
Unsupervised Feature Learning with Emergent Data-Driven Prototypicality

Yunhui Guo1 Youren Zhang2 Yubei Chen3 Stella X. Yu2,4

1The University of Texas at Dallas 2University of Michigan 3UC Davis 4UC Berkeley

Abstract

Given a set of images, our goal is to map each image to a
point in a feature space such that, not only point proximity
indicates visual similarity, but where it is located directly en-
codes how prototypical the image is according to the dataset.

Our key insight is to perform unsupervised feature learn-
ing in hyperbolic instead of Euclidean space, where the
distance between points still reflects image similarity, yet
we gain additional capacity for representing prototypicality
with the location of the point: The closer it is to the origin,
the more prototypical it is. The latter property is simply
emergent from optimizing the metric learning objective: The
image similar to many training instances is best placed at
the center of corresponding points in Euclidean space, but
closer to the origin in hyperbolic space.

We propose an unsupervised feature learning algorithm
in Hyperbolic space with sphere pACKing. HACK first gen-
erates uniformly packed particles in the Poincaré ball of
hyperbolic space and then assigns each image uniquely to a
particle. With our feature mapper simply trained to spread
out training instances in hyperbolic space, we observe that
images move closer to the origin with congealing - a warping
process that aligns all the images and makes them appear
more common and similar to each other, validating our idea
of unsupervised prototypicality discovery. We demonstrate
that our data-driven prototypicality provides an easy and
superior unsupervised instance selection to reduce sample
complexity, increase model generalization with atypical in-
stances and robustness with typical ones.

1. Introduction

Not all instances are created equal. For example, the MNIST
dataset of handwritten digits contain almost 6,000 samples
of 2’s; some are close to textbook versions that we are taught
to follow, whereas others have idiosyncratic cursive styles,
varying in proportions and stroke weights (Fig. 1). Given
such a set of natural data, we are interested in dataset sum-
marization and organization such that we can automatically
discover which instances are more representative and which
ones are anomalies. In other words, we aim to computation-

MNIST 2’s (samples) =⇒ our image embedding

Figure 1. Given a dataset (left), we aim to learn an image fea-
ture that encodes not only visual similarity between instances but
also data-driven prototypicality (right). Additionally, the angular
arrangement of the features can naturally serve as a measure of
diversity. Our feature encoder (in 2D hyperbolic space) is learned
without any labels. We can then learn a decoder to map each point
in the feature space back to an image. The right plot visualizes
images located at the origin and those moving away in different
directions, automatically revealing that 2’s with loops are most
common and the whole dataset can be grasped as the cursive style
systematically varies.

ally rationalize graded membership [8, 36] of a category in a
purely data-driven manner, putting each instance on a feature
map that reflects not only their prototypicality in a particular
dataset but also their visual similarity with each other.

Such unsupervised feature learning is useful for not only
data organization, but those discovered representative in-
stances or prototypes can be used for interpretable machine
learning [4], curriculum learning [3], and learning better
decision boundaries [5]. Prototypes also allow us to classify
with as few as or even one example [31].

If the image feature is given, it is relatively easy to find
prototypes: we just need to identify density peaks of the
feature distribution of the image set. Otherwise, discover-
ing prototypical instances without supervision is difficult:
There is no universal definition or simple metric to assess
the prototypicality of the examples.

One way to address this problem is to examine the gradi-
ent magnitude [5]. However, this approach is shown to have
a high variance which results from different training setups
[5]. Some methods address this problem using adversarial

Figure 2. Existing self-supervised feature learning methods focus
on visual similarity only in Euclidean space, whereas our unsuper-
vised feature learning method embeds images in hyperbolic space
which automatically encodes prototypicality with respect to the
origin: Images are organized hierarchically, with typical images at
the center and atypical ones near the boundary of the Poincaré ball.

robustness [5, 39]: Prototypical examples should be more
adversarially robust. However, selecting these examples is
dependent on the adversarial method and the metric used in
the adversarial attack. Several methods exist but they are
either based on heuristics or lack a proper justification [5].

Naturally, given a feature space, prototypical examples
can be identified as density peaks. However, prototypicality
varies with the feature. We propose an unsupervised feature
learning method in hyperbolic space, which, unlike the shift-
invariant Euclidean space, naturally embeds a continuous
version of hierarchical trees rooted at the origin of the space.

Hyperbolic space is non-Euclidean space with constant
non-negative curvature [1]. Different from Euclidean space,
hyperbolic space can represent hierarchical relations with
low distortion. Poincaré ball model is one of the most com-
monly used models for hyperbolic space [35]. One notable
property of Poincaré ball model is that the distance to the
origin grows exponentially as we move towards the bound-
ary. Thus, points located in the center of the ball are close
to all the other points while the points located close to the
boundary are infinitely far away from other points. With
unsupervised learning in hyperbolic space, we can learn
features that capture both visual similarity and hierarchical
proximity among instances.

Our key insight is that a typical image is similar (closest)
to more nearby instances than atypical ones, and such an im-
age would be at the center of the neighbourhood in Euclidean
space but the parent/root node in a tree in hyperbolic space,
closer to the origin. We develop a new learning procedure
that first places all the target locations evenly in the Poincaré
ball to reflect the desire of mapping uniformity [43], and
then we optimize which images should be mapped to which

target locations in a batch-wise Hungarian matching man-
ner, where those similar to most instances naturally moving
closer to the origin.

Our work makes the following contributions. 1) We pro-
pose the first unsupervised feature learning method to learn
features which capture visual similarity with distance be-
tween features and prototypicalitywith the distance to the
origin. 2) We develop a new learning paradigm that sits be-
tween supervised learning (with known targets) and unsuper-
vised metric learning (with unknown targets and constrained
metric distances). We want to map images to known tar-
gets uniformly packed and maximally distant in hyperbolic
space, but we learn to optimize the specific image to target
assignment. 3) We validate our joint feature learning and
data prototypicality discovery on congealing [31], where the
consensus is that images after congealing are perceived to be
more typical images. 4) We demonstrate two practical usages
of data-driven prototypicality: Prototypical and atypical ex-
amples are shown to reduce sample complexity for learning
and increase the robustness of the model respectively.

2. Related Work
Prototypicality. The study of prototypical examples in ma-
chine learning has a long history. In Zhang [47], the au-
thors select typical instances based on the fact that typical
instances should be representative of the cluster. In Kim
et al. [22], prototypical examples are defined as the exam-
ples that have maximum mean discrepancy within the data.
Li et al. [27] propose to discover prototypical examples
by architectural modifications: project the dataset onto a
low-dimensional manifold and use a prototype layer to mini-
mize the distance between inputs and the prototypes on the
manifold. The robustness to adversarial attacks is also used
as a criterion for prototypicality [39]. In Carlini et al. [5],
the authors propose multiple metrics for prototypicality dis-
covery. For example, the features of prototypical examples
should be consistent across different training setups. How-
ever, these metrics usually depend heavily on the training
setups and hyperparameters. The idea of prototypicality is
also extensively studied in meta-learning for one-shot or
few-shot classification [38]. No existing works address the
prototypicality discovery problem in a data-driven fashion.
Our proposed HACK naturally exploits hyperbolic space to
organize the images based on prototypicality.
Unsupervised Learning in Hyperbolic Space. Learning
features in hyperbolic space have shown to be useful for
many machine learning problems [11, 34]. One useful
property is that hierarchical relations can be embedded
in hyperbolic space with low distortion [34]. Wrapped
normal distribution, which is a generalized version of the
normal distribution for modeling the distribution of points
in hyperbolic space [33], is used as the latent space for
constructing hyperbolic variational autoencoders (VAEs)

Figure 3. Congealed images are more typical than the original
images. First row: sampled original images. Second row: the
corresponding congealed images.

[23]. Poincaré VAEs is constructed in Mathieu et al. [30]
with a similar idea to Nagano et al. [33] by replacing the
standard normal distribution with hyperbolic normal distri-
bution. Unsupervised 3D segmentation [20] and instance
segmentation [44] are conducted in hyperbolic space via
hierarchical hyperbolic triplet loss. CO-SNE [15] is recently
proposed to visualize high-dimensional hyperbolic features
in a two-dimensional hyperbolic space. Although hyperbolic
distance facilitates the learning of hierarchical structure,
how to leverage hyperbolic space for unsupervised pro-
totypicality discovery is not explored in the current literature.

3. Sample Hierarchy
Sample Hierarchy VS. Class Hierarchy. While most of
the existing works in hierarchical image classification focus
on using label hierarchy [9, 14], there also exists a natu-
ral hierarchy among different samples. In Khrulkov et al.
[21], the authors conducted an experiment to measure the δ-
hyperbolicity of the various image datasets and showed that
common image datasets such as CIFAR10 and CUB exhibit
natural hierarchical structure among the samples. Amongst a
collection of images representing digit 1, suppose x is used
for representing an image with a digit ‘1’ that is upright, x′

is used for representing an image with a digit 1 that leaning
left and x′′ is used for representing an image with a digit
‘1’ that leaning right. Given a metric d(·, ·), if we assume
that d(x′′,x′) ≈ d(x′′,x)+d(x′,x), in this context, we can
naturally view the sample x as the root, and consider the
other samples as its children in an underlying tree.

Compared with class hierarchy which can be extracted
based on the pre-defined label relations, sample hierarchy
is much harder to construct due to the lack of ground truth.
Once a sample hierarchy is established, there are currently no
existing methods available for verifying the accuracy of the
hierarchy. Additionally, just like with class hierarchies, there
may be ambiguities when constructing a sample hierarchy
since multiple samples could potentially serve as the root.
Building Sample Hierarchy from Density Peaks. Given
existing features {f(vi)} obtained by applying a feature ex-
tractor for each instance vi, prototypical examples can be
found by examining the density peaks via techniques from

density estimation. For example, the K-nearest neighbor
density (K-NN) estimation [10] is defined as pknn(vi, k) =
k
n

1
Ad·Dd(vi,vk(i))

, where d is the feature dimension, Ad =

πd/2/Γ(d/2 + 1), Γ(x) is the Gamma function and k(i) is
the kth nearest neighbor of example vi. The nearest neigh-
bors can be found by computing the distance between the
features. Therefore, the process of constructing sample hier-
archy through density estimation can be conceptualized as
a two-step procedure involving: 1) feature learning and 2)
detecting density peaks.

In the density estimation approach outlined above, the
level of prototypicality depends on the learned features. Vary-
ing training setups can induce diverse feature spaces, result-
ing in differing conclusions on prototypicality. Nevertheless,
prototypicality is an inherent attribute of the dataset and
should remain consistent across various features. The aim
of this paper is to extract features that intrinsically showcase
the hierarchical organization of the samples. Specifically,
by examining the feature alone within the feature space, we
should be able to identify the example’s prototypicality.
Construct a Sample Hierarchy from Congealing. To de-
termine whether the feature truly captures prototypicality, it
is necessary to identify which sample is the prototype. We
ground our concept of prototypicality based on congealing
[31]. In particular, we define prototypical examples in the
pixel space by examining the distance of the images to the av-
erage image in the corresponding class. Our idea is based on
a traditional computer vision technique called image align-
ment [40] that aims to find correspondences across images.
During congealing [31], a set of images are transformed to
be jointly aligned by minimizing the joint pixel-wise en-
tropies. The congealed images are more prototypical: they
are better aligned with the average image. Thus, we have
a simple way to transform an atypical example into a typ-
ical example (see Figure 3). This is useful since given an
unlabeled image dataset the typicality of the examples is
unknown, congealing examples can be naturally served as
examples with known typicality and be used as a validation
for the effectiveness of our method.

4. Unsupervised Hyperbolic Feature Learning
4.1. Poincaré Ball Model for Hyperbolic Space

Euclidean space has a curvature of zero and a hyperbolic
space is a Riemannian manifold with constant negative cur-
vature.. There are several isometrically equivalent models
for visualizing hyperbolic space with Euclidean representa-
tion. The Poincaré ball model is the commonly used one in
hyperbolic representation learning [35]. The n-dimensional
Poincaré ball model is defined as (Bn, gx), where Bn =
{x ∈ Rn : ∥x∥ < 1} and gx = (γx)

2In is the Riemannian
metric tensor. γx = 2

1−∥x∥2 is the conformal factor and In
is the Euclidean metric tensor.

a) Supervised classification b) Our unsupervised feature learning c) Metric feature learning
with fixed known targets with fixed but unknown targets with unknown targets

Figure 4. The proposed HACK has a predefined geometrical arrangement and allows the images to be freely assigned to any particle.
a) Standard supervised learning has predefined targets. The image is only allowed to be assigned to the corresponding target. b) HACK
packs particles uniformly in hyperbolic space to create initial seeds for the organization. The images are assigned to the particles based on
their prototypicality and semantic similarities. c) Standard unsupervised learning has no predefined targets and images are clustered based
on their semantic similarities.

Hyperbolic Distance. Given two points u ∈ Bn and v ∈
Bn, the hyperbolic distance is defined as,

dBn(u,v) = arcosh

(
1 + 2

∥u− v∥2

(1− ∥u∥2)(1− ∥v∥2)

)
(1)

where arcosh is the inverse hyperbolic cosine function and
∥·∥ is the usual Euclidean norm.

Hyperbolic distance has the unique property that it grows
exponentially as we move towards the boundary of the
Poincaré ball. In particular, the points on the circle repre-
sent points in infinity. Hyperbolic space is naturally suitable
for embedding hierarchical structure [35, 37] and can be
regarded as a continuous representation of trees [6]. The
hyperbolic distance between samples implicitly reflects their
hierarchical relation. Thus, by embedding images in hyper-
bolic space we can naturally organize images based on their
semantic similarity and prototypicality.

4.2. Build Instance Hierarchy in Hyperbolic Space

Hyperbolic space is naturally suitable for embedding tree
structure. However, in order to leverage hyperbolic space
to build a sample hierarchy in an unsupervised manner, a
suitable objective function is still missing. There are two
challenges in designing the objective function. First, the
underlying tree structure of the samples is unknown. Sec-
ond, how to perform feature learning such that hierarchy
can naturally emerge is unclear. In this paper, we propose
Hyperbolic space with sphere pACKing, also called HACK,
to address the two challenges.

To address the first challenge, instead of creating a pre-
defined tree structure that might not faithfully represent the
genuine hierarchical organization, we leverage sphere pack-
ing in hyperbolic space for building a skeleton for placing the
samples. We specify where the particles should be located
ahead of training with uniform packing, which by design are

maximally evenly spread out in hyperbolic space. The uni-
formly distributed particles guide feature learning to achieve
maximum instance discrimination [45] while enabling us to
extract a tree structure from the samples.

To address the second challenge, HACK figures out which
instance should be mapped to which target through bipartite
graph matching as a global optimization procedure. During
training, HACK minimizes the total hyperbolic distances be-
tween the mapped image point (in the feature space) and the
target, those that are more typical naturally emerge closer to
the origin of Poincaré ball. HACK differs from the existing
learning methods in several aspects (Figure 4). Different
from supervised learning, HACK allows the image to be as-
signed to any target (particle). This enables the exploration
of the natural organization of the data. Different from un-
supervised learning method, HACK specifies a predefined
geometrical organization which encourages the correspond-
ing structure to be emerged from the dataset.

4.3. Sphere Packing in Hyperbolic Space

Given n particles, our goal is to pack the particles into a
two-dimensional hyperbolic space as densely as possible.
We derive a simple repulsion loss function to encourage
the particles to be equally distant from each other. The
loss is derived via the following steps. First, we need to
determine the radius of the Poincaré ball used for packing.
We use a curvature of 1.0 so the radius of the Poincaré ball
is 1.0. The whole Poincaré ball cannot be used for packing
since the volume is infinite. We use r < 1 to denote the
actual radius used for packing. Thus, our goal is to pack
n particles in a compact subspace of Poincaré ball. Then,
the Euclidean radius r is further converted into hyperbolic
radius rB. Let s = 1√

c
, where c is the curvature. The

relation between r and rB is rB = s log s+r
s−r . Next, the

total hyperbolic area AB of a Poincaré ball of radius rB can

Figure 5. HACK conducts unsupervised learning in hyperbolic
space with sphere packing. The images are mapped to particles
by minimizing the total hyperbolic distance. HACK learns features
that can capture both visual similarities and prototypicality.

Algorithm 1 HACK: Unsupervised Learning in Hyper-
bolic Space. ised Learning in Hyperbolic Space.
Require: # of images: n ≥ 0. Radius for packing:

r < 1. An encoder with parameters θ: fθ
1: Generate uniformly distributed particles in hyper-

bolic space by minimizing the repulsion loss in Equa-
tion 2

2: Given {(x1, s1), (x2, s2), ..., (xb, sb)}, optimize fθ
by minimizing the total hyperbolic distance via Hun-
garian algorithm.

be computed as AB = 4πs2 sinh2(rB2s), where sinh is the
hyperbolic sine function. Finally, the area per point An can
be easily computed as AB

n , where n is the total number of
particles. Given An, the radius per point can be computed

as rn = 2s sinh−1(
√

An

4πs2). We use the following loss to
generate uniform packing in hyperbolic space. Given two
particles i and j, the repulsion loss V is defined as,

V (i, j) = { 1

[2rn −max(0, 2rn − dB(i, j))]k
− 1

(2rn)k
} · C(k)

(2)

where C(k) = (2rn)
k+1

k and k is a hyperparameter. Intu-
itively, if the particle i and the particle j are within 2rn, the
repulsion loss is positive. Minimizing the repulsion loss
would push the particles i and j away. If the repulsion is
zero, this indicates all the particles are equally distant. Also
the repulsion loss grows significantly when two particles
become close. We also adopt the following boundary loss to
prevent the particles from escaping the ball,

B(i; r) = max(0, normi − r + margin) (3)

where normi is the ℓ2 norm of the representation of the
particle i. Figure 4 b) shows an example of the generated
particles that are uniformly packed in hyperbolic space.

4.4. Hyperbolic Instance Assignment

HACK learns the features by optimizing the assignments of
the images to particles (Figure 5). The assignment should be
one-to-one, i.e., each image is assigned to one particle and
each particle is allowed to be associated with one image. We
cast the instance assignment problem as a bipartite matching
problem [12] and solve it with Hungarian algorithm [32].

Initially, we randomly assign the particles to the images,
thus there is a random one-to-one correspondence between
the images to the particles (not optimized). Given a batch
of samples {(x1, s1), (x2, s2), ..., (xB , sB)}, where xi is an
image and si is the corresponding particle, and an encoder
fθ, we generate the hyperbolic feature for each image xi

as fθ(xi) ∈ B2, where B2 is a two-dimensional Poincaré
ball. For a given hyperbolic feature fθ(x), with fixed particle

locations, the distance between the hyperbolic feature and
the particles signifies the hierarchical level of the associated
sample. Thus, to determine the hierarchical levels for all
samples within the hierarchy, we must establish a one-to-one
mapping between all the samples and the particles. This
can be cast as the following bipartite matching problem in
hyperbolic space,

ℓ(θ, π) =

B∑
i=1

dBn(fθ(xi), sπ(fθ(xi))) (4)

where π : fθ(x) → N is a projection function which projects
hyperbolic features to a particle index. Minimizing ℓ(θ, π)
with respect to π is a combinatorial optimization problem,
which can hardly be optimized with θ using gradient-based
algorithms. Thus, we adopt a joint optimization strategy
which optimizes θ and π alternatively. In each batch, we first
leverage the Hungarian algorithm [32] to find the optimal
matching π∗ based on the current hyperbolic features. Then
we minimize Eq. 4 with respect to θ based on the current
assignment π∗. This process is repeated for a certain number
of epochs until convergence is achieved. On the other hand,
the feature encoder can serve as an image prior for assigning
similar images to nearby particles [41].

The Hungarian algorithm [32] has a complexity of O(x3),
where x is the number of items. As we perform the particle
assignment in the batch level, the time and memory com-
plexity is tolerable. Also, the one-to-one correspondence
between the images and particles is always maintained dur-
ing training. After training, based on the assigned particle,
the level of the sample in the hierarchy can be easily retrieved.
The details of HACK are shown in Algorithm 1.

5. Experiments
We design several experiments to show the effectiveness of
HACK for the semantic and hierarchical organization. First,
we first construct a dataset with known hierarchical structure
using the congealing algorithm [31]. Then, we apply HACK
to datasets with unknown hierarchical structure to organize
the samples based on the semantic and prototypical structure.

Finally, we show that the prototypical structure can be used
to reduce sample complexity and increase model robustness.
Datasets. We first construct a dataset called Congealed
MNIST. To verify the efficacy of HACK for unsupervised
prototypicality discovery, we need a benchmark with known
prototypical examples. However, currently there is no stan-
dard benchmark for this purpose. To construct the bench-
mark, we use the congealing algorithm from Miller et al. [31]
to align the images in each class of MNIST [25]. The con-
gealing algorithm is initially used for one-shot classification.
During congealing, the images are brought into correspon-
dence with each other jointly. The congealed images are
more prototypical: they are better aligned with the average
image. The synthetic data is generated by replacing 500 orig-
inal images with the corresponding congealed images. In
the Appendix, we show the results of changing the number
of replaced original images. We expect HACK to discover
the congealed images and place them in the center of the
Poincaré ball. We also aim to discover the prototypical exam-
ples from each class of the standard MNIST dataset [25] and
CIFAR10 [24]. CIFAR10 consists of 60000 from 10 object
categories ranging from airplane to truck. CIFAR10 is more
challenging than MNIST since it has larger intra-class varia-
tions. Moreover, to better visualize how HACK arranges the
samples according to their prototypicality, we run HACK on
10k US Adult Faces [2] (hereafter referred to as USA10kF),
which contains 10,168 natural face photographs.
Baselines. We consider several existing metrics proposed in
Carlini et al. [5] for prototypicality discovery, the details can
be found in the Appendix.
• Holdout Retraining [5]: We consider the Holdout Retrain-

ing proposed in Carlini et al. [5]. The idea is that the
distance of features of prototypical examples obtained
from models trained on different datasets should be close.

• Model Confidence [5]: Intuitively, the model should be
confident in prototypical examples. Thus, it is natural to
use the confidence of the model prediction as the criterion
for prototypicality.

• UHML [46]: UHML is an unsupervised hyperbolic learn-
ing method that aims to discover the natural hierarchies
of data by taking advantage of hyperbolic metric learning
and hierarchical clustering.

Implementation Details. We implement HACK in PyTorch
and the code will be made public. To generate uniform parti-
cles, we first randomly initialize the particles and then run
the training for 1000 epochs with a 0.01 learning rate to min-
imize the repulsion loss and boundary loss. The curvature
of the Poincaré ball is 1.0 and the r is 0.76 which is used
to alleviate the numerical issues [16]. The hyperparame-
ter k is 1.55 which is shown to generate uniform particles
well. For the assignment, we use a LeNet [26] for MNIST, a
ResNet20 [17] for CIFAR10, and a ResNet18 for USA10kF
as the encoder. We apply HACK to each class separately.

Figure 6. Hyperbolic space can capture the prototypicality
inherently. The error bar of each point is given by the variance
of density within the corresponding portion, and the width of the
shaded band indicates the number of features within the portion.

a) b)

Figure 7. Congealed images are located in the center of the
Poincaré ball. a) Red dots denote congealed images and cyan
dots denote original images. b) Typical images are in the center
and atypical images are close to the boundary. Images are also
clustered together based on visual similarity. Congealed images
are shown in red boxes.

We attach a fully connected layer to project the feature into
a two-dimensional Euclidean space. The image features
are then projected onto hyperbolic space via an exponential
map. We run the training for 200 epochs using a cosine
learning rate scheduler [29] with an initial learning rate of
0.1. We optimize the assignment every other epoch. All the
experiments are run on an NVIDIA TITAN RTX GPU.

5.1. Prototypicality in the Hyperbolic Feature Norm

We explicitly show that the hyperbolic space can capture
prototypicality by analyzing the relation between hyperbolic
norms and the K-NN density estimation. Taking the learned
hyperbolic features, we first divide the range of norms of
hyperbolic features into numerous portions with equal length
(50 portions for this plot). The mean K-NN density is calcu-
lated by averaging the density estimation of features within
each portion. Figure 6 shows that the mean density drops
as the norm increases, which shows that the prototypical-
ity emerges automatically within the norms, the inherent
characteristic of hyperbolic space. This validates that proto-
typicality is reflected in the hyperbolic feature norm.

a) MNIST b) CIFAR10

Figure 8. Our unsupervised learning methods conform to our
visual perception. The images are organized from left to right,
top to bottom to cover the 360 degrees at the same radius.

Figure 9. HACK discovers typical and atypical images from
the data. First row: atypical images with large hyperbolic norm.
Second row: typical images with small hyperbolic norm.

5.2. Visual Prototypicality

Congealed MNIST. We further apply HACK for visual
feature learning on congealed MNIST. Figure 7 shows that
HACK can discover the congealed images from all images.
In Figure 7 a), the red particles denote the congealed
images and cyan particles denote the original images. We
can observe that the congealed images are assigned to
the particles located in the center of the Poincaré ball.
This verifies that HACK can indeed discover prototypical
examples from the original dataset. In the Appendix, we
show that the features of atypical examples gradually move
to the boundary of the Poincaré ball during training. In
Figure 7 b), we show the actual images that are embedded
in the two-dimensional hyperbolic space. We can observe
that the images in the center of Poincaré ball are more
prototypical and images close to the boundary are more
atypical. Also, the images are naturally organized by their
semantic similarity. In summary, HACK can discover
prototypicality and also organize the images based on their
semantic and hierarchical structure. To the best of our
knowledge, this is the first unsupervised learning method
that can be used to discover prototypical examples in a
data-driven fashion.

USA10kF. Figure 10 a) shows the assignment of 2000 im-
ages sampled from USA10kF. Compared to MNIST, the
variation in faces is much more complex. A facial image is
also subject to various factors (such as race, facial expres-

a) b)

Figure 10. HACK captures prototypicality of faces. a) The
assignment of 2000 images sampled from USA10kF. b) The angles
indicate the uniform division of the space. For each orientation,
8 equidistant sample points were selected and the nearest faces
are shown at each point. The face located in the center is most
symmetrical with clear smiling

sion, environmental condition, etc.). Therefore, the results
from USA10kF are less intuitive than those from MNIST.
However, Figure 10 b) illustrates the evolutionary process
of images originating from the center of hyperbolic space
and progressing along different directions. In the space, we
selected 12 directions at equal angular intervals and chose
five equally spaced sampling points in each direction. The
images closest to these sampling points are displayed at their
respective locations. Although the detailed organization
is unclear, the evolutionary process reveals a tendency of
HACK to cluster different features together, such as darker
skin tones appearing in the 0-90 degree range and lighter
skin tones in the 180-270 degree range.
MNIST and CIFAR10. Figure 8 shows the embedding of
class 0 from MNIST and class “airplane” from CIFAR10
arranged to cover 360 degrees of at the same radius. The
visual similarity of the images has a smooth transition as we
move around angularly. Figure 9 shows the typical images
and atypical images discovered by HACK. This further il-
lustrates that HACK captures the semantic similarity of the
images which enables prototypicality discovery. Please see
the Appendix for more results.

5.3. Prototypicality for Instance Selection

Figure 12 shows the comparison of the baselines with HACK.
With HACK, typical images are characterized by the smallest
hyperbolic norms, whereas atypical images are associated
with the largest hyperbolic norms. We can observe that both
HACK and Model Confidence (MC) can discover typical
and atypical images. Compared with MC, HACK defines
prototypicality as the distance of the sample to other samples
which is more aligned with human intuition. Moreover, in
addition to prototypicality, HACK can also be used to orga-
nize examples by semantic similarities. Holdout Retraining

a) Reducing sample complexity b) Increasing model robustness

Figure 11. HACK can be used to construct sample prototypical hierarchy which is useful for several downstream tasks. a) Training
with atypical examples achieves higher accuracy than training with typical examples. b) The adversarial accuracy greatly improves after
removing the X% of most atypical examples.

Typical Images Atypical Images

HACK

HR

MC

Figure 12. HACK can capture both prototypicality and diversity
in the dataset. Each row shows the typical and atypical images
discovered by HACK/HR [5]/MC [5].

(HR) is not effective for prototypicality discovery due to the
randomness of model training.

5.4. Application of Prototypicality

Reducing Sample Complexity. The proposed HACK can
discover prototypical images as well as atypical images. We
show that with atypical images we can reduce the sample
complexity for training the model. Prototypical images are
representative of the dataset but lack variations. Atypical
examples contain more variations and it is intuitive that mod-
els trained on atypical examples should generalize better
to the test samples. To verify this hypothesis, we select a
subset of samples based on the norm of the features which
indicates prototypicality of the examples. In particular, typi-
cal samples correspond to the samples with smaller norms
and atypical samples correspond to the samples with larger
norms. The angular layout of the hyperbolic features natu-
rally captures sample diversity, thus for selecting atypical
examples, we consider introducing more diversity by sam-
pling images with large norms along the angular direction.

Figure 11 a) shows that training with atypical images
can achieve much higher accuracy than training with typical
images. In particular, training with the most atypical 10% of
the images achieves 22.67% higher accuracy than with the
most typical 10% of the images on CIFAR10. Similar results
can be observed on MNIST. Thus, HACK provides an easy
solution to reduce sample complexity. We also compared
UHML [46], which is an unsupervised metric learning in

hyperbolic space, with HACK on the MNIST dataset. By
incorporating 10% atypical samples based on feature norm,
HACK outperformed UHML by 10.2%. Also by excluding
the 1% atypical examples, HACK achieved an additional
5.7% improvement over UHML.

Increasing Model Robustness. Training models with atypi-
cal examples can lead to a vulnerable model to adversarial
attacks [5, 28]. Intuitively, atypical examples lead to a less
smooth decision boundary thus a small perturbation to exam-
ples is likely to change the prediction. With HACK, we can
easily identify atypical samples to improve the robustness of
the model. We use MNIST and CIFAR 10 as the benchmark
and use FGSM [13] to attack the model with an ϵ of 0.07
on MNIST and 8/(255*std) on CIFAR10, where std is the
standard deviation used for normalization. More details of
the attack settings can be found in the appendix. We iden-
tify the atypical examples based on the norm of the features
with HACK and remove the most atypical X% of the exam-
ples. Figure 11 b) shows that discarding atypically examples
greatly improves the robustness of the model: the adversar-
ial accuracy is improved by 8.7% when excluding the most
atypical 1% of examples on MNIST and 7.3% on CIFAR10.
It is worth noting that the clean accuracy remains the same
after removing a small number of atypical examples.

6. Summary

We propose HACK, an unsupervised learning method that or-
ganizes images in hyperbolic space using sphere packing. By
optimizing image assignments to uniformly distributed parti-
cles, HACK leverages the inherent properties of hyperbolic
space, leading to the natural emergence of prototypical and
semantic structures through feature learning. We validate
HACK on synthetic data and standard datasets, demonstrat-
ing its ability to discover prototypical examples for reducing
sample complexity and increasing model robustness.

Acknowledgements. This project was supported, in part,
by NSF 2131111, NSF 2215542, and NSF 2313151 to S. Yu,
and a grant from UT Dallas to Y. Guo.

References
[1] James W Anderson. Hyperbolic geometry. Springer Science

& Business Media, 2006. 2
[2] Wilma A Bainbridge, Phillip Isola, and Aude Oliva. The

intrinsic memorability of face photographs. Journal of Exper-
imental Psychology: General, 142(4):1323, 2013. 6

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and
Jason Weston. Curriculum learning. In Proceedings of the
26th annual international conference on machine learning,
pages 41–48, 2009. 1

[4] Jacob Bien and Robert Tibshirani. Prototype selection for
interpretable classification. The Annals of Applied Statistics,
5(4):2403–2424, 2011. 1

[5] Nicholas Carlini, Ulfar Erlingsson, and Nicolas Papernot. Pro-
totypical examples in deep learning: Metrics, characteristics,
and utility. 2018. 1, 2, 6, 8

[6] Ines Chami, Albert Gu, Vaggos Chatziafratis, and Christopher
Ré. From trees to continuous embeddings and back: Hyper-
bolic hierarchical clustering. Advances in Neural Information
Processing Systems, 33:15065–15076, 2020. 4

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on
machine learning, pages 1597–1607. PMLR, 2020. 2

[8] Lieven Decock and Igor Douven. What is graded member-
ship? Noûs, 48(4):653–82, 2014. 1

[9] Ankit Dhall, Anastasia Makarova, Octavian Ganea, Dario
Pavllo, Michael Greeff, and Andreas Krause. Hierarchical
image classification using entailment cone embeddings. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition workshops, pages 836–837, 2020. 3

[10] Evelyn Fix and Joseph Lawson Hodges. Discriminatory
analysis. nonparametric discrimination: Consistency prop-
erties. International Statistical Review/Revue Internationale
de Statistique, 57(3):238–247, 1989. 3

[11] Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hof-
mann. Hyperbolic neural networks. arXiv preprint
arXiv:1805.09112, 2018. 2

[12] Alan Gibbons. Algorithmic graph theory. Cambridge univer-
sity press, 1985. 5

[13] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 8, 1

[14] Yanming Guo, Yu Liu, Erwin M Bakker, Yuanhao Guo, and
Michael S Lew. Cnn-rnn: a large-scale hierarchical image
classification framework. Multimedia tools and applications,
77(8):10251–10271, 2018. 3

[15] Yunhui Guo, Haoran Guo, and Stella Yu. Co-sne: Dimension-
ality reduction and visualization for hyperbolic data. arXiv
preprint arXiv:2111.15037, 2021. 3

[16] Yunhui Guo, Xudong Wang, Yubei Chen, and Stella X Yu.
Clipped hyperbolic classifiers are super-hyperbolic classifiers.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11–20, 2022. 6

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[18] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B.
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 9726–9735,
2019. 1

[19] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. In CVPR, pages 9729–9738, 2020. 2

[20] Joy Hsu, Jeffrey Gu, Gong-Her Wu, Wah Chiu, and Serena
Yeung. Learning hyperbolic representations for unsupervised
3d segmentation. arXiv preprint arXiv:2012.01644, 2020. 3

[21] Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova,
Ivan Oseledets, and Victor Lempitsky. Hyperbolic image
embeddings. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6418–6428,
2020. 3

[22] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Ex-
amples are not enough, learn to criticize! criticism for in-
terpretability. Advances in neural information processing
systems, 29, 2016. 2

[23] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 3

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 6

[25] Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998. 6, 1

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 6,
1

[27] Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep
learning for case-based reasoning through prototypes: A neu-
ral network that explains its predictions. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2018. 2

[28] Yongshuai Liu, Jiyu Chen, and Hao Chen. Less is more:
Culling the training set to improve robustness of deep neural
networks. In International Conference on Decision and Game
Theory for Security, pages 102–114. Springer, 2018. 8

[29] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. arXiv preprint arXiv:1608.03983,
2016. 6, 1

[30] Emile Mathieu, Charline Le Lan, Chris J Maddison, Ryota
Tomioka, and Yee Whye Teh. Continuous hierarchical repre-
sentations with poincar\’e variational auto-encoders. arXiv
preprint arXiv:1901.06033, 2019. 3

[31] Erik G Miller, Nicholas E Matsakis, and Paul A Viola. Learn-
ing from one example through shared densities on transforms.
In Proceedings IEEE Conference on Computer Vision and
Pattern Recognition. CVPR 2000 (Cat. No. PR00662), pages
464–471. IEEE, 2000. 1, 2, 3, 5, 6

[32] James Munkres. Algorithms for the assignment and trans-
portation problems. Journal of the society for industrial and
applied mathematics, 5(1):32–38, 1957. 5

[33] Yoshihiro Nagano, Shoichiro Yamaguchi, Yasuhiro Fujita,
and Masanori Koyama. A wrapped normal distribution on

hyperbolic space for gradient-based learning. In International
Conference on Machine Learning, pages 4693–4702. PMLR,
2019. 2, 3

[34] Maximilian Nickel and Douwe Kiela. Poincar\’e embed-
dings for learning hierarchical representations. arXiv preprint
arXiv:1705.08039, 2017. 2

[35] Maximillian Nickel and Douwe Kiela. Poincaré embeddings
for learning hierarchical representations. Advances in neural
information processing systems, 30, 2017. 2, 3, 4

[36] Eleanor Rosch. Cognitive representations of semantic cate-
gories. Journal of experimental psychology: General, 104(3):
192, 1975. 1

[37] Rik Sarkar. Low distortion delaunay embedding of trees
in hyperbolic plane. In International Symposium on Graph
Drawing, pages 355–366. Springer, 2011. 4

[38] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. Advances in neural informa-
tion processing systems, 30, 2017. 2

[39] Pierre Stock and Moustapha Cisse. Convnets and imagenet
beyond accuracy: Understanding mistakes and uncovering
biases. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 498–512, 2018. 2

[40] Richard Szeliski et al. Image alignment and stitching: A
tutorial. Foundations and Trends® in Computer Graphics
and Vision, 2(1):1–104, 2007. 3

[41] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.
Deep image prior. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 9446–9454,
2018. 5

[42] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9(11),
2008. 1

[43] Tongzhou Wang and Phillip Isola. Understanding contrastive
representation learning through alignment and uniformity on
the hypersphere. In International Conference on Machine
Learning, pages 9929–9939. PMLR, 2020. 2

[44] Zhenzhen Weng, Mehmet Giray Ogut, Shai Limonchik, and
Serena Yeung. Unsupervised discovery of the long-tail in
instance segmentation using hierarchical self-supervision. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2603–2612, 2021. 3

[45] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3733–3742,
2018. 4, 2

[46] Jiexi Yan, Lei Luo, Cheng Deng, and Heng Huang. Un-
supervised hyperbolic metric learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12465–12474, 2021. 6, 8

[47] Jianping Zhang. Selecting typical instances in instance-based
learning. In Machine learning proceedings 1992, pages 470–
479. Elsevier, 1992. 2

Unsupervised Feature Learning with Emergent Data-Driven Prototypicality

Supplementary Material

Figure 13. The KNN density estimation on MoCo [18] features of
MNIST [25]. The shades of color represent the density value: the
darker the color, the higher the density.

7. More Details on K-NN Density Estimation on
MNIST

Feature Extraction: We use a LeNet [26] without classifier
as the encoder and follow the scheme of MoCo [18] to train
the feature extractor. We run the training for 200 epochs and
the initial learning rate is 0.06. We use a cosine learning rate
scheduler [29].

Visualization: Figure 13 visualize the KNN density esti-
mation on MoCo [18] features of MNIST [25]. The output
features have the dimension of 64. To visualize the fea-
tures, we use t-SNE [42] with the perplexity of 40 and 300
iterations for optimization.

8. More Details on Hyperbolic Instance Assign-
ment

A more detailed description of the hyperbolic instance as-
signment is given.

Initially, we randomly assign the particles to the images.
Given a batch of samples {(x1, s1), (x2, s2), ..., (xb, sb)},
where xi is an image and si is the corresponding particle.
Given an encoder fθ, we generate the hyperbolic feature
for each image xi as fθ(xi) ∈ B2, where B2 is a two-
dimensional Poincaré ball.

we aim to find the minimum cost bipartite matching of
the images to the particles. The cost to minimize is the total
hyperbolic distance of the hyperbolic features to the parti-

cles. We first compute all the pairwise distances between the
hyperbolic features and the particles. This is the cost matrix
of the bipartite graph. Then we use the Hungarian algorithm
to optimize the assignment (Figure 14).

Suppose we train the encoder fθ for T epochs. We run the
hyperbolic instance assignment every other epoch to avoid
instability during training. We optimize the encoder fθ
to minimize the hyperbolic distance of the hyperbolic
feature to the assigned particle in each batch.

9. Details of Adversarial Attacks

For adversarial attacks, we use MNIST and CIFAR 10 as
the benchmark and use FGSM [13] to attack the model. For
MNIST, we leverage an ϵ of 0.07. For CIFAR10, as the
range of the pixel values is from 0 to 255, we leverage an ϵ
of 8. For model training, we standardize the pixel values by
removing the mean and scaling to unit variance. Thus, the
final ϵ on CIFAR10 is 8/(255*std), where std is the standard
deviation used for normalization.

10. Details of Baselines

Holdout Retraining: We consider the Holdout Retraining
proposed in [5]. The idea is that the distance of features
of prototypical examples obtained from models trained on
different datasets should be close. In Holdout Retraining,
multiple models are trained on the same dataset. The dis-
tances of the features of the images obtained from different
models are computed and ranked. The prototypical examples
are those examples with the closest feature distance.
Model Confidence: Intuitively, the model should be con-
fident on prototypical examples. Thus, it is natural to use
the confidence of the model prediction as the criterion for
prototypicality. Once we train a model on the dataset, we
use the confidence of the model to rank the examples. The
prototypical examples are those examples that the model is
most

11. Gradually Adding More Congealed Images

We gradually increase the number of original images re-
placed by congealed images from 100 to 500. Still, as shown
in Figure 15, HACK can learn a representation that captures
the concept of prototypicality regardless of the number of
congealed images. This again confirms the effectiveness of
HACK for discovering prototypicality.

a) b)

Figure 14. Hyperbolic Instance Assignment minimizes the total hyperbolic distances between the image features and the particles. a)
Initial assignment. b) Optimized assignment.

100 200 300 400 500

Figure 15. HACK consistently places congealed images in the center of the Poincaré ball. We gradually increase the number of original
images replaced by congealed images from 100 to 500. The congealed images are marked with red dots and the original images are marked
with cyan dots.

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5

Figure 16. HACK consistently places congealed images in the center of the Poincaré ball in multiple runs with different random
seeds.. The congealed images are marked with red dots and the original images are marked with cyan dots.

12. Different Random Seeds

We further run the assignment 5 times with different random
seeds. The results are shown in Figure 16. We observe that
the algorithm does not suffer from high variance and the
congealed images are always assigned to the particles in the
center of the Poincaré ball. This further confirms the efficacy
of the proposed method for discovering prototypicality.

13. Emergence of Prototypicality in the Feature
Space

Existing unsupervised learning methods mainly focus on
learning features for differentiating different classes or sam-
ples [7, 19, 45]. The learned representations are transferred
to various downstream tasks such as segmentation and de-
tection. In contrast, the features learned by HACK aim at
capturing prototypicality within a single class.

To investigate the effectiveness of HACK in revealing
prototypicality, we can include or exclude congealed images

in the training process. When the congealed images are
included in the training process, we expect the congealed
images to be located in the center of the Poincaré ball while
the original images to be located near the boundary of the
Poincaré ball. When the congealed images are excluded from
the training process, we expect the features of congealed
images produced via the trained network to be located in the
center of the Poincaré ball.

13.1. Training with congealed images and original
images

We follow the same setups as in Section 4.3.1 of the main text.
Figure 17 shows the hyperbolic features of the congealed
images and original images in different training epochs. The
features of the congealed images stay in the center of the
Poincaré ball while the features of the original images grad-
ually expand to the boundary.

13.2. Training only with original images

Figure 18 shows the hyperbolic features of the congealed im-
ages when the model is trained only with original images.
As we have shown before, congealed images are naturally
more typical than their corresponding original images since
they are aligned with the average image. The features of
congealed images are all located close to the center of the
Poincaré ball. This demonstrates that prototypicality natu-
rally emerges in the feature space.

Without using congealed images during training, we ex-
clude any artifacts and further confirm the effectiveness of
HACK for discovering prototypicality. We also observe that
the features produced by HACK also capture the fine-grained
similarities among the congealing images despite the fact
that all the images are aligned with the average image.

14. Discussions on Societal Impact and Limita-
tions.

We address the problem of unsupervised learning in hyper-
bolic space. We believe the proposed HACK should not raise
any ethical considerations. We discuss current limitations
below,

Applying to the Whole Dataset Currently, HACK is ap-
plied to each class separately. Thus, it would be interesting
to apply HACK to all the classes at once without supervision.
This is much more challenging since we need to differenti-
ate between examples from different classes as well as the
prototypical and semantic structure.

Exploring other Geometrical Structures We consider
uniform packing in hyperbolic space to organize the im-
ages. It is also possible to extend HACK by specifying
other geometrical structures to encourage the corresponding
organization to emerge from the dataset.

Epoch 1 Epoch 5 Epoch 10 Epoch 15 Epoch 200

Figure 17. Atypical images gradually move to the boundary of the Poincaré ball. This shows that the representations learned by HACK
capture prototypicality. Congealed images are in red boxes which are more typical. The network is trained with both the congealed images
and original images.

Epoch 1 Epoch 10 Epoch 20 Epoch 40 Epoch 200

Figure 18. The representations learned by HACK gradually capture prototypicality during the training process. Congealed images
are in red boxes which are more typical. We produce the features of the congealed images with the trained network in different epochs. The
network is only trained with original images.

	. Introduction
	. Related Work
	. Sample Hierarchy
	. Unsupervised Hyperbolic Feature Learning
	. Poincaré Ball Model for Hyperbolic Space
	. Build Instance Hierarchy in Hyperbolic Space
	. Sphere Packing in Hyperbolic Space
	. Hyperbolic Instance Assignment

	. Experiments
	. Prototypicality in the Hyperbolic Feature Norm
	. Visual Prototypicality
	. Prototypicality for Instance Selection
	. Application of Prototypicality

	. Summary
	. More Details on K-NN Density Estimation on MNIST
	. More Details on Hyperbolic Instance Assignment
	. Details of Adversarial Attacks
	. Details of Baselines
	. Gradually Adding More Congealed Images
	. Different Random Seeds
	. Emergence of Prototypicality in the Feature Space
	. Training with congealed images and original images
	. Training only with original images

	. Discussions on Societal Impact and Limitations.

