. We also found that using
450 initial random points can help exploration but is unnec-
essary for most scenes. We hope to study the optimization
schedules more systematically in the future.

We find that this process leads the camera to focus on salient
objects in typical angles (like in our previous experiments)
in Figure 10. We note that this setting is a significantly
more complex “transformation” than classic examples like
2D rotation. Each camera pose sees objects from different
viewpoints, distances, and with varying reflections. While
this experiment is preliminary and the process is not yet
fully reliable, it shows FOCAL’s generalizability.

4. Related Work
Training-time data augmentation: Data augmentation
during training is the simplest and most popular way to
achieve invariance. Recent work, such as VIAT (Ruan
et al., 2023), ViewFool (Dong et al., 2022), and Ruan et al.
(2024), use adversarial viewpoints as augmentations during
training/fine-tuning. However, it requires fixing the transfor-
mations ahead-of-time, and thus adapting an existing model
(e.g., CLIP (Radford et al., 2021)) to new transformations
incurs expensive re-training or fine-tuning costs. Addition-
ally, the range of augmentations (e.g., rotation degrees) is
unknown and artificially chosen, which can hurt accuracy
for some classes (Bouchacourt et al., 2021; Kirichenko et al.,
2024). Furthermore, the resulting model is not as robust for
classes with fewer training examples (Zhou et al., 2022),
making this approach unfit for imbalanced datasets (i.e.,
most modern datasets like LAION-5B (Schuhmann et al.,
2022)). In contrast, test-time approaches like ours provide
reliable invariance regardless of the training dataset.

Equivariant networks: Architectures like CNNs (LeCun
et al., 1999; Fukushima, 1988) and group-equivariant net-
works (Cohen & Welling, 2016; Cohen et al., 2019; Kondor
& Trivedi, 2018; Bronstein et al., 2021) hardcode symme-
try priors. While effective for fixed groups (e.g., 2D ro-
tations) or 3D point clouds (Deng et al., 2021), they fail
for complex transformations lacking group structure (e.g.,
viewpoint changes). Our approach imposes no architectural
constraints, enabling broader applicability.

Learned invariance: Recent methods aim to learn the in-
variances from the data by learning augmentation ranges
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per transformation (Augerino (Benton et al., 2020)), per
instance (InstaAug (Miao et al., 2022)), or via normalizing
flows (Singhal et al., 2023; Allingham et al., 2024). How-
ever, they remain tied to training data and cannot adapt
post-hoc. In contrast, our method extracts invariance from
foundation models without dataset-specific training.

Learned canonicalization: Learned canonicalization has
roots in mental rotation (Shepard & Metzler, 1971; Hock
& Tromley, 1978). Tarr & Pinker (1989) drew ties between
mental rotation and invariant object recognition. These
works suggest that canonicalizing can robustly align neural
networks to the adaptable nature of the human brain.

These developments have inspired progress in deep learn-
ing architectures (Jaderberg et al., 2015; Boominathan
et al., 2016). More recently, Kaba et al. (2022) propose
a learned canonicalization (LC) approach via minimizing
a learned energy function. At test time, it minimizes this
function to canonicalize the inputs before passing them
through the downstream model, enabling better generaliza-
tion. PRLC (Mondal et al., 2023) adds a regularization
prior to align the training set distributions with the predicted
canonical for better accuracy.

However, LC and PRLC still require training specific to the
dataset and transform, and do not generalize well beyond
their trained settings (Section 3). In contrast, our approach
makes no such assumptions; instead, it leverages pre-trained
foundation models. Furthermore, we show promising results
on significantly more complex transformations.

3D robustness and pose estimation: Existing approaches
for 3D robustness pool features across multiple views (Fan
et al., 2024; Su et al., 2015; Yang & Wang, 2019; Wei et al.,
2020; 2022; Hamdi et al., 2021; Kanezaki et al., 2018),
whereas our technique only requires one view at test time.
Chen et al. (2020) learns category-level pose estimation
using analysis-by-synthesis. This approach is related to
our approach; however, it is category-specific, whereas our
model is category-agnostic. ImageNet3D (Ma et al., 2024)
annotates a large dataset of 3D objects with poses and trains
NNs for open-set pose estimation in a supervised manner.
In contrast, our method is unsupervised.

Out-of-distribution detection: Energy-based models have
previously been used for OOD detection (Hendrycks &
Gimpel, 2017; Liu et al., 2020; Lee et al., 2018; Liang et al.,
2018; Graham et al., 2023), but this capability has yet to be
harnessed for invariance. To our knowledge, this work is the
first to leverage large-scale generative models in conjunction
with Equation (1) to create provably invariant models.

5. Limitations and Future Work
FOCAL demonstrates strong performance and broad ap-
plicability across a variety of transformations, including
viewpoint, lighting, and environmental changes. FOCAL
draws inspiration from mental rotation and test-time scal-
ing, extracting priors contained in internet-scale foundation
models to perform test-time alignment to visually-typical
version. FOCAL is thus a significant step forward towards
robust perception, with two main limitations and directions
for future work that we discuss here: speeding up FOCAL
and automatically selecting the transformation.

Speeding up FOCAL. Evaluating the energy function
for many candidates is computationally expensive (Ap-
pendix A.10). Specifically, the complexity is N ×
(Ctransform + Cenergy + Cinference), where N is the number of
transforms. This limitation is similar to recent LLMs that
use test-time search for better reasoning and robustness. Fu-
ture work could explore a System-1/2 scheme where canon-
icalization is only used when necessary, enabling users to
gain the robustness benefits of FOCAL without incurring as
much of a cost in runtime efficiency. As a preliminary exper-
iment, in 2D, we were able to detect upright vs. non-upright
images with 95% accuracy by comparing the input against
+90◦ and −90◦ and thresholding the energy difference.

Selecting the Transformation. While FOCAL shows great
progress in achieving robust visual perception across a wide
variety of transformations at test-time, it remains an open
question on how to select which transformation generator(s)
to use. Future work could explore how to automatically
determine which generator(s) to use at test-time, making
FOCAL even more easily applicable to real-world settings.

6. Conclusion
FOCAL offers a test-time, scalable, data-driven strategy for
robust visual perception. FOCAL takes inspiration from
canonicalization, projecting out-of-distribution inputs to
the most visually-typical view. By leveraging the priors
learned by foundation models trained on internet-scale im-
age datasets, FOCAL’s “vary and rank” scheme enables
us to optimize for visually-typical views that are suitable
for downstream models. By challenging the prevailing as-
sumption that invariance requires dataset-specific training or
architectural compromises, FOCAL offers a new, test-time
path toward robust perception for embodied agents facing a
wide variety of transformations.
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Appendix Summary
This appendix provides extended results, analyses, and implementation details supporting the main paper. The content is
organized as follows:

• Additional Results and Figures

– 3D CO3D examples: Shows examples of canonicalized frames in CO3D (Figure 11)
– 3D Results: Additional results showing while TRELLIS can canonicalize to an extent on inputs near its training

distribution, FOCAL still outperforms it (Figure 12, Table 1, Table 2)
– 2D Classification and Pose Estimation: Demonstrates improved accuracy and pose estimation across CI-

FAR10/100/STL10 (Figure 13, Table 3)
– Segmentation Results: Matches PRLC’s COCO mAP while achieving +2.1% pose accuracy (Table 4)
– ImageNet Generalization: Outperforms PRLC by up to +11.4% on rotated inputs (Table 5)
– Cross-Dataset Analysis: Shows < 3% variance in pose error vs PRLC’s 12–18% drops (Figure 14)
– Ablations: Validates energy function design and compares against TTA (Table 6, Table 7).
– DINOv2 Contrast results: Evaluating FOCAL with DINOv2 shows similar trends to CLIP (Figure 16)
– Color Correction Results: Shows direct comparison against stronger supervised color correction baselines

(Appendix A.9)
– Computational Complexity Analysis: Discussion on FLOPs and Runtime (Table 8)

• Experimental Setup

– 3D protocols with CO3D/Objaverse-LVIS
– Color transformation formalization
– Bayesian hyperparameter optimization details

A. Additional Results and Figures
A.1. 3D CO3D Examples

In Figure 11, we show some examples of CO3D (Reizenstein et al., 2021) frames being corrected through FOCAL, comparing
the original input views that were incorrectly classified by OV-Seg (Liang et al., 2023) and their canonicalized views that are
correctly classified by OV-Seg.
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Figure 11. Viewpoint canonicalization improves accuracy by improving viewpoint robustness on CO3D: Example renderings from
filtered CO3D before (original) and after (canonicalized) applying FOCAL with an original ground-truth probability threshold of 0.3 and
0.5. The canonicalized views provide more informative perspectives for object recognition.
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Figure 12. Accuracy over GT probability. For each object in Objaverse, we take a random render and evaluate FOCAL vs. OV-Seg and a
TRELLIS baseline along bins of GT label probability. We evaluate FOCAL with 5 pretilts at intervals of 45 degrees. We find that FOCAL

still consistently outperforms the TRELLIS baseline.

Threshold OV-Seg (Finetuned CLIP) Random Rotation TRELLIS Ours

0.3 5.71% 38.8% 45.9% 49.5% (+3.6%)
0.5 28.5% 46.6% 53.4% 55.3% (+1.9%)

Table 1. Comparison of FOCAL against TRELLIS as a canonicalizer and random rotations. Accuracy is reported for each setting on
quality-filtered CO3D frames, where for each video, we randomly sample a frame with a ground truth label probability below two different
difficulty thresholds (0.3, 0.5) and filter it as described in Appendix B.1 for image and segmentation quality. While surprisingly, random
rotation and TRELLIS perform reasonably well, FOCAL outperforms both. One possible explanation is that CO3D primarly contains
horizontal orbits from above the object, limiting tilt variation in its viewpoints.

A.2. 3D Results

We also found that TRELLIS (Xiang et al., 2024) itself can be used as a canonicalizer in limited settings, where the input
images are near its training distribution. TRELLIS was trained on Objaverse (Deitke et al., 2023) views with varying
elevation and azimuth (no tilt) and implicitly uprights objects when creating the 3D assets it generates. We can then select a
particular view and stick with it everytime, creating a new point of comparison with TRELLIS. We found that 30 degrees
elevation and 150 degrees azimuth works the best.

To better understand FOCAL’s performance vs. TRELLIS (Xiang et al., 2024), we take each filtered Objaverse-LVIS (Deitke
et al., 2023) object we evaluated in Section 3 and select a random view. We then randomly tilt the image by a random 45
degree angle to ensure some distributional shift from TRELLIS’ training data. To adapt FOCAL to handle the additional
tilt axis, we perform 2D canonicalization as in Section 3 and then attempt 5 angles at 45 degree intervals centered at the
selected 2D canonical angle, and take the minimum energy viewpoint over all the examined images. Finding that a majority
of good images tend to be at elevation 30, we explore 12 azimuths at an interval of 30 degrees that this elevation.

We plot the accuracy of the three methods (plain OV-Seg (Liang et al., 2023), TRELLIS, and FOCAL) binned by the
GT probability of the input view in Figure 12. We find that our approach consistently outperforms TRELLIS at all GT
probability bins. Like Figure 5, FOCAL outperforms OV-Seg on bad viewpoints with some decrease on good viewpoints.

Next, we further analyze our results on CO3D (Reizenstein et al., 2021), including using TRELLIS (Xiang et al., 2024). We
also compare the performance against selecting a randomly rotated (in 2D) image. The results on the filtered and thresholded
data splits from Section 3 are shown in Table 1.

We find that FOCAL outperforms random rotations and TRELLIS as a canonicalizer, but random rotations and TRELLIS
still provide surprisingly strong performance. FOCAL provides a 3.6% gain over TRELLIS on the 0.3 threshold and a 1.9%
gain over TRELLIS on the 0.5 threshold. One possible explanation for this is that CO3D primarily contains horizontal orbits
from above the object, limiting variation in its viewpoints. Because of this, there is also likely less tilt variation, keeping the
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Figure 13. FOCAL beats PRLC dataset specialist canonicalizers on rotated accuracy and pose estimation. (a) We show that FOCAL

achieves better pose accuracy than PRLC on their datasets. (b) We demonstrate that FOCAL outperforms PRLC dataset specialist models
in terms of pose error. (c) As a result of our superior pose estimation, we generalize better to new models like CLIP. Dashed lines represent
oracle performance, i.e., perfectly undoing the rotation except for any loss of corner information from cropping. This result highlights
FOCAL’s strong canonicalization ability.

poses to in-distribution poses. As for random rotation, depending on the sharpness of the angle above 2D rotations may
effectively mimic moving around the orbit. Thresholding objects for hardness may also lead towards “adversarial” examples
that lie in an extreme local extrema. We leave further investigation to future work.

Finally, we compare test-time augmentation (TTA) against FOCAL on 3D viewpoints. We compare against a TTA strategy
that averages over 1, 5, and 10 random transformations out of the 60 generated TRELLIS (Xiang et al., 2024) renders. To
match FOCAL, we also blur the logits before applying TTA (Appendix B.1). We also compare FOCAL with a variant of
FOCAL that averages the logits over the top 5 (and top 10) ranked viewpoints. We evaluate on Objaverse-LVIS (Deitke
et al., 2023) and report the results in Table 2. We find that FOCAL with averaging over the top 10 ranks performs the best
on average at 84.5%, a best view performance of 93.4%, and a worst view performance of 71.3%, where best and worst
view are defined as the first and last ranks of the quality-filtered Objaverse-LVIS dataset as in Figure 5. FOCAL performs
especially well on the best view. TTA also performs well, achieving some good performance on the worst view (although
less than ours at equivalent numbers of views), perhaps owing to the nature of 3D consisting of more viable in-distribution
viewpoints than a setting like 2D rotation.

Method # Views Mean Best View Worst View

Ours 1 79.5% 93.3% 61.6%
Ours 5 84.1% 93.9% 70.4
Ours 10 84.5% 93.4% 71.3%

TTA 1 67.8% 75.3% 56.2%
TTA 5 75.2% 83.9% 62.6%
TTA 10 76.4% 85.1% 63.7%

Table 2. Comparison of FOCAL vs. TTA when averaging over multiple views. For the same number of views, our method achieves strictly
better accuracy in each category (best, worst, mean).

A.3. 2D Classification and Pose Estimation

FOCAL demonstrates superior canonicalization capabilities across three key 2D benchmarks. On CIFAR10/100 (Krizhevsky
et al., 2010) and STL10 (Coates et al., 2011), our method achieves consistent improvements over PRLC’s (Mondal et al.,
2023) dataset-specific canonicalizers: +0.3-2.3% upright accuracy gains (Table 3), +0.4-2.1% robustness to random C8
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Pretrained Network ResNet50
(PRLC-Trained)

ViT
(PRLC-Trained)

Datasets Canoncalizer Accuracy Random Rotation (C8) Accuracy Random Rotation (C8)

CIFAR10

Rotation Aug. 94.9 90.1 96.3 93.7
PRLC 96.1 95.1 95.8 94.8
Ours 96.4 (+0.3%) 95.6 (+0.5%) 97.3 (+1.5%) 96.0 (+1.2%)

Oracle 96.6 95.9 97.6 96.7

CIFAR100

Rotation Aug. 80.2 74.1 82.6 78.4
PRLC 83.1 81.8 83.9 82.2
Ours 83.7 (+0.6%) 82.2 (+0.4%) 86.2 (+2.3%) 84.3 (+2.1%)

Oracle 84.4 83.4 87.1 84.3

STL10

Rotation Aug. 98.1 95.0 97.9 94.1
PRLC 95.2 94.1 95.7 93.9
Ours 96.1 (+0.9%) 95.5 (+1.4%) 96.0 (+0.3%) 95.2 (+1.3%)

Oracle 97.4 96.7 97.3 96.4

Table 3. FOCAL beats PRLC dataset specialist canonicalizers and models on rotated accuracy. We find that FOCAL outperforms
PRLC, without any training, across all PRLC specific model and dataset pairs on both upright inputs and randomly rotated inputs. We
compare against just upright images in the Accuracy columns. Oracle refers to a system where the exact angle to upright is known, and thus
only measures the change in accuracy due to loss of information due to rotating, cropping, and re-rotating. Random Rotation (C8) applies
a random C8 transform to the input before passing it to the aligner / model. Best non-oracle rows are bolded. Rotation Augmentation
numbers taken from (Mondal et al., 2023), and the rest are reproduced using their provided code and default hyperparameters. This result
highlights that we can beat PRLC even on their best settings.

Pretrained Network SAM

Dataset Canonizalizer mAP Random Rotation (C4) (%) Pose Accuracy (%)

COCO

Naive 62.1 -
PRLC 65.9 86.8
Ours 65.9 88.9 (+2.1%)

Oracle 66.3 -

Table 4. FOCAL matches PRLC on segmentation: We first report FOCAL’s performance on mAP on COCO, PRLC without any training
(left). We then show that the C4 pose accuracy is higher than PRLC by 2.1%. This shows FOCAL’s ability to generalize to segmentation
without supervision. All numbers are reproduced using Mondal et al. (2023)’s pre-trained checkpoint.

rotations (Table 3), lower pose error and higher pose accuracy (Figure 13).

Notably, FOCAL approaches oracle performance gaps within 0.9-2.1% across all metrics, suggesting our energy minimization
framework effectively approximates ideal canonicalization despite unknown rotation angles. Our method achieves this
without any supervision or dataset/task-specific training.

A.4. Segmentation Results

FOCAL’s geometric canonicalization transfers seamlessly to segmentation tasks without segmentation-specific training. On
COCO (Lin et al., 2014), FOCAL: (1) Matches PRLC’s 65.9 mAP despite PRLC being trained specifically on segmentation
data whereas FOCAL is zero-shot; (2) Achieves 88.9% pose accuracy (+2.1% over PRLC); (3) Nears oracle mAP (66.3 vs
66.9). This demonstrates that our approach learns fundamental viewpoint normalization rather than task-specific artifacts.
The pose accuracy gains directly translate to better segmentation consistency across rotations, as evidenced by the mAP
parity despite PRLC’s segmentation-aware training (Table 4).
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ImageNet ResNet50
(Vanilla-Trained)

ViT
(Vanilla-Trained)

CLIP
(Vanilla-Trained)

Canonicalizer Accuracy Random Rot.
(C8) Accuracy Random Rot.

(C8) Accuracy Random Rot.
(C8)

None 75.2 50.1 80.4 59.6 77.1 67.0
PRLC* 63.1 59.2 63.7 60.5 72.1 69.6

Ours 66.3 (+3.2) 63.5 (+4.3) 73.6 (+9.9) 71.9 (+11.4) 75.4 (+3.3) 74.0 (+4.4)

Oracle 75.2 71.5 80.4 78.1 77.1 75.3

Table 5. FOCAL generalizes better to ImageNet and outperforms PRLC’s canonicalizers. We find that FOCAL outperforms PRLC
on ImageNet, without any training, on both upright inputs and randomly rotated inputs. We compare against just upright images in the
Accuracy columns. Oracle refers to a system where the exact angle to upright is known, and thus only measures the change in accuracy
due to loss of information due to rotating, cropping, and re-rotating. Random Rot. (C8) applies a random C8 transform to the input
before passing it to the aligner / model. Best non-oracle rows on rotated performance are bolded. For PRLC, the canonicalizers were the
best performing ones from other datasets (STL10 for both ResNet50 and ViT). Thus, they were not trained specifically for ImageNet.

A.5. ImageNet Generalization

FOCAL shows remarkable cross-dataset generalization on ImageNet (Deng et al., 2009): +11.4% rotated accuracy for
ViT (Dosovitskiy et al., 2021) vs PRLC (Mondal et al., 2023) (71.9% vs 60.5%); +4.3% absolute gain for ResNet50 (He
et al., 2016) under rotation; CLIP (Radford et al., 2021) performance improves +4.4% under rotation.

Notably, PRLC canonicalizers trained on small datasets (STL10/CIFAR) degrade significantly on ImageNet (-16.7%
ResNet50 upright accuracy vs ours), failing to generalize outside their training setting. FOCAL, however, maintains strong
performance through its dataset-agnostic energy formulation.

A.6. Cross-Dataset and Model Analysis

FOCAL ’s unified framework enables superior cross-domain transfer compared to PRLC’s (Mondal et al., 2023) specialized
canonicalizers. When transferring across datasets, PRLC suffers 12-18% drops in pose accuracy (Figure 14c), while our
method maintains < 3% variance in pose error. Transferring to CLIP (Radford et al., 2021) yields particularly strong results,
with +15% relative accuracy gains over PRLC (Figure 15). These results underscore a key advantage: by avoiding dataset-
specific training, FOCAL develops general canonicalization strategies that transfer seamlessly across both architectures
(ResNet50/ViT/CLIP) and data distributions (CIFAR/STL10/ImageNet).
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Figure 14. FOCAL generalizes better across datasets when mixing up aligners and downstream models. PRLC performance on
pose estimation drops significantly when using a canonicalizer trained from a different dataset compared to FOCAL, which applies one
technique across all settings. This result highlights the generalizability across datasets of an unsupervised approach.

A.7. Ablation Studies

Component ablations validate critical design choices in our energy formulation. Combining CLIP and diffusion energies
reduces pose error by 64% compared to CLIP alone (13.5° vs 37.1°) (Table 6), while test-time augmentation (TTA)
underperforms by 10-14% on CIFAR benchmarks (Table 7). These experiments confirm that naive augmentation cannot
substitute learned canonicalization and that multi-energy fusion provides complementary benefits.
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Figure 15. Accuracy vs. C8 angle on CLIP. Like on ResNet50, we find that using FOCAL leads to invariant predictions over angles,
outperforming PRLC. The contrast is particularly clear for CLIP on CIFAR10 and CIFAR100, where our accuracy over angle is
consistently above PRLC.

Method Pose Accuracy Avg. Pose Error (degrees)

Only CLIP 68.9% 37.1°
Only diff 82.7% 22.6°
diff+clip 89.5% 13.5°

Table 6. Ablation study on energy function components for pose estimation. The combination of diffusion (diff) and CLIP achieves the
highest accuracy and lowest pose error.

CIFAR10 CIFAR100 STL10

No uprighting 65.4 50.6 93.4
Ours 93.7 76.2 97.5
TTA 82.8 (-10.9) 61.7 (-14.5) 96.6 (-0.9)

Table 7. Comparison of CLIP’s accuracy across different datasets using No Uprighting, FOCAL, and Test-Time Augmentation (TTA). Our
method significantly outperforms TTA, especially for larger invariance ranges like C8.

A.8. Contrast Canonicalization for DINOv2

We also provide contrast results for FOCAL on DINOv2 in Figure 16 (similar to CLIP in the main paper Figure 7). It follows
the same trend, achieving significant accuracy gains on the largest transformations.
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Figure 16. Contrast results for DINOv2

A.9. Comparison against Color Correction baselines

We benchmark our method on the RCC dataset and compare it against Barron & Tsai (2017) and the gray world method. We
search for the two log-chrominance values in the range [−0.7,−0.3], and used both classifier and diffusion energies with
the default values for classifier energy, and a coefficient of −10 for diffusion energy, with the diffusion energy evaluated on
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a single step t = 50. We used BO to optimize the color using 10 random initial points and 50 BO iterations. Our method
only produces visually typical (in-distribution) images, not necessarily the most color-neutral version, and thus, performs
poorly on this test compared to baselines designed to achieve high color accuracy on this task (Figure 17):. Specifically, we
achieve a median angular error of 6.4◦ compared to Barron & Tsai (2017)’s 1.3◦, though we do beat gray-world’s 9.97◦.
Our method is nowhere near the specialized state-of-the-art methods on this task, but ours is a more general algorithm
designed to improve invariance. We leave it to future work to improve the base performance of FOCAL against supervised
color approaches.

Original Image Ours Ground Truth

Figure 17. Example image of color correction from the RCC Dataset. Our method (center) produces an image with typical lighting, which
is not necessarily the same as completely neutral white colors (right).

A.10. Computational Complexity Analysis

While our method primarily focuses on improving generalization through equivariant learning, we provide a detailed analysis
of its computational costs. The overall complexity can be decomposed as:

Naive Cost = Cinference

TTA Cost = N × Cinference

Our Cost = N × (Ctransform + Cenergy + Cinference)

where N represents the number of evaluated transformations, Ctransform denotes transformation cost, Cevaluation encompasses
CLIP and diffusion forward passes, and Cinference is the final prediction cost. In principle, inference only has to be done
once (after uprighting), so the Cinference does not need to be multiplied by N . We use the current cost as an upper bound to
compare the cost more easily against TTA. We also assume that system-1/2 methods to skip unnecessary canonicalization
are not being used. This setting represents the worst-case scenario for our method from computational cost perspective.

Example calculation For 2D rotation with N = 8 orientations and K = 5 diffusion steps, and CLIP as classifier:

Standard inference : 1× (CLIP)
TTA : 8× (Rotation + CLIP)

Our method : 8× (Rotation + CLIP + 5× Diffusion)

Assuming image rotation uses negligible FLOPs, we get: 1× for naive, ≈ 8× for TTA, ≈ 56× for ours.

Latency reduction through parallel inference Despite increased FLOPs, our method is parallelizable since the energy
functions can be evaluated independently on different points, and even different diffusion steps can be evaluated in parallel
(for energy computation only). Thus, the theoretical latency under parallelism is only:

Theoretical Latency (parallel) = max (Classifier,Diffusion step,CLIP)

FLOPs and runtimes for our experiments Here, we detail the FLOPs and runtime costs for key experimental settings
used in this paper. We use the DeepSpeed profiler and note the FLOPs, total cost, and runtime/latency (unoptimized). All
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experiments were done on an RTX 2080Ti GPU except 3D viewpoint, which was done on an RTX 6000 Ada Generation
GPU. FLOPs for 3D are omitted due to compatibility issues with DeepSpeed and TRELLIS. 45% of the average 3D runtime
was spent generating the 3D asset in TRELLIS.

Table 8. Per-Experiment approximate FLOP Costs and Runtime latency (unoptimized)

Experiment #Transforms
(N)

Diffusion
Steps

Baseline
FLOPs (T)

TTA
FLOPs (T)

FOCAL
FLOPs (T)

Runtime
(s/it)

2D Rotation (C10/C100/IN) 8 0 0.33 2.6 2.6 0.47
2D Rotation (COCO) 4 10 0.33 1.29 19.1 0.94
Color (C100/IN) 35 0 0.33 11.6 11.6 5.2
Color (RCC) 60 1 0.33 19.8 46.2 10.3
Contrast (C100/IN) 12 0 0.33 3.97 3.97 1.22
Day-Night 2 0 - - 0.66 0.16
Active vision 500 0 - - 49.5 238.1
3D Viewpoint 61 5 - - - 13.3

B. Experimental Setup
B.1. Experimental Setup - 3D

Dataset Details: The Objaverse-LVIS (Deitke et al., 2023) dataset contains 46207 3D assets labeled with one of 1156
categories from LVIS (Gupta et al., 2019). From these 3D assets, multiview images can then be generated with software such
as Blender (Blender Foundation, 2022). The CO3D dataset contains a collection of 18619 real multiview video sequences of
51 MS-COCO (Lin et al., 2014) objects with each video recording the object in a circular orbit, along with segmentation
masks for each frame.

Rendering: For Objaverse-LVIS (Deitke et al., 2023), we generate our base input renders at viewpoints in the upper viewing
hemisphere. We sample at an interval of 30 degrees and a radius of 2.2. We offset the views by 10 degrees to avoid perfectly
aligned views that eliminate critical 3D context of the object. This leads to 36 renders in total.

For Objaverse-LVIS (Deitke et al., 2023) in the “vary” stage we sample 60 viewpoints. These are at every 30 degrees of ele-
vation and azimuth, for a grid of [−60,−30, 0, 30, 60]× [−180,−150,−120,−90,−60,−30, 0, 30, 60, 90, 120, 150, 180].
For CO3D (Reizenstein et al., 2021), we sample the 12 viewpoints at the elevation 30 and azimuths of
[−180,−150,−120,−90,−60,−30, 0, 30, 60, 90, 120, 150, 180].

Filtering: Due to Objaverse-LVIS’ (Deitke et al., 2023) label quality concerns primarily stemming from the existence of
multiple similar labels (e.g., orange vs. mandarin orange vs. tangerine, ring vs. wedding ring, etc.) we filter out any objects
that: 1) had fewer than 10% of its renders classified correctly or 2) lacked a clear winner class that was predicted at least
33% more than the 2nd most common class. This results in a test set of 14789 objects.

For Objaverse-LVIS in Fig. 5, we evaluate FOCAL on the 0th, 12th, 24th, and 35th ranked viewpoints, which corresponds to
the 0th, 33rd, 66th, and 100th percentile.

For CO3D (Reizenstein et al., 2021), we focus on videos which contain sufficient viewpoint variation to induce errors in
classification. Specifically, we filter for videos that have at least one frame with a probability greater than 80% for the
ground truth class and at least one frame with a probability less than a threshold t. We run with two thresholds: t = 0.3 and
t = 0.5. We then pick a random frame of probability less than t for each video. For t = 0.3, this gives us 11157 frames, and
for t = 0.5, this gives us 12186 frames.

With these frames, we then filter out the frames for segmentation and image quality. To do this, we crop the objects
based on their segmentation mask’s bounding box, multiply the size of the crop by 1.2, and resize the crop to 518 x 518
(following the preprocessing of TRELLIS (Xiang et al., 2024). We then pass the crop and the cropped segmentation to
gpt-4o-mini-2025-04-16 (OpenAI, 2025) with the following prompt:
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Prompt

You are evaluating an image (left) and its segmentation overlay (right)
Criteria:
1) There is a single, clearly visible object that fits completely in the frame.
2) The main object should not have any parts outside the frame. There should be a clear margin on all sides.
3) The main object should be easily distinguishable and not blurry.
4) The segmentation mask should accurately outline the main object.

If all criteria are met, respond ‘PASS’ plus the main object. Otherwise, respond ‘FAIL’ plus a short reason.
Your answer must start with ‘PASS’ or ‘FAIL’ and use fewer than 10 words.

This filtering results in 1504 frames (13.5%) for t = 0.3, and 1865 frames (15.3%) for t = 0.5.

Calculating Energy: For both Objaverse (Deitke et al., 2023) and CO3D (Reizenstein et al., 2021), we use α = 1, β = 0.5
following the 2D experiments (B.3). We also used the diffusion energy (steps 500 to 1000 with stride 100) with a factor of 5.
We also normalized the CLIP (Radford et al., 2021) energy with a normalizing prompt of “a photo of an object on a bright
white backdrop.” and a temperature of 0.5 to adjust CLIP to the background removed images used in these experiments.

B.2. Experimental Setup – Color and Contrast

We define the color shift transformation using the popular von Kries model (KRIES, 1905) where an illuminant vector with
the RGB values L = [LR,LG,LB] ∈ R3 is multiplied element-wise with every pixel in the image. We then generate this
illuminant vector L by sampling in the log-chrominance space (Barron & Tsai, 2017). Specifically,

Lu, Lv ∼ U [−1, 1] (6)

[LR, LG, LB ] = [
exp(−Lu)

z
,
1

z
,
exp(−Lv)

z
] (7)

where z =
√
exp(−Lu)2 + exp(−L2

v) + 1 is a normalizing constant and Lu, Lv are the log-chroma values sampled from
the uniform distribution with range [−1, 1]. Intuitively, the log-chroma space defines the R/G and B/G ratios in log-space.
A range of [−1, 1] corresponds roughly to a 7× change in the ratio between the minimum and maximum points of the range.

We define the contrast as a gamma transformation xγ , where the log of the gamma is sampled randomly at uniform
log(γ) ∼ U [−2, 2]. This means gamma lies between e−2 and e2.

We optimize the energy functions using Bayesian optimization. For initialization, we use random as well as a grid of initial
samples. Color uses a uniform grid of 3 × 3, 6 random points, and 20 iterations. Contrast uses 3 grid points, 4 random
points, and 5 iterations.

B.3. Hyperparameters for the energy functions

For experiments on ImageNet, CIFAR10, CIFAR100, and STL10, we only used the classification energy for computational
efficiency. We used α = 1, β = 0.5 for all these settings. In practice, a wide range of β works well. The same is true for
active vision experiments, but the figures shown in the paper used β = 0.33.

For segmentation, we used the diffusion energy (steps 50 to 150 with stride 10) with a factor of 0.67 along with CLIP energy
factor of 0.54 and β = 0.2.

All these hyperparameters were found using Bayesian Optimization with the same kernel and acquisition function mentioned
in Section 2.4 and performed using the Bayesian Optimization Toolbox (Nogueira, 2014) for 300 time steps. Each energy
hyperparameter was tuned on a small training or validation set by recording logits and finding the combination of energy
functions that maximized accuracy.
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