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Widefield microscopy is widely used for non-invasive imaging of
biological structures at subcellular resolution. When applied toa
complex specimen,

itsimage quality is degraded by sample-induced

optical aberration. Adaptive optics can correct wavefront distortion

and restore diffraction-limited resolution but require wavefront sensing
and corrective devices, increasing system complexity and cost. Here

we describe a self-supervised machine learning algorithm, CoCoA, that
performs joint wavefront estimation and three-dimensional structural
information extraction from asingle-input three-dimensional image stack
without the need for external training datasets. We implemented CoCoA
for widefield imaging of mouse brain tissues and validated its performance
with direct-wavefront-sensing-based adaptive optics. Importantly, we
systematically explored and quantitatively characterized the limiting
factors of CoCoA’s performance. Using CoCoA, we demonstrated in vivo
widefield mouse brainimaging using machine learning-based adaptive
optics. Incorporating coordinate-based neural representations and a
forward physics model, the self-supervised scheme of CoCoA should be
applicable to microscopy modalities in general.

Non-invasive and with subcellular resolution, optical microscopy
has become an indispensable tool for biomedical research. However,
sample heterogeneity and optics imperfections canintroduce optical
aberration and degrade image quality. Adaptive optics (AO)' tech-
niques can be used to restore ideal imaging performance by meas-
uring and correcting these aberrations. Conventional AO methods
require specialized hardware. Direct-wavefront-sensing-based AO
(DWS AO)*?, for example, utilizes a wavefront sensor (for example, a
Shack-Hartmann sensor) for aberration measurement and a corrective
device (for example, a deformable mirror) for aberration correction,
increasing the complexity and overall cost of amicroscope. For indirect

wavefront-sensing AO methods'?, a corrective device is still required
for wavefront correction.

Machinelearning hasrecently emerged as a promising alternative
to hardware-based AO. Supervised machine learning methods can
estimate optical aberration from an experimentally measured point
spread function (PSF), without the need for wavefront sensors, after
atraining process that involves learning a nonlinear inverse operator
parametrized with neural network weights'*"®. These approaches
require an external training dataset that is either generated through
simulations'®>"*'" or acquired experimentally™ ">, However, to date,
thereis nowell-established learning method for extended structures,
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andacorrective deviceisstill required to correct for optical aberration
for high-resolution imaging.

Here we describe a self-supervised machine learning algorithm
called CoCoA, which stands for coordinate-based neural representa-
tions for computational adaptive optics, for joint estimation of wave-
frontaberration and three-dimensional structural recovery. Although
self-supervised learning approaches have been previously used for
denoising?*, blind deconvolution®, two-dimensional (2D) phase
imaging®? and tomography**~', here a self-supervised scheme is
described for computational AO in fluorescence microscopy. CoCoA
takes a three-dimensional (3D) aberrated image stack as input and
returns the estimated aberration and underlying structures. Repre-
senting a notable departure from the existing supervised machine
learning approaches, CoCoA does not require any external supervision
or external training datasets. Furthermore, CoCoA retrieves underly-
ing features purely through computation, eliminating the need for a
corrective device.

Similar to classical image deblurring problems , extracting
wavefront and structural information from an aberrated 3D image
stack is a highly ill-posed inverse problem, because there are more
unknown parameters than independent measurements. To address
the severe ill-posedness, CoCoA incorporated a forward model for
image formation into the optimization process, obtained Zernike
coefficients as a one-dimensional vector during the optimization
process and used a multi-layer perceptron (MLP) with Fourier feature
mapping (FFM) to represent complex structures. With MLPs as effec-
tive universal function approximators due to their nonlinearity*®*
and FFM ensuring faster convergence to the optimal mapping from
coordinates to structure®*°, CoCoA carefully controlled the physical
size of features reconstructed by neural networks to avoid overfit-
ting to noise while still representing the structure accurately to an
iterative non-blind baseline method* based on the Richardson-Lucy
algorithm***,

Using DWS AO to acquire the ground-truth wavefront aberration,
we demonstrated that CoCoA can accurately estimate aberration
andretrieve 3D structural information from fixed mouse brain slices.
Importantly, we characterized the performance limits of CoCoA in
terms of image signal-to-noise ratio (SNR) and signal-to-background
ratio (SBR). Finally, using CoCoA, we demonstrated in vivo applica-
tion of machine learning-based AO for widefield microscopy in the
mouse brain.

24,32-35

Results

CoCoA, self-supervised learning algorithm for

computational AO

Weimplemented CoCoA, aself-supervised machine learning algorithm,
for widefield fluorescence microscopy. CoCoA takes asingle 3D image
stack asinput and outputs estimations of both the underlying 3D struc-
tureand the optical aberration present (Fig. 1a). Designed to reproduce
theinputimage stack using a neural network model, CoCoA adjustsits
parameters to identify the structure and aberration that give risetoa
reproduced image stack most closely resembling the input (Fig. 1a).
This processis referred to as self-supervised learning, as CoCoA learns
directly from the input image stack itself without requiring labelled
examples. Requiring no external supervision, CoCoA differs from exist-
ing supervised machine learning methods.

Toaddress the challenge of representing complex structure such
as neuronal processes, we employed coordinate-based neural repre-
sentations®**%*** that use an MLP as a universal function approximator
(Supplementary Fig.1). The MLP is defined by a set of parameters
denoted as 6, representing the weights of the neural network. It
employs FFMto achieve rapid convergence towards the optimal map-
ping from coordinates r to the representation of the 3D structure s.
This technique allows for the incorporation of higher spatial-frequency
details into the resulting representation, where the mapping can be

expressedas s = J (r), and Jy includes a Fourier-type radial encoding
scheme (Supplementary Note).

CoCoA alsointegrates aforward model forimage formationinto
the optimization process. The model serves as a physics prior,imposing
a constraint that the solution needs to satisfy the embedded mathe-
matical model. For estimating aberration, we incorporated parameters
of our microscope, including back pupil diameter, numerical aperture
of the objective lens, voxel size and emission wavelength A, into the
forward model. We also opted to estimate the one-dimensional-vector
Zernike coefficients that represent the optical aberration at the back
pupil plane.

By integrating the coordinate-based neural representations and
imaging-system-informed forward model, both network-structure and
physics priors were used to regularize the solution space and reduce
ill-posedness. Asaresult, we achieved accurate estimation of both the
3D structures and optical aberration from a single image stack.

The PSF of widefield microscopy, or equivalently the image of a
sub-diffraction-limit point object, is defined as

h= HG({, me =V (7) —fz—'ﬂ]

Here, G(& n) = P(§,n) e is the complex pupil function; P(§, n)
describes the circular aperture of the objective lens; ¢, the cumulative
optical aberration at the objective lens pupil plane, equal to
2 nm9nZy' (€ n), the summation of Zernike modes Z;" with coefficients

2

@

a following the American National Standards Institute standard; &
is the two-dimensional Fourier transform with respect to the pupil
coordinates £and r; and n, is the refractive index of the medium.

Giventhe parameterized structure s = Jy(r)and the PSF h, CoCoA
computes the estimated 3D image stack g following the forward model
forimage formation using the convolution operator * as

g =Tp(r) = h(r; at). )

It then compares g with the experimentally acquired image stack g
and performs iterative updates on both the structure (via 8) and the
PSF (via a]) to minimize a user-defined loss function &:

2(8,g; 0,a) = 1 SSIM(E,8) + R(Tp(Y)). (3)

In equation (3), SSIM stands for structural similarity index metric, a
widely accepted loss function”?*¢*7, which computes the similarity
between the estimated 3D image stack g and theinput g. Z(Jy(r))isa
regularizer thatincorporates prior information on the spatial piecewise
smoothness and distribution of voxel values of the structure Jy(r).

The final outputs are the estimated Zernike coefficients a],
which allow CoCoA to estimate optical aberration, as well as the neural
network weights 8, from which the underlying 3D structure s is
obtained (Fig. 1b). Together, the architecture of CoCoA eliminates
the need for both a wavefront sensor and a corrective device. This
jointestimation capability also sets CoCoA apart from existing super-
vised deep learning methods.

To characterize the performance of CoCoA, we utilized a widefield
microscope equipped with an AO module composed of awavefront sen-
sor and a deformable mirror (DM) (Fig. 1c and Supplementary Fig. 2).
This system measured aberration in the emission path using DWS.
With two-photon fluorescence excitation, we generated a 3D-confined
‘guide star’ in the sample and directed its emitted fluorescence to a
Shack-Hartmann (SH) wavefront sensor after descanning®’. The SH
sensor used a lenslet array to segment and focus the wavefront onto
a camera, creating a 2D array of foci. From local phase slopes calcu-
lated from foci displacements relative to an aberration-free condition,
we were able to reconstruct the aberrated wavefront. To correct the
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Fig.1| CoCoA in widefield imaging. a, CoCoA’s self-supervised machine learning
framework iteratively updates both the 3D structure s, represented by an MLP
with learnable weights 8, through a Fourier-type radial encoding scheme J3and
the 3D PSF h, calculated from optical system parameters and learnable Zernike
coefficients a/)'. CoCoA minimizes a loss function & by comparing the image
stack computed as the convolution (denoted as *) of estimated sand h (g) with
the experimentally acquired 3D image stack g. See Supplementary Note and
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Supplementary Fig.1for details. b, CoCoA takes an experimentally acquired 3D
image stack asinput and outputs both estimated aberrations and 3D structural
information. ¢, Schematics of our widefield imaging system equipped with a SH
sensor and a two-photon fluorescence guide star (generated by a Ti:sapphire
laser) for DWS and a DM for hardware-based aberration correction. See
Supplementary Fig. 2 for detailed optical path.

aberration, whether measured via DWS or estimated by CoCoA, we
applied the opposite corrective wavefront to the DM, which modified
the fluorescence wavefront before image formation on the camera. For
some experiments, we also used the DM to introduce known artificial
aberrationto test CoCoA’s performance at different imaging regimes.
Oneimportant aspect of this work was to validate the accuracy of
CoCoA in aberration estimation and structural recovery, as detailed
below. For aberration estimation, we used the wavefront measured by
DWS as the ground truth and compared CoCoA and DWS wavefronts,
as well as their Zernike decompositions. For structural recovery, we
comparedthe performance of CoCoA withthe Richardson-Lucy decon-
volution (RLD) algorithm***}, awidely used computational technique
and focused on how they recovered fine neuronal features such as
dendrites and dendritic spinesin the brain both in vitro and in vivo.

Implementation and two-stage learning of CoCoA

The Supplementary Note provides detailed information for the neural
network architecture, hyperparameter selection and post-processing,
in Supplementary Figs. 1, 3 and 4, respectively, and for sampling in
Supplementary Figs. 5 and 6 and Supplementary Table 1.

From an input 3D image stack, CoCoA returns an estimated 3D
structure, which in coordinate-based neural representations is
expressed as a highly nonlinear function parameterized by the MLP
weights 6 with radial Fourier feature mapping®. In our implementa-
tion, the MLP received the radially encoded coordinates; it consisted

of nine linear layers with skip connections (Supplementary Fig.1).In
addition to optimizing the structural parameters 6, for aberration
estimation, CoCoA optimized the learnable coefficients a]} associated
with the 17 Zernike polynomials from primary astigmatism to penta-
foil, excluding defocus, following the American National Standards
Institute standard.

In practice, we implemented CoCoA’s self-supervised learning in
two stages (Supplementary Fig. 7a). In the first stage, we prepared abase
model of the structure J (r)alone (thatis, without modelling the image
formation process in equation (2)). Starting with @ randomly chosen
from a uniform distribution, we fitted the MLP network to the input
image stack g (normalized to have its voxel values between 0 and 1)
using the loss function &:

F(8,8:6) =1-SSIM@, cg) (c > 1), & = To(r). )

We utilized the Adam optimizer*® for 400 iterations, starting with an
initial rate of 102 and updated the learning rate using a cosine annealing
learning rate schedule. At the end of Stage 1, the MLP learned network
weights 6'that reproduced a scaled version of the input image stack.
Inthe second stage, starting with weights 6'preconditioned during
the first stage, the MLP network weights were fine-tuned to generate
a 3D structure and the Zernike coefficients &} optimized, so that the
3Dimage stack g computed from equation 2 best resembled the input
image stack g, with & (equation (3)) as the loss function. For the MLP

Nature Machine Intelligence


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-024-00853-3

DWS AO

SH Wavefront
—

_. Measured
,~ aberration

o

sensor

-0 O-—
o) O-
-0 O-

€ Residual aberrations and contrast over iterations

|
336 656
Signal (ADU)

R NoAO M DWS (i) DWS AO [3]
DWS[1]  DWS[2] 1o g o5, CoCon
= = Diffraction limit
) T ©
No AO 3 33
o3
o
CoCoA [1] CoCoA [2] CoCoA [3]
P o 17 = |
X (O]
(o] P ] E Y
Wave g € w
=0
N
. . . 0 1 2 3
d Power spectral density over iterations AO iteration

DWS [1]

DWS [2] DWS [3] No AO

> CoCoA [1]
3 . DWS[1] CoCoA [2]
3z°
%8 *
§e0
°
CoCoA[1]  CoCoA[2] CoCoA[3] S5 2
1 s z AR 5O
- — 5 s ° =
log,, scale 2 0 156 313

Spatial frequency (um™)

Fig.2| CoCoA provides accurate online aberration and structure estimations
as validated by DWS and non-blind RLD. a, Schematics of online aberration
correction. Cyan: a SH sensor receives a wavefront and measures wavefront
aberration. Orange: CoCoA receives a 3D image stack and outputs estimated
aberration and 3D structure. Corrective wavefront from either DWS or CoCoA is
applied toa DM for online aberration correction. b, MIPs of 20-pm-thick image
stacks (80 x 80 x 20 um®) acquired without and with aberration correction by
DWS (top) and CoCoA (bottom) over iterations, respectively. Insets: zoomed-in
views (white box) and corrective wavefronts. ADU, analog-to-digital unit.
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corrections over iterations. Left: residual aberration measured with DWS;

top right: r.m.s. values of residual aberrations; bottom right: image contrast
computed as the ratio between the 99th percentile and the Ist percentile

pixel values of insets in b. d, Spatial-frequency representations of images in

b and their radially averaged profiles. Inset: zoomed-in view of amid-to-high
spatial-frequency region. Dashed circle: diffraction limit (3.125 pm™). e, MIPs of
image stacks (34 x 34 x 18 pm?®) acquired with widefield (i) and two-photon (ii)
fluorescence microscopy after DWS AO. MIPs of reconstructed 3D structures
(colour-coded by depth) by CoCoA (iii), blind RLD (iv) and non-blind RLD (v) from
‘No AO’images.

network, we used an initial learning rate of 5 x 107°. For the Zernike
coefficients, we started with ajf randomly initialized from a uniform
distributionand aninitial learning rate of 102 We employed the same
learningrate schedule and optimizer asin the first stage and iteratively
updated the learnable parameters by automatic differentiation on the
loss function. A machine with an NVIDIA Volta 100 graphics processing
unitand an Intel Xeon Gold 6248 central processing unit was used for
computation (see Supplementary Table 2 for hyperparameter selec-
tion, experimental settings and computation times). Code is designed
and developed with PyTorch*’ and is publicly available at https://github.
com/iksungk/CoCoA.

Wefound that CoCoA’s performance benefited greatly from having
thefirst stage of base model preparation. Starting the Stage 2 training
from @'rather thanrandomly initialized weights substantially reduced
artefacts and improved the quality of both the structure and aberra-
tion estimation (Supplementary Fig. 7b). Additional analysis indicated
that a base model prepared from a generic fluorescence image stack
can be used for Stage 2 optimization for inputs of a different sample
type (Supplementary Fig. 7c-e and Supplementary Note). Therefore,
once abase modelisavailable, the first stage of the two-stage learning
process may be omitted for other input image stacks.

Aberration estimation and structure recovery by CoCoA

We first tested CoCoA’s performance on simulated data. CoCoA
accurately extracted structures from 3D bead images of sufficient
signal-to-noise ratios (Supplementary Fig. 8). It also accurately

estimated aberrations from images of single isolated beads as well as
images of extended objects including 3D-distributed beads and neu-
ronal processes (Supplementary Fig. 9). Compared with PhaseNet, a
supervised machine learning method", CoCoA-estimated aberration
at substantially higher accuracy for all sample types but especially
for complex extended objects (for example, neuronal processes),
giving confidence to its successful application to real-life images of
biological samples.

We validated the efficacy of CoCoA with widefield fluorescence
microscopy imaging of dendritic structures in fixed mouse brain slices
(Thy1-GFP line M; Fig. 2). To introduce aberration similar to those
typically induced by a glass cranial window in in vivo mouse brain
imaging experiments*’, we placed a number 1.5 cover glass (0.16 to
0.19 mm thickness) tilted at 3° on top of the brain slices. Before imag-
ing, we adjusted the correction collar of the objective lens to correct
for spherical aberration introduced by a 0.17-mm-thick cover glass.

We assessed the accuracy of CoCoA in estimating optical aber-
ration through acomparative analysis of the wavefront outputs from
CoCoA and from DWS. Applying the corresponding corrective wave-
fronts to the DM (Fig. 2a), we also compared their performance in
improving image quality. After one round of correction, CoCoA and
DWS generated similar corrective wavefronts (insets for DWS AO [1]
and CoCoA [1], Fig. 2b) and both led to significant improvements
in signal and resolution, especially for fine synaptic features (white
arrowheads, insets for DWS AO [1] and CoCoA [1], Fig. 2b). However,
CoCoA’swavefront correctionresultedinslightly inferior performance
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compared with DWS, as indicated by the higher residual aberration
(as measured by DWS after applying DWS [1] and CoCoA [1] to the DM;
Fig.2c) and the lowerimage contrast metric (bottomright, Fig. 2c). To
furtherimprove CoCoA’s performance, we carried outiterative aber-
ration corrections by inputting to CoCoA the 3D image stack acquired
after applying the corrective wavefront from CoCoA of the previous
round. Our results show that the performance of CoCoA gradually
improved over threeiterations, leading to comparable image quality
with DWS AO (Fig. 2b). We also found the residual aberration after each
iteration to decrease over CoCoA iterations, while DWS AO allowed
diffraction-limited performance (as defined by the Rayleigh limit)
after the second iteration (Fig. 2c).

Additionally, we evaluated the resolution improvement in the
spatial-frequency domain by analysing the Fourier transform of the
maximal intensity projection (MIP) image of aberration-corrected
image stacks. Aberration correction, using corrective wavefront
acquired through either DWS or CoCoA, led to larger magnitudes in
high spatial-frequency range (that is, away from the origins in the 2D
spatial-frequency representations; Fig. 2d, left panels). The recovery
of high spatial-frequency information can also be easily appreciated
fromtheradially averaged line power spectral density profiles (Fig. 2d,
right panels). After only one iteration, both DWS and CoCoA correc-
tions significantly increased the power over abroad spatial-frequency
range when compared with ‘No AO". Compared with DWS [1], CoCoA
[1]increased spectral power slightly less in the mid spatial-frequency
regionbut had similarimprovement at the high spatial-frequency end
(insetindashed box, Fig. 2d). After twoiterations, CoCoA [2] and DWS
[2]showed no perceivable difference. Quantitative Fourier ring correla-
tion analyses showed similarimprovementsinresolution both laterally
(Supplementary Fig.10) and axially (Supplementary Fig.11). These find-
ings are consistent with residual aberration comparison and indicate
that CoCoA’s estimation of wavefront aberration is highly accurate.

We then investigated how the 3D structure output by CoCoA
approximated the structure in real life. Because the ground-truth
structural information is not available to us, we compared the struc-
tural output from CoCoA with those obtained via deconvolution, a
widely applied technique that reassigns out-of-focus photons back
to their sources and enhances high spatial-frequency information.
We applied blind and non-blind deconvolutions based on the RLD
algorithm**** on the ‘No AO’ image stack used as input to CoCoA. In
blind RLD, an estimated PSF obtained from a maximum likelihood
algorithm (Methods) was used. In non-blind RLD, the aberrated PSF
from the measured aberration by DWS was directly utilized, which
should lead to the most accurate deconvolution. Therefore, we used
the non-blind RLD output as the standard for comparison.

Occasionally, in locations with low brightness, CoCoA encoun-
tered difficulties inaccurately depicting the dim and fine features that
arevisibleinboththe DWS AO image stack and non-blind RLD structure
(for example, white arrowheads in the second row, Fig. 2e) or hallu-
cinated structures that were absent from the non-blind RLD output
(for example, white arrowheads in the third row, Fig. 2e; also see Sup-
plementary Note for relevant discussion on post-processing). Overall,
however, the morphology of dendrites and dendritic spines from the
CoCoA output was highly consistent with the non-blind RLD output,
andtheaxiallocations of both CoCoA and non-blind RLD outputs agree
well with the two-photon fluorescence image stack (second column,
Fig. 2e). In contrast, blind RLD reconstruction led to much noisier
features, from which the sample structure cannot be ascertained with
high confidence. Therefore, both being software-only algorithms,
CoCoA outperformedblind RLD. Furthermore, CoCoA achieved similar
performancein structural recovery to that of non-blind RLD.

Characterizing performance limits by SNR and SBR
Although CoCoA succeeded in aberration estimation and structural
recovery fromthe example images acquired from fixed brain slices,

biological imaging often suffers from low SNR (Methods) and SBR
(Supplementary Fig.12). Thisis particularly true when imaging living
organisms, where dim fluorophores and factors such as photodam-
age, photobleaching and short exposure time (for example, during
time-lapse imaging) reduce the number of photons collected per
pixel. For widefield fluorescence microscopy, larger out-of-focus
fluorescence of thicker samples also leads to higher background. For
all computational imaging approachesincluding CoCoA, images of
low SNR and SBR pose challenges for their performance. Therefore,
we investigated the minimum SNR and SBR thresholds required
for CoCoA to be effective, before applying it for in vivo imaging
experiments.

To control SNR, we introduced a fixed amount of aberration using
the DM but adjusted the post-objective power, acquiring images of
increasing SNRs at higher power (Fig. 3a). For primary vertical coma
witha 0.15A root mean square (r.m.s.) value, at very low SNR values (for
example, 2.13; first column, Fig. 3a), there were not enough fluores-
cence photonsto visualize features in our widefield images. Unsurpris-
ingly, CoCoA also failed in structural recovering (first column, Fig. 3b).
When SNR of the neuronal structures increased to 3.39, dendrites
and dendritic spines could be visualized in the widefield MIP images
(second column, Fig. 3a). However, CoCoA still failed to estimate the
aberrationorreveal the underlying structural features (second column,
Fig. 3b). This was likely because even though signals of the in-focus
features were sufficient for their visualization in MIP images, when
out of the focal plane, the signals from these features were too noisy
tobeused by CoCoA for aberration estimation and structural retrieval.
When the SNR increased to -4, the performance of CoCoA markedly
improved, with dendritic and synaptic features successfully retrieved
(third column, Fig. 3a,b).

We quantified the performance of CoCoA using the Pearson cor-
relation coefficient (PCC) and the Earth Mover’s Distance (EMD)>"*2.
Using structures extracted by CoCoA from an aberration-free 3D image
stack of high SNR as reference, PCC measures the correlation between
CoCoA-reconstructed structures from aberrated image stacks and the
reference, while EMD measures the distance between the two recon-
structions by solving an optimal transport problem (Methods). PCC-
and EMD-based quantifications confirmed the rapid performance
improvement with the increase of SNR as observed by eye, with PCC
increasing and EMD decreasing precipitously when SNR crosses a
cutoffthreshold value (Fig. 3¢c,d). Using two-segment piecewise linear
fits on the PCC and EMD analysis, we found a cutoff SNR of 3.6 for this
aberration, above which CoCoA provides robust structural recovery.
The same cutoffalso applied to aberration estimation (Fig. 3e). Below
the cutoff, CoCoA erroneously returned non-zero coefficients for
many non-primary-vertical-coma Zernike modes (grey symbols and
lines, Fig. 3e; blue symbols and lines are the average of grey symbols
and lines). Above the SNR cutoff, CoCoA accurately predicted the
coefficient of primary vertical coma applied to the system (dashed
black line at 0.15A, Fig. 3e) and the coefficients for the other modes
were effectively zero.

Furthermore, we tested another aberration mode, primary vertical
astigmatism, also at 0.15A r.m.s. value. Using the same quantification
process, we found a cutoff SNR value of 4.5 (Fig. 3f~h). Together, these
results indicate that CoCoA performs with high accuracy when the
in-focus fluorescence features had 10-20 photons per pixel by assum-
ing a Poisson distribution.

To experimentally control SBR levels, we introduced incremen-
tally increasing aberration using the DM, from O to 0.31A r.m.s. by
0.04A r.m.s. steps. For each r.m.s. value, we applied three different
mixed-mode aberrations with randomly generated Zernike coeffi-
cients. As the aberration increased, we observed a degradation in
image quality and reductionin SBR (Fig. 4a). Above 0.2Ar.m.s., the 3D
neuronal structures extracted by CoCoA started to severely deviate
fromthose acquired at higher SBR (Fig. 4b).
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Fig.3|CoCoA’s performance depends on SNR. a, MIPs of widefield image
stacksin ascending order of SNR acquired with 0.15A primary coma. Insets:
zoomed-in views (orange box). Allimages individually normalized to [minimum,
maximum]. b, MIPs of structural stacks reconstructed by CoCoA from images
ina, individually normalized to [minimum, maximum]. ¢,d, PCC (c¢) and EMD

(d) computed between CoCoA structure outputs from an unaberrated image
stack and aberrated input image stacks in b. Two-segment piecewise linear fits

(solid black lines) determine SNR cutoffs (vertical dashed black lines). e, CoCoA
coefficients for primary coma (green symbols and lines) and other modes (grey
symbols and lines) at different SNRs. Blue symbols and lines: average of other
modes; ground truth, 0.15A for primary coma (horizontal black dash-dot line)
and O for all other modes. Vertical red dashed line: average SNR cutoff of cand d.
f-h,Sameas c(f), d (g) and e (h) but for 0.15A primary astigmatism.

We plotted PCC and EMD against the given r.m.s. aberration and
fitted the data points to two-segment piecewise linear curves. We car-
ried out the same analyses for aberrations composed of low-order
Zernike modes (Z", 2 < n < 4; primary vertical coma, astigmatism
and trefoil; Fig. 4c-f) or high-order modes (n =5; secondary vertical
coma, astigmatism and trefoil; Fig. 4g-j). For low-order aberrations,
the cutoff aberration above which the reconstructed structure
degraded severely was 0.19A r.m.s. (Fig. 4c, d), avalue above which the
wavefront estimation errorincreased more steeply and became larger

than 0.075A, the Rayleigh limit (Fig. 4e). Similarly, for aberrations
containing only higher-order modes, we identified a cutoff aberration
(0.16A r.m.s.; Fig. 4g-i) above which CoCoA gave rise to erroneous
structures. The corresponding cutoff SBR for both low- and high-order
aberrations was ~1.10 (Fig. 4), indicating that CoCoA successfully
retrieved structuralinformation when the signal was10% stronger than
the background. The fact that both low- and high-order aberrations
led to the same cutoff SBR suggested that the performance of CoCoA
was insensitive towards the orders of the Zernike modes.
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Fig.4|CoCoA’s performance depends on SBR. a, MIPs of widefield image
stacks measured with increasingly severe aberrations (mixed low-order modes).
Insets: zoomed-in views (orange box). b, MIPs of structural stacks reconstructed
by CoCoA fromimages in a. All MIPs in b individually normalized to [minimum,
maximum]. ¢,d, PCC (c) and EMD (d) computed between CoCoA structure
outputs from an unaberrated image stack and aberrated inputimage stacksin

Given aberration (wave r.m.s.) Given aberration (wave r.m.s.)

b. Two-segment piecewise linear fits (solid black lines) determine aberration
r.m.s. cutoffs (vertical dashed black lines). e, Wavefront errors in r.m.s. between
CoCoA-estimated and ground truth wavefront aberrations. f, SBR cutoff
(horizontal red line) is determined from the average r.m.s. cutoff (vertical black
linesineandf).g-j, Sameasinc(g), d (h), e (i) and f (j) but for mixed high-order
modes. In c-j, data are presented as mean values +s.d. (n =5).

Biological samples contain features of different sizesand may varyin
their fluorescence labelling density. Tobetter understand how feature size
andlabelling density affect the performance limits of SNRand SBR, we car-
ried outadditional experiments on3D tissue phantoms. These phantoms
wereprepared by mixing1%agarosewith fluorescentbeads of either 500 nm
or 2 um diameter at varying densities. We tested phantoms with frac-
tions of volume occupied by fluorescent beads ranging from2.35 x10*to
4.66 x107 (for 500 nm beads) and from 5.11x10™* t0 2.75 107 (for 2 um
beads). We found SNR cutoffs ranging from 3.4 to 4.8 across the fluores-
cencevolumefractionrange and bead sizes (Supplementary Fig.13), which
were consistent with the cutoffs determined from brainslices (Fig. 3).

We also investigated bead phantoms with fluorescence vol-
ume fraction ranging from 4.96 x 10 to 1.70 x 1072 (for 500 nm
beads) and 4.78 x 10°t01.52 x 107?(for 2 um beads) (Supplementary
Fig.14).Similar to the simulation result (Supplementary Fig. 8e-h),
the accuracy of structural retrieval, as quantified by PCC, was lowest
for the densest sample (thatis,1.70 x 1072in Supplementary Fig.14a),
likely because denser samples had images of lower SBR and more
overlap between neighbouring structures. However, aberration
estimationaccuracy and the SBR cutoffvalue were largely insensitive
towards fluorescence volume fractions tested. For 500 nm beads,
the SBR cutoffwas as low as 1.03. This indicates that when SNRs are
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Fig. 5| Invivo widefield imaging of a Thy1-GFP line M mouse brain with
CoCoA. a, Single widefield image planes acquired without AO, with aberration
correction by DWS and with aberration correction with CoCoA. Insets: zoomed-
inview (white box) and corrective wavefronts. Allimages registered using the
StackReg plugin in ImageJ and then individually normalized to [minimum,
maximum]. b, Zernike coefficients of aberrations measured by DWS and CoCoA.
Black brackets: primary coma modes. ¢, Lateral signal profiles along dashed
whitelinesin a. Line profiles are normalized by their respective maximum values.

d, MIPs of 4-um-thick widefield image stacks measured without and with DWS
AO and their zoomed-in views (yellow and red boxes). Allimages individually
normalized to [minimum, maximum]. e, MIPs of 3D neuronal structures
reconstructed by CoCoA, blind RLD and non-blind RLD using the ‘No AO’image
stack as the input. White arrowheads: synaptic and dendritic features; red
arrowheads: artefactual structures. In vivo data were acquired 10-50 pm
below dura.

sufficiently high, CoCoA performs well even for samples with very
low SBR. We also found that the 2 um beads had higher SBR cutoff
values than 500 nm beads at the similar fluorescence volume frac-
tions. Because structural features can be considered as continu-
ous distributions of point sources and their images composed of
continuously overlapping 3D PSFs centred on these point sources,
out-of-focus signals of larger features contain comparatively less

information on aberration, thus require higher SBR for aberration
measurement and structural retrieval.

CoCoA forinvivoimaging of the mouse brain

Having validated CoCoA forimaging fixed brainslices and investigated
its performance limits, we then applied it to high-resolution in vivo
widefield imaging through a cranial window over the left cortex of a
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Thyl-GFP line M mouse (Methods). We adjusted the correction collar
ofthe objectivelensto correct for spherical aberrationintroduced by
the 0.17-mm-thick glass cranial window.

We first evaluated the accuracy of CoCoA in estimating optical
aberration for in vivo mouse brain imaging by comparing its perfor-
mance with DWS. Both CoCoA and DWS produced similar corrective
wavefronts (Fig. 5a) with primary coma being the dominant Zernike
mode (Fig. 5b), likely caused by aslight tilt of the cranial window away
frombeing perpendicular to the optical axis of the objective. By apply-
ing the corrective wavefronts obtained from DWS and CoCoA onto the
DM, we achieved higher resolution and contrast (quantitative Fourier
ring correlation analysis in Supplementary Fig. 15), enabling better
visualization of fine neuronal features, such as dendritic spines (Fig. 5a,
white arrowheads; Fig. 5¢, line signal profiles).

We next employed CoCoA to retrieve 3D neuronal structural
information from the mouse brain in vivo. From the widefield images
acquired without AO, CoCoA returned structural features such as den-
dritic spines that were consistent with the widefield images acquired
with AO (Fig. 5d,e, white arrowheads). Using the same aberrated ‘No
AO’image stack as the input, we performed both blind and non-blind
RLD (Fig. 5e, middle and right). Our results showed that CoCoA and
non-blind RLD recovered similar synaptic structures (Fig. 5e, white
arrowheads) while blind deconvolution resulted in artefactual struc-
tures (Fig. 5e, middle, red arrowheads).

The successful aberration estimation and structural recovery
by CoCoA for in vivo imaging are to be expected, given that the SNR
and SBR of the input image stacks (49.8 and 1.13, respectively; Fig. 5d)
exceeded the cutoff values characterized previously. Notably, our
experiments were conducted using illumination power within the
typical range for in vivo widefield brain imaging experiments™ .
Therefore, our resultsindicate that CoCoA canbe generally applied asa
software-only approachto accurately estimate aberration and recover
high-fidelity structures for in vivo brain imaging.

Discussion

Utilizing coordinate-based neural representations and incorporating
aphysical forward model toiteratively extract structuralinformation,
CoCoA is anew machine learning framework that enables simultane-
ouswavefrontaberration estimation and 3D structural recovery from
asingle input, an aberrated widefield image stack. A self-supervised
machinelearning approach, CoCoA stands apart from existing super-
vised machine learning methodsin that it does not require an external
training dataset. Recovering structural features fromaberrated images,
CoCoA alsodoes notrequire AO hardware such as awavefront correc-
tive device. Moreover, we believe our physics-informed framework can
easily be extended to other imaging modalities.

CoCoA s distinct from digital AO strategies that were recently
developed for aberration correction and image enhancement®’ of
two-photon synthetic aperture microscopy and scanning light-field
microscopy. Although elegant and effective, these methods itera-
tively estimate aberration from multi-view measurements obtained
either through ptychographic scanningoralenslet array. In contrast,
the standard widefield microscopy images that CoCoA utilizes are
single-view images, which cannot be used for aberration estimation
by these previously published methods.

Using DWS AO and RLD, we validated the performance of CoCoA
inaccurately estimating optical aberration and recovering structural
features. Successfully demonstrating the capabilities of CoCoA inimag-
ing neuronalsstructuresin theliving mouse brain, our work represents
asuccessful in vivo application of machine learning-based AO for 3D
structural recovery in widefield microscopy.

Importantly, we conducted a detailed investigation into the per-
formance limits of CoCoA, specifically in terms of SBR and SNR and
determined their cutoff values required for successful CoCoA recon-
struction. Our analyses suggest that there exists afundamental lower

limit on the amount of information contained in an image stack that
is necessary for CoCoA to produce accurate wavefront estimation
and structural information. These limits likely generally apply to all
computational, including machine learning-based AO approaches.

Methods

Animal use

All animal experiments were conducted according to the National
Institutes of Health guidelines for animal research. Procedures
and protocols on mice were approved by the Institutional Animal
Care and Use Committee at the University of California, Berkeley
(AUP-2020-06-13343).

AO widefield fluorescence microscope

The AO widefield microscope had two working modes (Supplementary
Fig. 2): widefield imaging mode and two-photon excitation (2PE) for
AO mode. The switch between the two modes was achieved using a
movable mirror (MM) controlled by an electric nanopositioning stage
(SmarAct, modulator control system).

In the widefield imaging pathway (Supplementary Fig. 2a, MM
out), illumination was delivered to the sample and the emitted
fluorescence was recorded by a sCMOS camera. The output beam
from a 488-nm continuous laser (Coherent, Sapphire LPX 488,
400 mW) was expanded 18 times by three beam expanders (two
x3, Thorlabs, GBEO3-A; one x2, Thorlabs GBEO2-A) after passing
through anacoustic-optic tunable filter (AOTF; AA Opto-Electronic,
AOTFnC-400.650-TN). The illumination was then relayed to the
sample by three achromatic lenses (L1, L2 and L3, focal lengths
(FLs) =150, 125 and 400 mm, respectively) and an objective lens
(Nikon, CFI Apo LWD %25, 1.1 NA and 2-mm WD). Emitted fluores-
cence was collected with the same objective. A dichroic mirror (D1,
Semrock, Di-405/488/561/635-t3-25%x36) was placed between L3 and
the objective, reflectingillumination and transmitting collected fluo-
rescence. The back focal plane of the objective was relayed to a DM
(Iris AO, PTT489) by a pair of achromatic lenses (L4 and L5, FL =400
and 175 mm, respectively). Fluorescence reflected by the DM was then
focused andimaged ona sCMOS camera (Hamamatsu, Orca Flash 4.0)
by threelenses (L6,L7and L8, FLs =300, 85and 75 mm, respectively).

Inthe AO 2PE pathway (Supplementary Fig. 2b, MMin), the wave-
front of a2PE fluorescence guide was directly measured to determine
artificial or sample-induced aberration. The output beam from a
Ti:sapphirelaser (Coherent, Chameleon Ultrall) was expanded 2 times
byabeam expander (x2, Thorlabs GBEO2-B) after being modulated by
aPockels Cell (ConOptics, 302RM). The 2PE beam was then scanned
with a pair of galvanometer mirrors (Cambridge, H2105) that are
optically conjugated with a pair of achromatic lenses (L12 and L11,
FL =85 mm). Another pair of achromatic lenses (L10 and L9) further
conjugated the galvos to the DM. For wavefront sensing, the emit-
ted 2PE fluorescence first followed the same path as in the widefield
imaging mode. The MM was placed in to reflect the fluorescence after
the DM. Being relayed by L11and L12 and descanned by the galvanom-
eter pair, the fluorescence was reflected by a dichroic mirror (D3,
Semrock, Di02-R785-25x36) and relayed to an SH sensor by a pair of
achromatic lenses (L13 and L14, FLs = 60 and 175 mm, respectively).
The SH sensor was composed of alenslet array (Advanced Microoptic
Systems GmbH) conjugated to the objective back pupil plane and a
camera (Hamamatsu, OrcaFlash 4.0) at the focal plane of the lenslet
array. Focal shiftsin the SH pattern were used to calculate wavefront
distortion. The corrective pattern could be then determined and
applied tothe DM to correct the measured aberration. When needed,
two-photon fluorescence imaging was enabled by placing adichroic
mirror (D1, Semrock, Di02-R785-25%36) into the light path, which
reflected the emitted fluorescence to be focused on aphotomultiplier
tube (Hamamatsu, H7422-40). Imaging parameters can be found in
Supplementary Table 2.
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System correction and wavefront sensor calibration
Inallexperiments, before imaging biological samples, system aberra-
tion caused by optics imperfections and/or misalignment was meas-
ured in the widefield light path using the phase retrieval approach
based on the Gerchberg-Saxton algorithm® from a 3D image stack
of a 200-nm-diameter fluorescent bead and corrected by the DM.
Fluorescence from a 7.6 x 7.6 pm? field of 2-um-diameter fluorescent
beads (ThermoFisher Scientific FluoSpheres Carboxylate-Modified
Microspheres, yellow-green 505/515) on aglass slide were two-photon
excited. After descanning and reflecting off the DM with system aber-
ration correction, the recorded pattern on the SH sensor of the fluo-
rescence wavefront was used as the aberration-free reference pattern
for wavefront measurement.

Beads sample onglass slide

The 2-pm-diameter fluorescent bead stock solution was diluted (1:500
in deionized water) and then pipetted onto a microscope glass slide
precoated with poly-L-lysine hydrobromide (10 mg ml™; Sigma-Aldrich,
P7890). The same method was followed to prepare 200-nm-diameter
fluorescent beads sample for the validation of CoCoA in imaging
sub-diffraction-limited fluorescent beads (1:10k dilution).

Fixed mouse brainslices preparation

We prepared brainslices from a Thyl-GFP line M transgenic mouse (The
Jackson Laboratory, stock 007788). After being deeply anaesthetized
withisoflurane (Piramal), we performed a standard transcardial perfu-
sion first with phosphate-buffered saline (Invitrogen) followed by 4%
paraformaldehyde (Electron Microscopy Sciences). We then collected
the mouse brain and immersed it in 2% paraformaldehyde and 15%
sucrose in PBS solution overnight at 4 °C. After that, the immersion
solutionwas replaced with30% sucrose in PBS, and the brain was stored
at 4 °C. After another 24 h, the mouse brain was cut to 100-um-thick
slices on a microtome (Thermo Scientific, Microm HM430). Brain
slices were then placed on microscope glass slides and allowed to dry
for1h. Coverglass (Fisherbrand, number 1.5) with mounting medium
(Vectashield HardSet Antifade mounting medium, H-1400) was then
placed ontop of the glass slides with brain slices. Slices were ready for
imaging after the mounting medium completely hardened.

Cranial window implantation and in vivo mouse brainimaging
All Thyl-GFP line M mice (TheJackson Laboratory, stock 007788) were
around four months old at the time of cranial window installation. The
micewere deeply anaesthetized underisoflurane (2.0% v/vin O,) during
the whole surgery. A craniotomy (3.5 mmin diameter) was created over
the left cortex with dura intact. A cranial window was made by gluing
(Norland 68 Optical Adhesive) together a glass ring (inner diameter,
3 mm; outer diameter, 4.5 mm) and a glass disk (diameter, 3.5 mm),
bothwerelaser cut from standard number 1.5 microscope cover glass
(Fisherbrand). The cranial window was embedded into the craniotomy
and the glass ring was glued onto the skull by Vetbond (Vetbond, 3M).
Atitanium head-bar was then fixed on the skull with Vetbond and fast
curing orthodontic acrylic resin (Lang Dental Mfg). In vivo mouse
brain imaging was conducted under light isoflurane anaesthesia (0.5
to1.0% v/vin O,) 2 h after surgery.

Calculating signal-to-background and signal-to-noise ratios
The calculation of SBR follows four steps (Supplementary Fig. 12):
(1) denoise the image stack using a 3D low-pass Gaussian kernel; (2)
remove DC components and low-frequency background fluctuations
using a 3D high-pass Gaussian kernel; (3) fit the image stack with a
two-component Gaussian mixture model and classify the voxelsinto two
groups (thatis, background and signal); and (4) compute SBR as theratio
of the mean of the signal voxels to the mean of the background voxels.
To compute SNR, we first assessed the gain of the CMOS camera to
convertgrayscale pixel values p to photon count ¢ per pixel. Assuming

alinear relationship between the two quantities, the pixel value can
be expressed as p = fc, where S represents the gain in pixel value per
photon count. Considering that c follows a Poisson random distribu-
tion, with its variance Var[c] equal to its mean E[c], we derived S to be
theratio of Var[p] to E[p]. We conducted acharacterization of the gain
atdifferent power levels and observed the constant gain of 2.19.

Using the signal voxels from the SBR analysis, we calculated the
SNRas

/B
9B+ (n/B)’

SNR = 5)

where Bis the gainin pixel values per photon count, y denotes the set
of signal voxels in the image stack and n, represents the readout noise
calculated as the standard deviation of pixel values in frames acquired
without light exposure to the camera.

PCCand EMD calculations

To quantify the similarity between two structural reconstructions, we
employed two metrics: PCCand EMD. PCCis defined as the normalized
inner product of the two reconstructions:

2 (51 =51) (s = %)

PCC(s1,8,) = - >
VEsu-5) S -5)

(6)

For EMD, we computed a Monte Carlo approximation of the
p-sliced Wasserstein distance®, with p = 2 and 200 projections used
for the approximation.

Blind and non-blind RLD implementation

Both blind and non-blind deconvolution processes were performed
using a GPU-accelerated Python implementation of RLD*.. Both
non-blind and blind RLD were applied to image stacks acquired without
AO correction. Non-blind RLD utilized the 3D PSF calculated from the
wavefront aberration measured from DWS. The non-blind reconstruc-
tions were achieved with 500 iterations (87 s of computation) for the
brainslice sample (Fig. 2) and 2000 iterations (445 s of computation)
forin vivo mouse brain (Fig. 5) of the RLD algorithm.

Blind RLD first estimated the 3D PSF using 100 iterations of the
maximum likelihood algorithm utilizing MATLAB’s deconvblind func-
tion®® and then deconvolved the image stack with the estimated PSF
using the same number of RLD iterations as the non-blind case. Con-
sequently, blind RLD took substantially longer than non-blind RLD:
estimating PSF took 1141 sfor the brain slice sample (Fig. 2) and approxi-
mately1.25 hfor theinvivo mouse brain (Fig. 5). The deconvolution step
took the same amount of time as non-blind RLD above. Therefore, the
total computation time of blind RLD was 1,228 sand 1.37 hfor the slice
and in vivo imaging, respectively.

Ethics

All animal experiments were conducted according to the National
Institutes of Health guidelines for animal research. Procedures
and protocols on mice were approved by the Institutional Animal
Care and Use Committee at the University of California, Berkeley
(AUP-2020-06-13343).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used for the results in the paper, for example, fixed mouse
brain slice (Fig. 2) and mouse brain in vivo (Fig. 5), are available at
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https://github.com/iksungk/CoCoA (ref. 61). Due to repository storage
limitations, please email the corresponding authors (1.K.and Q.Z.) for
access to the rest of the data for both the paper and supplementary
material.

Code availability
Code is publicly available at https://github.com/iksungk/CoCoA
(ref. 61).
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