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Abstract

Perceiving other people’s emotional states is funda-
mentally important for successful social interactions and
robotics. Traditional emotion recognition algorithms ex-
clusively focus on facial expressions, ignoring the criti-
cal role of background context, which is now known to be
necessary to accurately represent and understand the emo-
tions of others. More recent studies have utilized different
fusing techniques to combine facial and contextual infor-
mation in visual scenes, but these approaches are limited
to detection-based methods. In this study, we propose a
new region-based emotion recognition method via super-
pixel feature pooling that does not rely on detection. Our
proposed method consists of three types of blocks, including
an initial over-segmentation block, the superpixel pooling
block, and the emotion recognition block. On EMOTIC and
VEATIC datasets, our proposed method improves state-of-
the-art performance by 68.57% and 11.79% respectively.
We also achieve competitive performance on the CAER-S
dataset.

1. Introduction
Recognizing human emotions is routine and necessary to
successfully navigate social interactions on a daily basis.
Nowadays, as robotic techniques grow fast, it is natu-
ral to make future intelligent machines socially aware in
the human-populated world. Moreover, emotion recogni-
tion may help the autonomous driving system to antici-
pate pedestrians’ or drivers’ intentions and react properly.
Therefore, understanding emotion perception mechanisms
and designing automatic emotion recognition methods are
essential for future robotics and autonomous driving devel-
opments.

Over the past several years, the interest in utilizing deep
learning models to automatically recognize emotional states
has grown rapidly. Following a long tradition of research
on emotion recognition in the fields of psychology, neuro-

science, and vision science, previous computer vision re-
search focused almost exclusively on facial expressions as
the key information for emotion recognition. This is unsur-
prising, as facial expressions seem to be the most direct and
inherent way for humans to understand the emotions of oth-
ers. Consequently, many early datasets annotated only the
emotional states of character faces or lab-controlled human
interactions, treating them as if they are independent of the
context [5, 11, 14, 24–26, 39, 40, 44, 46, 53, 56, 57, 66].
With this massive annotated data involving facial expres-
sions, researchers primarily focused on the analysis of fa-
cial expression to predict emotions [6, 62–64]. Later stud-
ies also found extra information, such as shoulder loca-
tion and body pose, could be utilized to infer emotional
states [43, 54]. Overall, though, early datasets and recogni-
tion models focus strictly on character-specific information
to infer emotional states.

Although the character itself—including the facial ex-
pression—contains a great deal of information about its
emotional state, many studies in Psychology have proven
that context information is critically important for accurate
emotion perception [3, 4, 10]. In many scenarios, scene
context influences the perception of human emotion even
though the facial expression is unchanged or very simi-
lar [1, 37, 52]. And, scene context can explain as much
of the variance in human emotion perception as facial ex-
pression [9]. For these reasons, annotations of isolated faces
may not accurately reflect true human emotion, and context-
based emotion datasets are necessary.

In light of the importance of context in emotion recog-
nition, several datasets that include contextual information
have emerged recently [23, 28, 29, 51]. Those datasets not
only contain characters but also large areas of the surround-
ing context. In turn, recent algorithms [17, 21, 30, 31, 41,
45, 65, 68] then focus on different feature extraction meth-
ods and fusing techniques for various types of information
and visual features.

To locate different types of visual information, such as
the face, body, and background scene, previous methods



rely heavily on object detection methods [49]. They often
utilize rectangular bounding boxes to select or mask out cer-
tain image blocks (Figure 1(b)). Then, visual feature encod-
ing and fusing modules are utilized to represent the visual
information of the whole scene.

When humans try to perceive the emotions of other peo-
ple, they rely on bottom-up and top-down visual processes,
where fine-scale visual features and coarse-scale object and
scene knowledge mutually facilitate each other [7, 38]. In
this process, there are no bounding box structures; instead,
there are fine or coarse scales of object and scene regions
(superpixels). With this insight, researchers have started
to utilize superpixels in a variety of computer vision mod-
els [2, 15, 16, 18, 22, 42, 48, 50, 55, 61, 69].

So far, superpixel-based models have been successful
in understanding and grouping semantically similar im-
age regions, achieving good performance on part parsing,
saliency detection, and image segmentation tasks. As emo-
tion recognition requires the understanding of characters’
facial expressions, as well as their interactions with dif-
ferent regions of objects and background scenes, the su-
perpixel approach could be useful for emotion recognition.
But, to the best of our knowledge, no emotion recognition
method has utilized superpixel-based methods.

In this paper, we propose a new emotion recognition
method that utilizes superpixel-level visual features. Our
proposed method consists of three types of blocks: 1) an
over-segmentation block to initialize the fine-grained seg-
ments and generate initial superpixel features; 2) the su-
perpixel pooling block to learn the grouping policy and
aggregate the current level finer-scale features to the next
level coarser-scale features; and 3) the emotion recognition
block for either emotion regression or classification tasks
based on the final aggregated feature. We test our proposed
method on three public context-aware emotion recognition
datasets, EMOTIC [28], CAER [29], and VEATIC [51]. We
achieve state-of-the-art performance on EMOTIC [28] and
VEATIC [51], with 68.57% improvement on EMOTIC and
11.79% improvement on VEATIC. We also achieve com-
petitive results on CAER-S [29]. Moreover, we show that
by using superpixels as feature extraction anchors, we can
naturally obtain semantically similar superpixels for free
with the learned grouping policy.

In summary, our contribution of this work lies in three
aspects:
1. We propose the first region-based emotion recognition

method via superpixel feature pooling.
2. We achieve state-of-the-art emotion recognition perfor-

mance on VEATIC and EMOTIC datasets with 68.57%
improvement on EMOTIC and 11.79% improvement on
VEATIC.

3. We show that the method can also provide us with clus-
ters that contain semantically similar superpixels via the

learned grouping policy.

2. Related Work
2.1. Context-Aware Emotion Recognition

When inferring emotion states, the context-aware emotion
recognition methods do not only rely solely on the face
or body information but also consider the emotion cues
from scene context and background information. Tradi-
tional context-aware emotion recognition methods invari-
ably extract multiple representations from various visual in-
formation sources and then apply feature fusion to make
the final prediction [17, 21, 30, 31, 41, 45, 65, 68]. Ob-
ject detection methods are widely utilized to identify the
information sources, marking them with rectangular bound-
ing boxes. For example, the model released along with the
EMOTIC dataset [28] fused the body region feature and the
whole image as the context feature via a Convolutional Neu-
ral Network (CNN). In this study, we utilize superpixel as
the feature anchor for subsequent feature fusing, which does
not rely on object detection or bounding boxes.

2.2. Vision Transformers

Vision Transformers (ViT) [13] have achieved amazing per-
formance in image recognition. They treat images as sets of
rectangular patch tokens and employ an attention mecha-
nism in learning [60]. ViTs can be computationally expen-
sive. To improve their efficiency, hierarchical transform-
ers aim to reduce the number of tokens by spatial pool-
ing [12, 20, 32, 34]. Other approaches directly prune tokens
away according to their significance scores [8, 19, 35, 47,
67]. Our grouping procedure looks like the latter approach.
However, we focus on grouping different visual regions for
emotion recognition while those methods aim for efficiency.
Additionally, we use superpixels as input units instead of
square patches.

2.3. Superpixels

Superpixels are sets of locally connected pixels that en-
capsulate coherent structures, such as colors [48]. In-
tuitively, superpixels have been utilized in various com-
puter vision tasks that involve dense labeling, including part
parsing [42], saliency detection [50], and image segmen-
tation [15, 16, 18, 50, 55, 61]. Recent studies have re-
placed patches with superpixel tokens in ViT architectures
to achieve semantic segmentation [22, 69]. In this study, we
adopt superpixels as the visual feature extraction anchors
for feature fusing in emotion recognition tasks.

3. Method
Inspired by the human emotion recognition process, we pro-
pose the first region-based emotion recognition method via



Figure 1. Comparison of detection-based methods and our proposed region-based method. Detection-based methods rely on the
bounding box to encode the character and context visual information separately, while our proposed region-based method directly utilizes
initial pixel-level features and gradually aggregates similar superpixel features to represent the visual information.

superpixel feature pooling. Our idea revolves around utiliz-
ing superpixels to enhance our understanding of characters’
facial expressions, along with their interactions within var-
ious regions of objects and background scenes. Figure 2
illustrates an overview of the method. The image/frame is
at first over-segmented to obtain the fine-grained segments.
At each level, the finer-scale superpixels are grouped into
coarser-scale superpixels via the superpixel pooling block.
The corresponding superpixel features are aggregated ac-
cording to the learned pooling policy, processed by the vi-
sual transformer block to learn better features, and then sent
to the next level pooling and aggregation. At last, the emo-
tion recognition block can take the final aggregated feature
to complete the emotion recognition task. Now, we intro-
duce each block respectively.

3.1. Over-segmentation Block

Each time, we start with the finest-level pixel grouping, de-
noted as G0, i.e., the initial image region grouping. These
groupings are based on low-level visual cues and designed
to align with image contours. In this paper, we utilize
SEEDS [59] to obtain the locally connected and color-wise
coherent regions, i.e., the superpixels. Then, we progres-
sively group these superpixels into coarser regions and fuse
the corresponding superpixel features to get the final aggre-
gated feature for emotion recognition.

The initial pixel features of the input image, Xcnn, are
obtained via a convolutional neural network (CNN). These
pixel features are then aggregated within each superpixel in
G0 to create the initial superpixel features, referred to as
XG. The aggregation is achieved by averaging each pixel
feature within a specific superpixel. After this, we append a
class token Xclass, and positional encodings Epos into the
initial features XG. We set Epos to align with the resolution
of the CNN features Xcnn and then average it within each

superpixel. The resulting input segment features are defined
as Z0 = [Xclass;XG] + [0;Epos]

3.2. Superpixel Pooling Block

To form better features for the aggregated superpixel fea-
tures at each grouping level, such that semantically similar
superpixel features at each grouping level would be more
similar in the feature space and vice versa, we apply two vi-
sual transformer (ViT) blocks before the superpixel pooling.
Then, we pool the similar fine-scale regions into a coarser
scale and move to the next level. Various pooling strategies
can be applied here. In this paper, we adopt a graph pool-
ing strategy [22]. The similarities between different super-
pixel features in neighbor levels are computed and utilized
to quantify the soft assignment probability Pl from a finer
level l−1 to a coarser level l. Then, the next level of coarser
groupings Gl can be determined by the finer level grouping
Gl−1 and the soft assignment probability Pl.

Gl = Gl−1 × Pl = G0

l∏
i=1

Pi (1)

3.3. Emotion Recognition Block

At the final stage, we will have an aggregated feature that
contains the combined visual information from separate
visual regions. Then, we utilize a multilayer perceptron
(MLP) to achieve the emotion recognition task. At last, we
utilize either categorical emotion states or continuous emo-
tion ratings to guide the training. We emphasize that no seg-
mentation maps are utilized in the training. The grouping
of superpixels is only trained to make good emotion recog-
nition results, though the method naturally learned how to
group superpixels efficiently.
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Figure 2. Overview of the method: In our proposed method, We start with over-segmented regions, i.e., the superpixels, and then
gradually group similar superpixels, and aggregate features of corresponding superpixels. We utilize the final aggregated feature for
emotion recognition. Along with the training, we also obtain clusters that contain semantically similar pixels, e.g., the red face region in
G2.

4. Experiment

4.1. Datasets and Evaluation Metrics

Datasets: We conduct our experiments on three standard
datasets for the context-aware emotion recognition task,
namely EMOTIC [28], CAER-S [29], and VEATIC [51].
EMOTIC contains 23,571 images of 34,320 annotated sub-
jects in uncontrolled environments. The annotation of these
images contains the bounding boxes of the target subjects’
body regions and 26 discrete emotion categories. CAER-
S includes 70k static images extracted from video clips of
79 TV shows to predict emotional states. These images are
annotated with 7 emotion categories: Anger, Disgust, Fear,
Happy, Sad, Surprise, and Neutral. VEATIC has 124 video
clips from Hollywood movies, documentaries, and home
videos with continuous valence and arousal ratings of each
frame via real-time annotation.
Evaluation Metrics: Following [27, 41, 65], we utilize the
standard classification accuracy to evaluate performance on
CAER-S. For VEATIC, the root mean square error (RMSE)
is used. At last, we utilize the mean Average Precision
(mAP) to evaluate the classification results on the EMOTIC.

4.2. State-of-the-art Methods

Given the fact that our model is tested on three datasets,
we select several models with different structures tested
on each of the corresponding datasets for comparison.

For the EMOTIC dataset, we select seven distinct mod-
els for comparison. EMOT-Net [27] is a two-branch Con-
volutional Neural Network model, whose unique branches
capture the body features and context features separately.
GCN-CNN [68] is a Graph Convolutional Network try-
ing to infer emotion relationships utilizing the affective
graph constructed by context elements. CAER-Net [29]
is a double-stream Convolutional Neural Network model
with an adaptive fusion module focusing on inferring emo-
tion by integrating context information with facial informa-
tion. RRLA [30] proposed the Body-Object Attention mod-
ule and Body Part Attention module to estimate the impor-
tance of body parts and background information. VRD [21]
utilizes both the spatial and semantic features by attention
mechanism to learn the impact of each part on emotion
recognition. EmotiCon [41] takes advantage of visual at-
tention and depth maps to obtain multi-modal information.
And CCIM [65] utilizes causal inference for model train-
ing. For CAER-S Dataset, we have added two more models
for comparison in addition to the ones mentioned above.
SIB-Net [31] is inspired by the study of context-containing
order, interaction, and bias relationships. GRERN [17] pro-
poses a framework based on a Graph Convolutional Net-
work to do emotion classification utilizing the region-wise
semantic relationships. For VEATIC Dataset, We compare
our model to VEATIC-NET [51], which is a two-stream
Video Transformer using the attention mechanism to learn



Category EMOT-NET GCN-CNN CAER-NET RRLA VRD EmotiCon CCIM Ours

Affection 26.47 47.52 22.36 37.93 44.48 38.55 40.77 64.22
Anger 11.24 11.27 12.88 13.73 30.71 14.69 15.48 65.62

Annoyance 15.26 12.33 14.42 20.87 26.47 24.68 24.47 65.81
Anticipation 57.31 63.2 52.85 61.08 59.89 60.73 95.15 70.81

Aversion 7.44 6.81 3.26 9.61 12.43 11.33 19.38 71.67
Confidence 80.33 74.83 72.68 80.08 79.24 68.12 75.81 60.79
Disapproval 16.14 12.64 15.37 21.54 24.54 18.55 23.65 65.50

Disconnection 20.64 23.17 22.01 28.32 34.24 28.73 31.93 70.84
Disquietment 19.57 17.66 10.84 22.57 24.23 22.14 26.84 66.76

Doubt/Confusion 31.88 19.67 26.07 33.5 25.42 38.43 34.28 59.45
Embarrassment 3.05 1.58 1.88 4.16 4.26 10.31 16.73 60.59

Engagement 86.69 87.31 73.71 88.12 88.71 86.23 97.41 61.17
Esteem 17.86 12.05 15.38 20.5 17.99 25.75 27.44 63.51

Excitement 78.05 72.68 70.42 80.11 74.21 80.75 81.59 70.22
Fatigue 8.87 12.93 6.29 17.51 22.62 19.35 15.53 78.61

Fear 15.7 6.15 7.47 15.56 13.92 16.99 15.37 66.46
Happiness 58.92 72.9 53.73 76.01 83.02 80.45 83.55 67.35

Pain 9.46 8.22 8.16 14.56 16.68 14.68 17.76 68.99
Peace 22.35 30.68 19.55 26.76 28.91 35.72 38.94 71.30

Pleasure 46.72 48.37 34.12 55.64 55.47 67.31 64.57 63.93
Sadness 18.69 23.9 17.75 30.8 42.87 40.26 45.63 57.78

Sensitivity 9.05 4.74 6.94 9.59 15.89 13.94 17.04 66.48
Suffering 17.67 23.71 14.85 30.7 46.23 48.05 21.52 65.32
Surprise 22.38 8.44 17.46 17.92 16.27 19.6 26.81 59.14

Sympathy 15.23 19.45 14.89 15.26 15.37 16.74 47.6 65.01
Yearning 9.22 9.86 4.84 10.11 10.04 15.08 12.25 67.76

mAP 27.93 28.16 23.85 32.41 35.16 35.28 39.13 65.96

Table 1. Average precision (%) of seven recent methods, and our proposed method for each emotion category on the EMOTIC dataset [28].
Overall, our proposed method improves state-of-the-art performance by 68.57%.

Methods CAER-NET EMOT-NET SIB-Net GCN-CNN GRERN RRLA EmotiCon VRD Ours

Accuracy(%) 73.47 74.51 74.56 77.21 81.31 84.82 88.65 90.49 76.54

Table 2. Emotion classification accuracy (%) of eight recent methods, and our proposed method on the CAER-S dataset [29]. Our proposed
method performs competitively with recent methods.

Method RMSE↓
Valence Arousal Overall

VEATIC-NET 0.3084 0.2410 0.2747
Ours 0.2577 0.2268 0.2423

Table 3. Comparison of our proposed method with the base-
line model proposed in VEATIC [51]. Our method outperforms
11.79% compared to the baseline method.

the contextual relationships between frames. We reproduce
the results on the corresponding datasets based on the de-
tails given by the models above.

4.3. Implementation Details

We conducted supervised training following the setup of
DeiT [58]. The model is trained on 4 NVIDIA GeForce
RTX 2080 Ti GPUs. For the hyperparameters, we have 4
levels in total for the superpixel pooling. There are 64, 32,

16, and 8 clusters respectively at each grouping level and
the batch size of the data is 64. For the superpixel inputs,
we utilize 196 pixels as default. We resize the input images
into 224× 224 and apply normalization to the images. Our
model is trained using the AdamW optimizer [33]. For the
learning rate schedule, we use a linear warmup of 5 epochs
to reach a peak learning rate of 5.0×10−4 from 1.0×10−6,
followed by a cosine decay of 30 epochs to decay the final
learning rate to minimum learning rate of 1.0× 10−5.

4.4. Comparison with State-of-the-art Methods

4.4.1 Results on the EMOTIC Dataset.

In Table 1, we see that our proposed method significantly
improves the recognition precision of most emotion cat-
egories. In particular, compared to EMOT-NET [27],
GCN-CNN [68], CAER-NET [29], RRLA [30], VRD [21],
EmotiCon [41], and CCIM [65], our proposed method im-
prove the mAP scores by 136.16%, 134.23%, 176.56%,
103.52%, 87.60%, 86.96%, and 68.57% respectively. For



Figure 3. Visualization of Grouping: Column (a) raw images; (b) over-segments; (c) finer groupings; (d) coarser groupings; (e) overlaying
coarser groupings onto the raw images. Surprisingly, without the supervision of segmentation maps, the proposed method learned the
grouping policy for superpixels guided by visual emotion recognition training.

certain emotion categories, the emotion recognition average
precision is even improved drastically compared to SOTA
performances, such as Yearning (+349.34%), Sensitivity
(+290.14%), Pain (+288.46%), Anger (+269.81%), Em-
barrassment (+262.16%), and Fatigue (+247.52%).

4.4.2 Results on the CAER-S Dataset.

Table 2 shows our proposed method performs competitively
with recently released emotion recognition methods. It is
worth noting that the CAER dataset utilized very few anno-
tators (six) and has little control over the annotation quality



compared to EMOTIC and VEATIC datasets. As annota-
tion uncertainty and bias may result from the insufficiency
of annotators [36, 51], this may influence the interpretation
of any model’s performance to some extent.

4.4.3 Results on the VEATIC Dataset.

We also test our proposed method on a recently released
dataset, VEATIC [51]. Our proposed method improves the
RMSE of the overall rating by 11.79%. In terms of valence
and arousal, our method improves 16.44% and 5.89% re-
spectively.

4.5. Grouping Visualization

Although our supervised training process does not utilize
segmentation maps as guidance, through the learned group-
ing policy, we show that the semantically similar finer-scale
superpixels are pooled to form coarser-scale regions at the
next level. As in Figure 3(e), we can find groupings of facial
regions and the object/scene regions which the character is
interacting with.

Compared to traditional detection-based methods, where
the emotion recognition module passively encodes the vi-
sual information selected by bounding boxes, our proposed
method proactively learns which superpixels to group and
aggregate. It is clear to see which regions contribute simi-
larly to the final emotion prediction. Thus, by utilizing su-
perpixels to enhance our understanding of characters’ facial
expressions, we can achieve more accurate emotion recog-
nition.

5. Conclusion

In this paper, we proposed the first region-based emo-
tion recognition method via superpixel feature pooling. It
achieves state-of-the-art emotion recognition performance
on VEATIC and EMOTIC datasets. It also achieves com-
petitive results on CAER-S dataset. Moreover, the proposed
method can also provide us with clusters that contain se-
mantically similar superpixels via the learned grouping pol-
icy.
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