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Abstract

Existing building recognition methods, exemplified by
BRAILS, utilize supervised learning to extract information
from satellite and street-view images for classification and
segmentation. However, each task module requires human-
annotated data, hindering the scalability and robustness
to regional variations and annotation imbalances. In re-
sponse, we propose a new zero-shot workflow for build-
ing attribute extraction that utilizes large-scale vision and
language models to mitigate reliance on external annota-
tions. The proposed workflow contains two key compo-
nents: image-level captioning and segment-level captioning
for the building images based on the vocabularies pertinent
to structural and civil engineering. These two components
generate descriptive captions by computing feature repre-
sentations of the image and the vocabularies, and facilitat-
ing a semantic match between the visual and textual repre-
sentations. Consequently, our framework offers a promis-
ing avenue to enhance AI-driven captioning for building at-
tribute extraction in the structural and civil engineering do-
mains, ultimately reducing reliance on human annotations
while bolstering performance and adaptability.

1. Introduction

As a consequence of global warming, many natural haz-
ards, such as earthquakes, hurricanes, floods, and typhoons,
increase in intensity and have a destructive impact on many
residential areas. To understand the impact and prepare
for the potential damage caused by such hazards, the re-
searchers in the field of natural hazards engineering and lo-
cal and state agencies gather information about the build-
ings and other infrastructures in the areas to be studied [6].
Serving as a pivotal undertaking for building inventory gen-
eration and management, the task of building attribute ex-
traction strives to provide information containing the num-
ber of floors, roof types, year of construction, etc.

Previous works [15,38] have utilized deep learning mod-

Figure 1. The existing method vs. ours for building attribute
extraction. (a) The existing prominent method BRAILS obtains
building attributes from the satellite and street view images via
classification and segmentation modules which require human an-
notation data. (b) We propose a new zero-shot workflow to ex-
tract building attributes based on large-scale models. Our work-
flow uses a single module to directly extract building attributes for
different tasks without human annotations and shows more robust-
ness to novel domains.

els to obtain building information from satellite and street
view images acquired from mapping agencies. [44,45] pro-
pose to learn a model capable of identifying seismically
vulnerable buildings from the street view images. These
works have been collected into a software package, known
as BRAILS (Building Recognition using AI at Large Scale)



[39], which extracts building attributes such as roof shape,
building height, and foundation type from satellite and
street view images by employing supervised learning in
the vision domain. BRAILS provides an interface allow-
ing building inventories to be automatically generated for a
region. Moreover, it contains multiple modules and each
module is formulated as either image classification, ob-
ject detection, or semantic segmentation. An example of
BRAILS is shown in Fig. 1a.

Nonetheless, the modules in BRAILS require data manu-
ally annotated by humans, particularly for the segmentation
task which requires pixel-level annotations. These anno-
tations could be obtained from different data providers or
agencies, and detailed image-level descriptions are most of-
ten collected manually through a crowd-sourcing website.
Nevertheless, there are several challenges that hinder the
scalability and robustness of BRAILS.

1. The amount of human-generated annotations is inad-
equate to account for the large regional variations in
visual and geometrical appearances, and these annota-
tions are also prone to subjective errors.

2. Models trained on the available data struggle to effec-
tively generalize to novel buildings in unseen regions.

3. The distribution of annotations across known classes
may be biased or skewed, resulting in severe imbalance
between minority classes of handful instances and ma-
jority classes of hundreds of instances, presenting a
hard imbalanced classification problem.

All these factors lead to poor model generalization perfor-
mance across regions.

We propose a zero-shot workflow (Fig. 1b) that tackles
these challenges by utilizing large-scale models, CLIP [31]
and SAM [23], which are trained on extensive and diverse
datasets and can be readily adapted to downstream tasks.

• CLIP is a large-scale model that associates images
with text through contrastive learning. It has the ca-
pacity to generate captions for novel images.

• SAM is a large-scale image segmentation model
trained on many high-resolution images along with
their annotated segmentation masks. It can provide
high-quality segmentation boundaries in novel images.

Our zero-shot workflow integrates the strengths of CLIP
and SAM, extracting attributes of interest to structure
and civil engineers without relying on human annotations.
These building attributes extracted from our workflow can
be used to complete the building inventory as shown in
Fig. 2.

Our workflow has two components: image-level cap-
tioning designed for image classification, and segment-level
captioning for image segmentation.

Figure 2. Our workflow directly infers building attributes on street
view and satellite images. These building attributes can be used to
complete the building inventory.

• In the image-level captioning component, captions are
generated for building images using a list of text terms
of interest to structural and civil engineers. CLIP com-
putes feature vectors from both the image and the text
terms and selects the term most similar to the image.

• The segment-level captioning component operates in
a similar manner but begins by sending the building
image to SAM first in order to obtain image segments.
Then all these image segments are fed into CLIP to
obtain a proper segment-level captioning.

Our work makes three major contributions. 1) We are
the first to utilize large-scale vision and language models
for building attribute extraction in the structural and civil
engineering domains. 2) Our workflow facilitates zero-shot
image classification and segmentation, applicable to any
vocabulary of interest for building description, without re-
liance on human annotations. 3) Our workflow harnesses
the generalization capacity of CLIP for image captioning
on building images, thereby enabling a robust and versatile
building attribute extraction.

2. Related Work
Learning-based building recognition. Building informa-
tion modeling [37] in structural and civil engineering has
been employed to manage buildings and infrastructures, as
well as to minimize the impact of natural hazards like hur-
ricanes, floods, and tornadoes [6]. Prior studies [15, 38]
have employed deep learning models to grasp building in-
formation from satellite and street view images sourced
from map agencies. [45] and [44] introduce a model that
learns to identify seismically vulnerable buildings from
street view images. [11] leverages visual cues like cars in



Figure 3. Our zero-shot workflow, leveraging large-scale vision and language models CLIP and SAM, effectively extracts building attributes
for different tasks using the same module without human-annotated data, In contrast, traditional methods require annotated data to train
multiple modules for different tasks. Our method contains two components: image-level captioning for image segmentation, and segment-
level captioning for image segmentation for different tasks. Given a task requested by users, we first build a curated list of task-related
vocabularies about building attributes. For the task processed by image-level captioning, CLIP generates a vocabulary from an image
as input. For the task processed by segment-level captioning, CLIP predicts a vocabulary for each image segment produced by SAM.
Benefiting from large-scale models, the proposed workflow shows strong generalization to the novel domain.

street view images to estimate neighborhood demograph-
ics. BRAILS [39] extracts building information from satel-
lite and street view images using supervised learning. Each
module in BRAILS is formulated as either an image clas-
sification, object detection, or semantic segmentation task.
Nonetheless, the modules within BRAILS require human-
annotated data, hampering the scalability and generalization
of the framework.

Our approach tackles these challenges by making use of
large-scale models already trained extensively on diverse
data. It extracts building attributes without the need for ex-
ternal annotations.

Transferable features from pre-training. Feature presen-
tations derived from models that were pre-trained on the
ImageNet [8] dataset has been widely used [3, 17, 27, 32].
These representations have demonstrated the ability to gen-
eralize well [43] across various tasks such as object detec-
tion [17, 26, 32] and semantic segmentation [3, 27, 47]. Al-
ternatively, self-supervised learning methods which involve
some pretext tasks [9,10,28], contrastive learning [4,5,16],
clustering [1], or bootstrapping [13], have been employed
to generate versatile feature representations. Some ap-
proaches involve learning visual representation through nat-
ural language [12, 30, 34, 35], where pairs of images and
corresponding captions are utilized. Recent advances such

as CLIP [31] and ALIGN [21] have employed contrastive
learning on extensive curated sets of image-text pairs, show-
casing the pre-trained feature representations with remark-
able zero-shot transfer capability. Specifically, the pre-
trained CLIP model has been successfully used in style ma-
nipulation [29], semantic segmentation [48], panoptic seg-
mentation [41], and image captioning [19].

We propose to extend the use of CLIP to the field of
structural and civil engineering. By harnessing the trans-
ferable feature representations from CLIP, our approach
achieves robust and accurate building attribute extraction
across various residential areas and regions.

Zero-shot learning in visual tasks. Most deep learn-
ing models are confined to concepts learned during train-
ing. Zero-shot learning [40] aims to discern novel con-
cepts from data never seen during training. [46] intro-
duces a framework for learning image and text embeddings
in a joint space. [22] converts a text embedding into se-
mantic features which are taken as guidance for segmenta-
tion. [14, 20, 24] apply a generative model to produce the
semantic features of unseen classes.

We tap into the broad visual and text knowledge CLIP
and SAM have to robustly extract building attribute descrip-
tions from images without any further training.



Figure 4. Our workflow utilizes the generalized image captioning
of CLIP for zero-shot classification and zero-shot segmentation.
The CLIP predicts the vocabulary by measuring cosine similarity
between the textual embedding and visual embedding.

3. Zero-Shot Building Attribute Extraction

Our zero-shot workflow for building attribute extraction
(Fig. 3) uses pre-trained large-scale vision and language
models, CLIP and SAM, to achieve robust and versatile im-
age understanding performance without needing any human
annotations. It has two components: image-level captioning
developed for image classification, and segment-level cap-
tioning for image segmentation.

3.1. Large-scale Models: CLIP and SAM

As a large-scale vision and language model pre-trained
on extensive sets of image-text pairs, CLIP [31] comprises
an image encoder denoted as Ψ and a text encoder denoted
as Φ. These components are trained together to map input
images and texts into a common representation space. The
training objective of CLIP is centered on contrastive learn-
ing, taking the correct image-text pairs as positive samples
while treating the mismatched pairs as negative samples.

SAM [23] is a large-scale vision model pre-trained with
more than 1 billion masks on 11 million images for im-
age segmentation. This pre-training provides SAM with a
deep understanding of various objects and scenes and strong
zero-shot generalization. SAM supports multiple types of
prompts such as points, boxes, and texts, and is capable
of segmenting any object in an image given with certain
prompts.

Given an image or an image region segmented by SAM,
our method queries CLIP with a list of captions that pertain
to a task in the fields of structural and civil engineering and
then selects the most matching caption. This strategy allows
us to extract various building attributes with a single model
and strong robustness to image variations, whereas BRAILS
would need one model for one task and suffer a performance
drop when test images do not look like training images.

3.2. Our Zero-shot Workflow

Our initial step involves obtaining the relevant vo-
cabularies based on user-provided requests. Suppose we
possess a collection of tasks pertinent to structural and civil
engineering areas. Users can choose specific tasks, such as
the roof shape of the building or the semantic parsing of the
facade. Upon receiving the selected tasks, we evaluate their
suitability for employment in the zero-shot classification
task or the zero-shot segmentation task. Following this,
we apply the proposed zero-shot workflow to derive the
building attributes associated with these chosen tasks.

Zero-shot classification. Given a street view image I ∈
RH×W×3, we input it into a pre-trained image encoder Ψ
to derive its image embedding E = Ψ(I) ∈ R1×L, where
L is the size of the image embedding. Let T represent a
task from the users. We also have a group of task-specific
categories {V1, · · · ,VNt

} relevant to structural and civil en-
gineering, where Vi represents the textual vocabulary of the
i-th category and Nt is the number of categories in the task
T . Each of these categories is integrated into the prompt
and sent into a pre-trained text encoder Φ to acquire the
corresponding text embedding FVi = Φ(Vi) ∈ R1×L. Both
the image encoder and text encoder are derived from the
CLIP model. Then we obtain a score vector Si by comput-
ing the similarity between the image embedding E and the
text embedding FVi indicated by

Si = sim(E,FVi), (1)

where sim(E,FVi) represents the cosine similarity, com-
puted by the dot product between l2-normalized E and FVi ,
i.e., sim(E,FVi) = E⊤FVi/∥E∥∥FVi∥. On this basis, we
identify the most suitable category index for I, denoted by
Pimg(I), with the highest score in S by

Pimg(I) = argmax
i

Si. (2)

Zero-shot segmentation. We take advantage of SAM for
segmenting residential objects including roofs, fence, doors,
windows, and facades. Let {C1, · · · , CNc} denote the cate-
gories for the residential objects, where Ck represents the
textual vocabulary of the k-th category and Nc is the num-
ber of categories. We take a street view image I as in-
put to SAM, which in turn produces category-agnostic non-
overlapped binary masks M = {Mj | Mj ∈ BH×W }Nj=1,
where N indicates the number of the masks. Next, we need
to assign these binary masks with the corresponding seman-
tic categories. Specifically, we design a zero-shot semantic
segmentation workflow using the strong image captioning
capacity of CLIP. Given a binary mask Mj , a masked image
IMj is obtained by element-wise multiplication presented
by

IMj = Mj ⊙ I. (3)



Figure 5. The framework pipeline of BRAILS offers a standardized approach to construct realistic databases of building inventories.

Subsequently, IMj is fed into the image encoder Ψ to pro-
duce the masked image embedding EMj = Ψ(IMj ). Si-
multaneously, each of the categories is incorporated into the
prompt and sent into the pre-trained text encoder Φ to get
the embedding FCk = Φ(Ck). With the masked image em-
bedding EMj and the category embedding FCk , a similarity
score Rj is computed by measuring the similarity between
EMj and FCk using

Rj,k = sim(EMj ,FCk), (4)

where sim is defined in the same way as in Eq. 1. Our zero-
shot segmentation outputs a segmentation map Pseg(I) ∈
RH×W computed by

Pseg(I)
(h,w) = argmax

k

{
Rj,k | M(h,w)

j = 1
}
, (5)

where Pseg(I)
(h,w) is the predicted category index at the

pixel position (h,w). Note that M(h,w)
j = 1 means that we

take the binary mask Mj that shows 1 at the pixel position
(h,w).

4. Experiments
Our work begins by explaining how BRAILS extracts

building attributes from building inventory databases. We
then present a variety of tasks, including determining the
number of floors, classifying roof types, identifying the year
of construction, and parsing facades. BRAILS employs a
random split for its training and validation datasets, eval-
uating on the validation set. Therefore, it presents excel-
lent performance on the validation set but shows decline on
the novel domain. Our approach, on the other hand, uses
a single module to extract building attributes for various
tasks without the need for human-labeled data. We collect

our own data as a novel domain and demonstrate that our
method generalizes better to new domains.

4.1. BRAILS Framework

BRAILS [2, 7] offers a standardized approach to con-
structing realistic databases of building inventories, facili-
tating the creation of building information models at a re-
gional scale. The framework of BRAILS is composed of
multiple stages illustrated in Fig. 5.

Collecting regional-scale building information often re-
quires the utilization of multiple resources. These resources
encompass images, point clouds, property tax records,
crowd-sourced maps, etc. These resources may be owned
by different entities and stored in diverse formats. The data
fusion process in Fig. 5 aims to create fused building in-
formation data that surpasses the original data in terms of
informativeness and comprehensiveness.

The data collection module in the data fusion involves
the integration of multiple building information datasets to
yield information that is more consistent, precise, and prac-
tical than what any single source can provide. The out-
come of data collection still lacks building attribute infor-
mation due to data scarcity. For instance, crowd-sourced
maps often lack completeness, particularly in rural areas,
while they tend to be more comprehensive in densely urban-
ized regions and areas targeted for humanitarian mapping
interventions. Similarly, administrative databases contain-
ing property tax assessment records often exhibit missing
entries. This deficiency is a common issue across nearly
all data sources. To handle these issues, the BRAILS
framework applies the building attribute extraction module
(Sec. 4.2) based on the initial database to predict the absent
building attributes and effectively fill in the missing values.

The initial building inventory generated by the data fu-



Figure 6. BRAILS requires a supervised object detection network
to detect the number of floors, whereas our zero-shot workflow is
capable of making direct inferences on the input images without
any fine-tuning.

Table 1. BRAILS presents superior scores on the roof type classifi-
cation task. Note that the BRAILS’s scores are essentially training
accuracy due to a lack of split over the training and the validation
set. Our score is approaching BRAILS on the flat type.

Accuracy (%) # Images BRAILS Ours Our Gain
Gable type 8449 99.2 2.0 -97.2

Hip type 8451 99.4 47.8 -51.6
Flat type 8447 99.6 98.1 -1.5

Micro-Average 25347 99.4 49.2 -50.2
Macro-Average 25347 99.4 49.2 -50.2

sion process might still remain incomplete. For exam-
ple, occlusions caused by trees or cars can impact predic-
tions related to building attributes, such as the number of
floors. This occlusion can subsequently lower the precision
of predictions obtained from the building attribute extrac-
tion model. Therefore, a data enhancement module is im-
plemented to address these incomplete predictions, aiming
to make valuable contributions toward achieving a compre-
hensive final building inventory.

4.2. Building Attribute Extraction

We assume the preliminary collection of indexing infor-
mation including building addresses, coordinates, year of
construction, and structural style was established. With the
indexing information in hand, it becomes feasible to utilize
the Google Maps API for retrieving satellite and street-view
images corresponding to each respective building.

The existing BRAILS framework comprises multiple
modules to extract building attributes (absent in the origi-
nal database) from these images. These modules leverage
deep learning architectures and are designed for the image
classification task and the semantic segmentation task, re-
fined through supervised learning.

However, the BRAILS method for building attribute ex-
traction has two main limitations. First, it requires human
annotation for all tasks, and these annotations can be ex-

Figure 7. The common roof types and example satellite images for
these types.

pensive and time-consuming. Second, the performance of
the models in BRAILS is evaluated on validation datasets
that are similar to the training set. However, these models’
generalization is not carefully studied. The ability of these
models to generalize to new and unseen data from different
geographical locations depends on how similar the build-
ing inventory for these locations is to the data used to train
the BRAILS models. Generalization is a complex topic that
has been actively researched recently. In this work, we pro-
pose a new zero-shot workflow that addresses these chal-
lenges by using large-scale models that are trained with self-
supervised techniques on a variety of datasets and can be
adapted to a wide range of downstream tasks.

4.3. Roof Type Classification

Dataset. We present the three primary categories of roof
types commonly used globally: flat, gabled, and hipped
(Fig. 7). The whole dataset collected in BRAILS contains
6, 000 labeled satellite images with 2, 000 images for each
of the three roof types. The dataset is randomly split into
the training and validation set.
Baseline. To identify the roof types of every building in
the region, BRAILS adopts an image classification network
with a ResNet-50 [18] backbone. Different from the roof
type classification module in BRAILS, our workflow treats
this task as a zero-shot classification task and does not re-
quire pre-training on these training data.
Results. Table 1 shows results on different roof types:
gable, hip, and flat types. Note that due to the lack of
train-test split information, the results from BRAILS in Ta-
ble 1 represent the training accuracy. On average for roof
type classification, BRAILS presents 99.4% of accuracy
whereas our method indicates a performance of 49.2%. Our
score is approaching BRAILS on the flat type. There are
two reasons for this performance gap. First, BRAILS uti-
lizes a supervised image classification model and encoun-
ters a small domain gap between the training and validation
set. In contrast, our method is a zero-shot workflow that



Table 2. The scores of BRAILS and ours for the year built classifi-
cation are computed using BRAILS’ own validation set. BRAILS
presents superior performance because it adopts supervised train-
ing with numerous human-annotated data, whereas our method re-
quires neither human annotations nor any fine-tuning.

Year range # Images BRAILS Ours Our Gain
Pre 1969 30198 62.0 38.7 -23.3

1970 - 1979 10485 11.6 0.8 -10.8
1980 - 1989 20519 10.8 12.8 +2.0
1990 - 1999 13537 8.3 46.3 +38.0
2000 - 2009 19178 14.0 0.1 -13.9

Post 2010 5944 1.6 0.0 -1.6
Micro-Average 99861 26.1 20.7 -5.4
Macro-Average 99861 18.1 16.4 -1.7

does not require any pre-training on annotated data. Sec-
ond, our workflow utilizes the image captioning ability of
CLIP which is less generalized to satellite images.

4.4. Year Built Classification

Dataset. The objective of the year built classification
task involves categorizing buildings into various groups,
each representing a distinct range of construction years.
The dataset devised for year built classification consists of
56, 660 annotated street-view images and has a random split
for training and validation set. We consider 6 distinct ranges
of year built constructions: before 1969 (Pre 1970), 1970-
1979, 1980-1989, 1990-1999, 2000-2009, and after 2010
(Post 2010). We compare ours against BRAILS on the
BRAILS’ own validation set for the year built classification
task.
Baseline. In the BRAILS framework, this task is consid-
ered by using an image classification network with ResNet-
50 [18] as the backbone. In contrast, our approach adopts
a zero-shot classification method, omitting any need for su-
pervised learning with the training data.
Results. In Table 2, on average for the year built classifica-
tion, the BRAILS method presents an accuracy of 26.1%,
while our method shows 20.7%. This performance gap re-
flects that the BRAILS is trained in such annotated data
with a random training and testing split and is not affected
by the domain gap between the training and validation set.
Our proposed zero-shot workflow requiring neither annota-
tions nor training already gets close to BRAILS’ supervised
learning method on the year-built classification task.

4.5. Facade Parsing

Dataset & Task. Building facade parsing needs to segment
the building facade from a street view image into multiple
semantic categories, such as the roof, windows, doors, and
facades. This can be used to extract more detailed building
attributes and contribute to a complete building inventory.
The existing BRAILS method for facade parsing requires

Table 3. Our method is compared with existing open-vocabulary
segmentation methods OVSeg and ODISE on facade parsing task.
The mIoU (%) performance is evaluated on the validation set of
BRAILS.

mIoU (%) Roof Door Window Facade Mean
OVSeg [25] 50.9 66.4 79.1 38.8 57.3
ODISE [42] 53.1 64.1 83.0 44.7 60.2

Ours 55.6 67.9 85.5 48.6 61.5

Table 4. The scores of BRAILS and ours for detecting the number
of floors are evaluated on BRAILS’ own validation set. BRAILS
shows superior performance because it adopts supervised training
and encounters few domain gaps with the validation set, whereas
our method requires neither human annotation nor additional fine-
tuning.

Accuracy (%) # Images BRAILS Ours Our Gain
One-story 2393 88.5 80.8 -7.7
Two-story 580 56.4 57.8 +1.4

Three-story 16 56.3 0.0 -56.3
Micro-Average 2989 82.0 75.9 - 6.1
Macro-Average 2989 67.0 46.2 -20.8

pixel-wise annotations from humans, which can be costly
and time-consuming.
Baseline. We provide an ablation study of our zero-
shot segmentation on the dataset in BRAILS for the fa-
cade parsing task. We choose recent state-of-the-art open-
vocabulary semantic segmentation methods OVSeg [25]
and ODISE [42] as our baseline models. OVSeg requires
large amounts of annotated data and requires fine-tuning
over CLIP model, and ODISE involves a training guided
by the text-to-image diffusion UNet [33].
Results. Table 3 shows the comparison results of ours
with the baseline models OVSeg and ODISE. Our method
presents a mIoU (mean intersection over union) of 61.5
which is the highest among all the baseline methods that
require annotated data or extra guidance. This is due to the
strong image segment capability from SAM model in our
zero-shot segmentation. It indicates that we apply zero-shot
segmentation to achieve facade parsing without requiring
annotated data or additional fine-tuning. Moreover, it al-
lows us to segment images that have never been seen be-
fore, even if the building images are from different styles or
regions.

4.6. # Floors
Dataset. The dataset collected in BRAILS comprises
60, 000 street view images sourced from various counties in
New Jersey in the United States, excluding Atlantic County.
These data are then partitioned into three subsets: a training
set, a validation set, and a testing set, randomly distributed
in proportions of 80%, 15%, and 5% of the total data, re-
spectively.
Baseline. Within the BRAILS framework, an object de-



Figure 8. The exemplary images of the three-story houses from BRAILS’ validation set where our method completely failed.

Table 5. BRAILS suffers from a clear performance drop due to
the domain gap from the novel domain, while our method presents
a robust performance on the novel domain data for detecting the
number of floors.

Accuracy (%) # Images BRAILS Ours Our Gain
One-story 210 70.7 77.6 +6.9
Two-story 198 55.2 74.0 +18.8

Three-story 37 33.3 50.0 +16.7
Micro-Average 445 66.5 76.1 +9.6
Macro-Average 445 53.07 67.2 +14.13

tection network based on EfficientDet-D4 architecture [36]
is employed to identify visible floors in the street-view im-
ages. In contrast, our workflow tackles this task as a zero-
shot classification problem and we eliminate the need for
any preliminary training on the training set as shown in
Fig. 6.
Results. According to Table 4, on BRAILS’ own validation
set, the average accuracy of BRAILS is 82.0% while the ac-
curacy of our method is 75.9%. The difference in accuracy
between the two methods is due to the fact that the BRAILS
method is a supervised object detection model trained on
multiple data with annotated bounding boxes. In contrast,
our method is a zero-shot workflow that does not require
any training or human annotations. We completely failed
on three-story houses in Table 4. The reasons are threefold:
1) there are only a few images for the three-story house; 2)
some images contain multiple houses; 3) the third stories
are usually very small. We present the exemplary images
for these failing cases in Fig. 8.
Generalization. We further evaluate the generalization
of the BRAILS method and ours over novel domains. As
BRAILS takes data that mostly comes from the cities on
the West Coast of the U.S. for training, it is reasonable
that BRAILS shows good performance in these regions.
We postulate that there exists domain gap between West

Coast and East Coast images. Therefore, we select some
image data from the cities on the East Coast as a novel
domain. Specifically, we collect street view images from
Houston, Texas and randomly select 460 images as the
novel domain for testing. The results of the BRAILS
method and our method on the novel domain are shown in
Table 5. Our method presents an average accuracy of 76.1%
and BRAILS shows 66.5% on the data from the novel
domain. This result confirms that BRAILS suffers from a
generalization gap due to regional variations in building
appearances. Our proposed zero-shot workflow provides a
more robust, promising baseline to novel domains without
model supervision or prompt tuning.

5. Conclusion
In this paper, we proposed a new zero-shot workflow for

building attribute extraction in the structural and civil engi-
neering domains. Our workflow utilizes large-scale vision
and language models, CLIP and SAM, to generate captions
for buildings from satellite and street-view images. This al-
lows us to extract building attributes without relying on hu-
man annotations. Our workflow has several advantages over
existing methods. First, it is scalable and robust to regional
variations in visual and geometrical appearances. Second,
it can generalize to novel buildings in unseen regions. We
evaluated our workflow on the datasets of building images
with the task of zero-shot image classification and zero-shot
segmentation. Our results demonstrate the effectiveness of
our approach for building attribute extraction. In the future,
we plan to take a more advanced way of utilizing large-scale
models and turn our zero-shot workflow into a specific ex-
pert model in structural and civil engineering areas.
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