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Coordinate-based neural representations  
for computational adaptive optics in 
widefield microscopy

Iksung Kang    1,7 , Qinrong Zhang    1,6,7 , Stella X. Yu2 & Na Ji1,3,4,5

Widefield microscopy is widely used for non-invasive imaging of 
biological structures at subcellular resolution. When applied to a 
complex specimen, its image quality is degraded by sample-induced 
optical aberration. Adaptive optics can correct wavefront distortion 
and restore diffraction-limited resolution but require wavefront sensing 
and corrective devices, increasing system complexity and cost. Here 
we describe a self-supervised machine learning algorithm, CoCoA, that 
performs joint wavefront estimation and three-dimensional structural 
information extraction from a single-input three-dimensional image stack 
without the need for external training datasets. We implemented CoCoA 
for widefield imaging of mouse brain tissues and validated its performance 
with direct-wavefront-sensing-based adaptive optics. Importantly, we 
systematically explored and quantitatively characterized the limiting 
factors of CoCoA’s performance. Using CoCoA, we demonstrated in vivo 
widefield mouse brain imaging using machine learning-based adaptive 
optics. Incorporating coordinate-based neural representations and a 
forward physics model, the self-supervised scheme of CoCoA should be 
applicable to microscopy modalities in general.

Non-invasive and with subcellular resolution, optical microscopy 
has become an indispensable tool for biomedical research. However, 
sample heterogeneity and optics imperfections can introduce optical 
aberration and degrade image quality. Adaptive optics (AO)1–3 tech-
niques can be used to restore ideal imaging performance by meas-
uring and correcting these aberrations. Conventional AO methods 
require specialized hardware. Direct-wavefront-sensing-based AO 
(DWS AO)4–9, for example, utilizes a wavefront sensor (for example, a 
Shack–Hartmann sensor) for aberration measurement and a corrective 
device (for example, a deformable mirror) for aberration correction, 
increasing the complexity and overall cost of a microscope. For indirect 

wavefront-sensing AO methods1–3, a corrective device is still required 
for wavefront correction.

Machine learning has recently emerged as a promising alternative 
to hardware-based AO. Supervised machine learning methods can 
estimate optical aberration from an experimentally measured point 
spread function (PSF), without the need for wavefront sensors, after 
a training process that involves learning a nonlinear inverse operator 
parametrized with neural network weights10–18. These approaches 
require an external training dataset that is either generated through 
simulations10,13,14,17,18 or acquired experimentally11,12,15. However, to date, 
there is no well-established learning method for extended structures, 
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expressed as s = 𝒯𝒯θ (r), and 𝒯𝒯θ  includes a Fourier-type radial encoding 
scheme (Supplementary Note).

CoCoA also integrates a forward model for image formation into 
the optimization process. The model serves as a physics prior, imposing 
a constraint that the solution needs to satisfy the embedded mathe-
matical model. For estimating aberration, we incorporated parameters 
of our microscope, including back pupil diameter, numerical aperture 
of the objective lens, voxel size and emission wavelength λ, into the 
forward model. We also opted to estimate the one-dimensional-vector 
Zernike coefficients that represent the optical aberration at the back 
pupil plane.

By integrating the coordinate-based neural representations and 
imaging-system-informed forward model, both network-structure and 
physics priors were used to regularize the solution space and reduce 
ill-posedness. As a result, we achieved accurate estimation of both the 
3D structures and optical aberration from a single image stack.

The PSF of widefield microscopy, or equivalently the image of a 
sub-diffraction-limit point object, is defined as

h =
||||
ℱ[G(ξ,η) e−2πiz√( n0λ )

2
−ξ 2−η2]

||||

2

. (1)

Here, G(ξ,η) = P(ξ,η) eiφ  is the complex pupil function; P(ξ, η) 
describes the circular aperture of the objective lens; φ, the cumulative 
optical aberration at the objective lens pupil plane, equal to 
∑n,mα

m
n Z m

n (ξ,η) , the summation of Zernike modes Z m
n  with coefficients 

αm
n  following the American National Standards Institute standard; ℱ  

is the two-dimensional Fourier transform with respect to the pupil 
coordinates ξ and η; and n0 is the refractive index of the medium.

Given the parameterized structure s = 𝒯𝒯θ(r) and the PSF h, CoCoA 
computes the estimated 3D image stack ̂g  following the forward model 
for image formation using the convolution operator * as

̂g = 𝒯𝒯θ(r) ∗ h(r; αm
n ) . (2)

It then compares ̂g  with the experimentally acquired image stack g 
and performs iterative updates on both the structure (via θ) and the 
PSF (via αm

n ) to minimize a user-defined loss function ℒ:

ℒ( ̂g, g; θ,αm
n ) = 1 − SSIM( ̂g, g) +ℛ(𝒯𝒯θ(r)) . (3)

In equation (3), SSIM stands for structural similarity index metric, a 
widely accepted loss function17,27,46,47, which computes the similarity 
between the estimated 3D image stack ̂g  and the input g . ℛ(𝒯𝒯θ(r)) is a 
regularizer that incorporates prior information on the spatial piecewise 
smoothness and distribution of voxel values of the structure 𝒯𝒯θ(r).

The final outputs are the estimated Zernike coefficients αm
n , 

which allow CoCoA to estimate optical aberration, as well as the neural 
network weights θ, from which the underlying 3D structure s is 
obtained (Fig. 1b). Together, the architecture of CoCoA eliminates 
the need for both a wavefront sensor and a corrective device. This 
joint estimation capability also sets CoCoA apart from existing super-
vised deep learning methods.

To characterize the performance of CoCoA, we utilized a widefield 
microscope equipped with an AO module composed of a wavefront sen-
sor and a deformable mirror (DM) (Fig. 1c and Supplementary Fig. 2). 
This system measured aberration in the emission path using DWS. 
With two-photon fluorescence excitation, we generated a 3D-confined 
‘guide star’ in the sample and directed its emitted fluorescence to a 
Shack–Hartmann (SH) wavefront sensor after descanning8,9. The SH 
sensor used a lenslet array to segment and focus the wavefront onto 
a camera, creating a 2D array of foci. From local phase slopes calcu-
lated from foci displacements relative to an aberration-free condition, 
we were able to reconstruct the aberrated wavefront. To correct the 

and a corrective device is still required to correct for optical aberration 
for high-resolution imaging.

Here we describe a self-supervised machine learning algorithm 
called CoCoA, which stands for coordinate-based neural representa-
tions for computational adaptive optics, for joint estimation of wave-
front aberration and three-dimensional structural recovery. Although 
self-supervised learning approaches have been previously used for 
denoising19–23, blind deconvolution24, two-dimensional (2D) phase 
imaging25–27 and tomography28–31, here a self-supervised scheme is 
described for computational AO in fluorescence microscopy. CoCoA 
takes a three-dimensional (3D) aberrated image stack as input and 
returns the estimated aberration and underlying structures. Repre-
senting a notable departure from the existing supervised machine 
learning approaches, CoCoA does not require any external supervision 
or external training datasets. Furthermore, CoCoA retrieves underly-
ing features purely through computation, eliminating the need for a 
corrective device.

Similar to classical image deblurring problems24,32–35, extracting 
wavefront and structural information from an aberrated 3D image 
stack is a highly ill-posed inverse problem, because there are more 
unknown parameters than independent measurements. To address 
the severe ill-posedness, CoCoA incorporated a forward model for 
image formation into the optimization process, obtained Zernike 
coefficients as a one-dimensional vector during the optimization 
process and used a multi-layer perceptron (MLP) with Fourier feature 
mapping (FFM) to represent complex structures. With MLPs as effec-
tive universal function approximators due to their nonlinearity36–38 
and FFM ensuring faster convergence to the optimal mapping from 
coordinates to structure39,40, CoCoA carefully controlled the physical 
size of features reconstructed by neural networks to avoid overfit-
ting to noise while still representing the structure accurately to an 
iterative non-blind baseline method41 based on the Richardson–Lucy 
algorithm42,43.

Using DWS AO to acquire the ground-truth wavefront aberration, 
we demonstrated that CoCoA can accurately estimate aberration 
and retrieve 3D structural information from fixed mouse brain slices. 
Importantly, we characterized the performance limits of CoCoA in 
terms of image signal-to-noise ratio (SNR) and signal-to-background 
ratio (SBR). Finally, using CoCoA, we demonstrated in vivo applica-
tion of machine learning-based AO for widefield microscopy in the 
mouse brain.

Results
CoCoA, self-supervised learning algorithm for  
computational AO
We implemented CoCoA, a self-supervised machine learning algorithm, 
for widefield fluorescence microscopy. CoCoA takes a single 3D image 
stack as input and outputs estimations of both the underlying 3D struc-
ture and the optical aberration present (Fig. 1a). Designed to reproduce 
the input image stack using a neural network model, CoCoA adjusts its 
parameters to identify the structure and aberration that give rise to a 
reproduced image stack most closely resembling the input (Fig. 1a). 
This process is referred to as self-supervised learning, as CoCoA learns 
directly from the input image stack itself without requiring labelled 
examples. Requiring no external supervision, CoCoA differs from exist-
ing supervised machine learning methods.

To address the challenge of representing complex structure such 
as neuronal processes, we employed coordinate-based neural repre-
sentations30,40,44,45 that use an MLP as a universal function approximator 
(Supplementary Fig. 1). The MLP is defined by a set of parameters 
denoted as θ, representing the weights of the neural network. It 
employs FFM to achieve rapid convergence towards the optimal map-
ping from coordinates r to the representation of the 3D structure s. 
This technique allows for the incorporation of higher spatial-frequency 
details into the resulting representation, where the mapping can be 
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aberration, whether measured via DWS or estimated by CoCoA, we 
applied the opposite corrective wavefront to the DM, which modified 
the fluorescence wavefront before image formation on the camera. For 
some experiments, we also used the DM to introduce known artificial 
aberration to test CoCoA’s performance at different imaging regimes.

One important aspect of this work was to validate the accuracy of 
CoCoA in aberration estimation and structural recovery, as detailed 
below. For aberration estimation, we used the wavefront measured by 
DWS as the ground truth and compared CoCoA and DWS wavefronts, 
as well as their Zernike decompositions. For structural recovery, we 
compared the performance of CoCoA with the Richardson–Lucy decon-
volution (RLD) algorithm42,43, a widely used computational technique 
and focused on how they recovered fine neuronal features such as 
dendrites and dendritic spines in the brain both in vitro and in vivo.

Implementation and two-stage learning of CoCoA
The Supplementary Note provides detailed information for the neural 
network architecture, hyperparameter selection and post-processing, 
in Supplementary Figs. 1, 3 and 4, respectively, and for sampling in 
Supplementary Figs. 5 and 6 and Supplementary Table 1.

From an input 3D image stack, CoCoA returns an estimated 3D 
structure, which in coordinate-based neural representations is 
expressed as a highly nonlinear function parameterized by the MLP 
weights θ with radial Fourier feature mapping30. In our implementa-
tion, the MLP received the radially encoded coordinates; it consisted 

of nine linear layers with skip connections (Supplementary Fig. 1). In 
addition to optimizing the structural parameters θ, for aberration 
estimation, CoCoA optimized the learnable coefficients αm

n  associated 
with the 17 Zernike polynomials from primary astigmatism to penta-
foil, excluding defocus, following the American National Standards 
Institute standard.

In practice, we implemented CoCoA’s self-supervised learning in 
two stages (Supplementary Fig. 7a). In the first stage, we prepared a base 
model of the structure 𝒯𝒯θ (rrr) alone (that is, without modelling the image 
formation process in equation (2)). Starting with θ randomly chosen 
from a uniform distribution, we fitted the MLP network to the input 
image stack g (normalized to have its voxel values between 0 and 1)  
using the loss function ℒ̃ :

ℒ̃(g̃, g; θ) = 1 − SSIM(g̃, cg) (c > 1), g̃ = 𝒯𝒯θ(rrr) . (4)

We utilized the Adam optimizer48 for 400 iterations, starting with an 
initial rate of 10−2 and updated the learning rate using a cosine annealing 
learning rate schedule. At the end of Stage 1, the MLP learned network 
weights θ' that reproduced a scaled version of the input image stack.

In the second stage, starting with weights θ' preconditioned during 
the first stage, the MLP network weights were fine-tuned to generate 
a 3D structure and the Zernike coefficients αm

n  optimized, so that the 
3D image stack ̂g  computed from equation 2 best resembled the input 
image stack g, with ℒ (equation (3)) as the loss function. For the MLP 
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Fig. 1 | CoCoA in widefield imaging. a, CoCoA’s self-supervised machine learning 
framework iteratively updates both the 3D structure s, represented by an MLP 
with learnable weights θ, through a Fourier-type radial encoding scheme 𝒯𝒯θ and 
the 3D PSF h, calculated from optical system parameters and learnable Zernike 
coefficients αm

n . CoCoA minimizes a loss function ℒ by comparing the image 
stack computed as the convolution (denoted as *) of estimated s and h ( ̂g) with 
the experimentally acquired 3D image stack g. See Supplementary Note and 

Supplementary Fig. 1 for details. b, CoCoA takes an experimentally acquired 3D 
image stack as input and outputs both estimated aberrations and 3D structural 
information. c, Schematics of our widefield imaging system equipped with a SH 
sensor and a two-photon fluorescence guide star (generated by a Ti:sapphire 
laser) for DWS and a DM for hardware-based aberration correction. See 
Supplementary Fig. 2 for detailed optical path.
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network, we used an initial learning rate of 5 × 10−3. For the Zernike 
coefficients, we started with αm

n  randomly initialized from a uniform 
distribution and an initial learning rate of 10−2. We employed the same 
learning rate schedule and optimizer as in the first stage and iteratively 
updated the learnable parameters by automatic differentiation on the 
loss function. A machine with an NVIDIA Volta 100 graphics processing 
unit and an Intel Xeon Gold 6248 central processing unit was used for 
computation (see Supplementary Table 2 for hyperparameter selec-
tion, experimental settings and computation times). Code is designed 
and developed with PyTorch49 and is publicly available at https://github.
com/iksungk/CoCoA.

We found that CoCoA’s performance benefited greatly from having 
the first stage of base model preparation. Starting the Stage 2 training 
from θ' rather than randomly initialized weights substantially reduced 
artefacts and improved the quality of both the structure and aberra-
tion estimation (Supplementary Fig. 7b). Additional analysis indicated 
that a base model prepared from a generic fluorescence image stack 
can be used for Stage 2 optimization for inputs of a different sample 
type (Supplementary Fig. 7c–e and Supplementary Note). Therefore, 
once a base model is available, the first stage of the two-stage learning 
process may be omitted for other input image stacks.

Aberration estimation and structure recovery by CoCoA
We first tested CoCoA’s performance on simulated data. CoCoA 
accurately extracted structures from 3D bead images of sufficient 
signal-to-noise ratios (Supplementary Fig. 8). It also accurately 

estimated aberrations from images of single isolated beads as well as 
images of extended objects including 3D-distributed beads and neu-
ronal processes (Supplementary Fig. 9). Compared with PhaseNet, a 
supervised machine learning method14, CoCoA-estimated aberration 
at substantially higher accuracy for all sample types but especially 
for complex extended objects (for example, neuronal processes), 
giving confidence to its successful application to real-life images of  
biological samples.

We validated the efficacy of CoCoA with widefield fluorescence 
microscopy imaging of dendritic structures in fixed mouse brain slices 
(Thy1-GFP line M; Fig. 2). To introduce aberration similar to those  
typically induced by a glass cranial window in in vivo mouse brain 
imaging experiments50, we placed a number 1.5 cover glass (0.16 to 
0.19 mm thickness) tilted at 3° on top of the brain slices. Before imag-
ing, we adjusted the correction collar of the objective lens to correct 
for spherical aberration introduced by a 0.17-mm-thick cover glass.

We assessed the accuracy of CoCoA in estimating optical aber-
ration through a comparative analysis of the wavefront outputs from 
CoCoA and from DWS. Applying the corresponding corrective wave-
fronts to the DM (Fig. 2a), we also compared their performance in 
improving image quality. After one round of correction, CoCoA and 
DWS generated similar corrective wavefronts (insets for DWS AO [1] 
and CoCoA [1], Fig. 2b) and both led to significant improvements 
in signal and resolution, especially for fine synaptic features (white 
arrowheads, insets for DWS AO [1] and CoCoA [1], Fig. 2b). However, 
CoCoA’s wavefront correction resulted in slightly inferior performance 
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Fig. 2 | CoCoA provides accurate online aberration and structure estimations 
as validated by DWS and non-blind RLD. a, Schematics of online aberration 
correction. Cyan: a SH sensor receives a wavefront and measures wavefront 
aberration. Orange: CoCoA receives a 3D image stack and outputs estimated 
aberration and 3D structure. Corrective wavefront from either DWS or CoCoA is 
applied to a DM for online aberration correction. b, MIPs of 20-µm-thick image 
stacks (80 × 80 × 20 µm3) acquired without and with aberration correction by 
DWS (top) and CoCoA (bottom) over iterations, respectively. Insets: zoomed-in 
views (white box) and corrective wavefronts. ADU, analog-to-digital unit.  
c, Residual aberration and image contrast after DWS- and CoCoA-based 

corrections over iterations. Left: residual aberration measured with DWS; 
top right: r.m.s. values of residual aberrations; bottom right: image contrast 
computed as the ratio between the 99th percentile and the 1st percentile 
pixel values of insets in b. d, Spatial-frequency representations of images in 
b and their radially averaged profiles. Inset: zoomed-in view of a mid-to-high 
spatial-frequency region. Dashed circle: diffraction limit (3.125 µm−1). e, MIPs of 
image stacks (34 × 34 × 18 µm3) acquired with widefield (i) and two-photon (ii) 
fluorescence microscopy after DWS AO. MIPs of reconstructed 3D structures 
(colour-coded by depth) by CoCoA (iii), blind RLD (iv) and non-blind RLD (v) from 
‘No AO’ images.
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compared with DWS, as indicated by the higher residual aberration 
(as measured by DWS after applying DWS [1] and CoCoA [1] to the DM; 
Fig. 2c) and the lower image contrast metric (bottom right, Fig. 2c). To 
further improve CoCoA’s performance, we carried out iterative aber-
ration corrections by inputting to CoCoA the 3D image stack acquired 
after applying the corrective wavefront from CoCoA of the previous 
round. Our results show that the performance of CoCoA gradually 
improved over three iterations, leading to comparable image quality 
with DWS AO (Fig. 2b). We also found the residual aberration after each 
iteration to decrease over CoCoA iterations, while DWS AO allowed 
diffraction-limited performance (as defined by the Rayleigh limit) 
after the second iteration (Fig. 2c).

Additionally, we evaluated the resolution improvement in the 
spatial-frequency domain by analysing the Fourier transform of the 
maximal intensity projection (MIP) image of aberration-corrected 
image stacks. Aberration correction, using corrective wavefront 
acquired through either DWS or CoCoA, led to larger magnitudes in 
high spatial-frequency range (that is, away from the origins in the 2D 
spatial-frequency representations; Fig. 2d, left panels). The recovery 
of high spatial-frequency information can also be easily appreciated 
from the radially averaged line power spectral density profiles (Fig. 2d, 
right panels). After only one iteration, both DWS and CoCoA correc-
tions significantly increased the power over a broad spatial-frequency 
range when compared with ‘No AO’. Compared with DWS [1], CoCoA 
[1] increased spectral power slightly less in the mid spatial-frequency 
region but had similar improvement at the high spatial-frequency end 
(inset in dashed box, Fig. 2d). After two iterations, CoCoA [2] and DWS 
[2] showed no perceivable difference. Quantitative Fourier ring correla-
tion analyses showed similar improvements in resolution both laterally 
(Supplementary Fig. 10) and axially (Supplementary Fig. 11). These find-
ings are consistent with residual aberration comparison and indicate 
that CoCoA’s estimation of wavefront aberration is highly accurate.

We then investigated how the 3D structure output by CoCoA 
approximated the structure in real life. Because the ground-truth 
structural information is not available to us, we compared the struc-
tural output from CoCoA with those obtained via deconvolution, a 
widely applied technique that reassigns out-of-focus photons back 
to their sources and enhances high spatial-frequency information. 
We applied blind and non-blind deconvolutions based on the RLD 
algorithm42,43 on the ‘No AO’ image stack used as input to CoCoA. In 
blind RLD, an estimated PSF obtained from a maximum likelihood 
algorithm (Methods) was used. In non-blind RLD, the aberrated PSF 
from the measured aberration by DWS was directly utilized, which 
should lead to the most accurate deconvolution. Therefore, we used 
the non-blind RLD output as the standard for comparison.

Occasionally, in locations with low brightness, CoCoA encoun-
tered difficulties in accurately depicting the dim and fine features that 
are visible in both the DWS AO image stack and non-blind RLD structure 
(for example, white arrowheads in the second row, Fig. 2e) or hallu-
cinated structures that were absent from the non-blind RLD output 
(for example, white arrowheads in the third row, Fig. 2e; also see Sup-
plementary Note for relevant discussion on post-processing). Overall, 
however, the morphology of dendrites and dendritic spines from the 
CoCoA output was highly consistent with the non-blind RLD output, 
and the axial locations of both CoCoA and non-blind RLD outputs agree 
well with the two-photon fluorescence image stack (second column, 
Fig. 2e). In contrast, blind RLD reconstruction led to much noisier 
features, from which the sample structure cannot be ascertained with 
high confidence. Therefore, both being software-only algorithms, 
CoCoA outperformed blind RLD. Furthermore, CoCoA achieved similar 
performance in structural recovery to that of non-blind RLD.

Characterizing performance limits by SNR and SBR
Although CoCoA succeeded in aberration estimation and structural 
recovery from the example images acquired from fixed brain slices, 

biological imaging often suffers from low SNR (Methods) and SBR 
(Supplementary Fig. 12). This is particularly true when imaging living 
organisms, where dim fluorophores and factors such as photodam-
age, photobleaching and short exposure time (for example, during 
time-lapse imaging) reduce the number of photons collected per 
pixel. For widefield fluorescence microscopy, larger out-of-focus 
fluorescence of thicker samples also leads to higher background. For 
all computational imaging approaches including CoCoA, images of 
low SNR and SBR pose challenges for their performance. Therefore, 
we investigated the minimum SNR and SBR thresholds required 
for CoCoA to be effective, before applying it for in vivo imaging 
experiments.

To control SNR, we introduced a fixed amount of aberration using 
the DM but adjusted the post-objective power, acquiring images of 
increasing SNRs at higher power (Fig. 3a). For primary vertical coma 
with a 0.15λ root mean square (r.m.s.) value, at very low SNR values (for 
example, 2.13; first column, Fig. 3a), there were not enough fluores-
cence photons to visualize features in our widefield images. Unsurpris-
ingly, CoCoA also failed in structural recovering (first column, Fig. 3b). 
When SNR of the neuronal structures increased to 3.39, dendrites 
and dendritic spines could be visualized in the widefield MIP images 
(second column, Fig. 3a). However, CoCoA still failed to estimate the 
aberration or reveal the underlying structural features (second column, 
Fig. 3b). This was likely because even though signals of the in-focus 
features were sufficient for their visualization in MIP images, when 
out of the focal plane, the signals from these features were too noisy 
to be used by CoCoA for aberration estimation and structural retrieval. 
When the SNR increased to ~4, the performance of CoCoA markedly 
improved, with dendritic and synaptic features successfully retrieved 
(third column, Fig. 3a,b).

We quantified the performance of CoCoA using the Pearson cor-
relation coefficient (PCC) and the Earth Mover’s Distance (EMD)51,52. 
Using structures extracted by CoCoA from an aberration-free 3D image 
stack of high SNR as reference, PCC measures the correlation between 
CoCoA-reconstructed structures from aberrated image stacks and the 
reference, while EMD measures the distance between the two recon-
structions by solving an optimal transport problem (Methods). PCC- 
and EMD-based quantifications confirmed the rapid performance 
improvement with the increase of SNR as observed by eye, with PCC 
increasing and EMD decreasing precipitously when SNR crosses a 
cutoff threshold value (Fig. 3c,d). Using two-segment piecewise linear 
fits on the PCC and EMD analysis, we found a cutoff SNR of 3.6 for this 
aberration, above which CoCoA provides robust structural recovery. 
The same cutoff also applied to aberration estimation (Fig. 3e). Below 
the cutoff, CoCoA erroneously returned non-zero coefficients for 
many non-primary-vertical-coma Zernike modes (grey symbols and 
lines, Fig. 3e; blue symbols and lines are the average of grey symbols 
and lines). Above the SNR cutoff, CoCoA accurately predicted the 
coefficient of primary vertical coma applied to the system (dashed 
black line at 0.15λ, Fig. 3e) and the coefficients for the other modes 
were effectively zero.

Furthermore, we tested another aberration mode, primary vertical 
astigmatism, also at 0.15λ r.m.s. value. Using the same quantification 
process, we found a cutoff SNR value of 4.5 (Fig. 3f–h). Together, these 
results indicate that CoCoA performs with high accuracy when the 
in-focus fluorescence features had 10–20 photons per pixel by assum-
ing a Poisson distribution.

To experimentally control SBR levels, we introduced incremen-
tally increasing aberration using the DM, from 0 to 0.31λ r.m.s. by 
0.04λ r.m.s. steps. For each r.m.s. value, we applied three different 
mixed-mode aberrations with randomly generated Zernike coeffi-
cients. As the aberration increased, we observed a degradation in 
image quality and reduction in SBR (Fig. 4a). Above 0.2λ r.m.s., the 3D 
neuronal structures extracted by CoCoA started to severely deviate 
from those acquired at higher SBR (Fig. 4b).
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We plotted PCC and EMD against the given r.m.s. aberration and 
fitted the data points to two-segment piecewise linear curves. We car-
ried out the same analyses for aberrations composed of low-order 
Zernike modes (Z m

n , 2 ≤ n ≤ 4; primary vertical coma, astigmatism 
and trefoil; Fig. 4c–f) or high-order modes (n = 5; secondary vertical 
coma, astigmatism and trefoil; Fig. 4g–j). For low-order aberrations, 
the cutoff aberration above which the reconstructed structure 
degraded severely was 0.19λ r.m.s. (Fig. 4c, d), a value above which the 
wavefront estimation error increased more steeply and became larger 

than 0.075λ, the Rayleigh limit (Fig. 4e). Similarly, for aberrations 
containing only higher-order modes, we identified a cutoff aberration 
(0.16λ r.m.s.; Fig. 4g–i) above which CoCoA gave rise to erroneous 
structures. The corresponding cutoff SBR for both low- and high-order 
aberrations was ~1.10 (Fig. 4), indicating that CoCoA successfully 
retrieved structural information when the signal was 10% stronger than 
the background. The fact that both low- and high-order aberrations 
led to the same cutoff SBR suggested that the performance of CoCoA 
was insensitive towards the orders of the Zernike modes.
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Biological samples contain features of different sizes and may vary in 
their fluorescence labelling density. To better understand how feature size 
and labelling density affect the performance limits of SNR and SBR, we car-
ried out additional experiments on 3D tissue phantoms. These phantoms 
were prepared by mixing 1% agarose with fluorescent beads of either 500 nm 
or 2 µm diameter at varying densities. We tested phantoms with frac-
tions of volume occupied by fluorescent beads ranging from 2.35 × 10−4 to  
4.66 × 10−3 (for 500 nm beads) and from 5.11 × 10−4 to 2.75 × 10−3 (for 2 µm 
beads). We found SNR cutoffs ranging from 3.4 to 4.8 across the fluores-
cence volume fraction range and bead sizes (Supplementary Fig. 13), which  
were consistent with the cutoffs determined from brain slices (Fig. 3).

We also investigated bead phantoms with fluorescence vol-
ume fraction ranging from 4.96 × 10−3 to 1.70 × 10−2 (for 500 nm 
beads) and 4.78 × 10−3 to 1.52 × 10−2 (for 2 µm beads) (Supplementary 
Fig. 14). Similar to the simulation result (Supplementary Fig. 8e–h), 
the accuracy of structural retrieval, as quantified by PCC, was lowest 
for the densest sample (that is, 1.70 × 10−2 in Supplementary Fig. 14a), 
likely because denser samples had images of lower SBR and more 
overlap between neighbouring structures. However, aberration 
estimation accuracy and the SBR cutoff value were largely insensitive 
towards fluorescence volume fractions tested. For 500 nm beads, 
the SBR cutoff was as low as 1.03. This indicates that when SNRs are 

In
pu

t i
m

ag
e

st
ac

k
C

oC
oA

re
co

ns
tr

uc
te

d
a

b

Zo
om

ed
-in

vi
ew

Zo
om

ed
-in

vi
ew

PC
C

0.5

0.3

0.7

0.9 PCC

r.m.s.cutoff ≈ 0.15λ

No external aberration 0.04λ r.m.s. 0.08λ r.m.s. 0.12λ r.m.s. 0.16λ r.m.s. 0.19λ r.m.s. 0.23λ r.m.s. 0.27λ r.m.s. 0.31λ r.m.s.

Severity of aberration Weak Strong

5 µm

MIP

MIP

2 µm

g Higher-order modes (Zn
m, n = 5)

EMD

0.2

0.4

0.6

EM
D

r.m.s.cutoff ≈ 0.16λ

h

d

i

0.1

0

0.2

0.3

Es
tim

at
io

n 
er

ro
r (

w
av

e 
r.m

.s
.)

Average r.m.s.cutoff
≈ 0.16λ

0.050 0.10 0.15 0.20 0.25 0.30

Average r.m.s.cutoff

≈ 0.19λ

Given aberration (wave r.m.s.)

e f

j

1.08

1.06

1.10

1.12

1.14

SB
R

SB
R

1.09

1.10

1.11

1.12

0.050 0.10 0.15 0.20 0.25 0.30

Given aberration (wave r.m.s.)

SBRcutoff ≈ 1.10

SBRcutoff ≈ 1.11

Average r.m.s.cutoff

≈ 0.19λ

Average r.m.s.cutoff
≈ 0.16λ

c    Low-order modes (Zn
m, 2 ≤ n ≤ 4)

PC
C

Given aberration (wave r.m.s.)

0.6

0.7

0.8

0.9

0.050 0.10 0.15 0.20 0.25 0.30

r.m.s.cutoff ≈ 0.19λ

PCC EMD

0.3

0.4

0.1

0.2

0.5

EM
D

Given aberration (wave r.m.s.)
0.050 0.10 0.15 0.20 0.25 0.30

r.m.s.cutoff ≈ 0.19λ

0.1

0

0.2

0.3

Es
tim

at
io

n 
er

ro
r (

w
av

e 
r.m

.s
.)

0.050 0.10 0.15 0.20 0.25 0.30

Given aberration (wave r.m.s.)
0.050 0.10 0.15 0.20 0.25 0.30

Given aberration (wave r.m.s.)Given aberration (wave r.m.s.)
0.050 0.10 0.15 0.20 0.25 0.30

Given aberration (wave r.m.s.)
0.050 0.10 0.15 0.20 0.25 0.30

Fig. 4 | CoCoA’s performance depends on SBR. a, MIPs of widefield image 
stacks measured with increasingly severe aberrations (mixed low-order modes). 
Insets: zoomed-in views (orange box). b, MIPs of structural stacks reconstructed 
by CoCoA from images in a. All MIPs in b individually normalized to [minimum, 
maximum]. c,d, PCC (c) and EMD (d) computed between CoCoA structure 
outputs from an unaberrated image stack and aberrated input image stacks in 

b. Two-segment piecewise linear fits (solid black lines) determine aberration 
r.m.s. cutoffs (vertical dashed black lines). e, Wavefront errors in r.m.s. between 
CoCoA-estimated and ground truth wavefront aberrations. f, SBR cutoff 
(horizontal red line) is determined from the average r.m.s. cutoff (vertical black 
lines in e and f). g–j, Same as in c (g), d (h), e (i) and f (j) but for mixed high-order 
modes. In c–j, data are presented as mean values ± s.d. (n = 5).

http://www.nature.com/natmachintell


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00853-3

sufficiently high, CoCoA performs well even for samples with very 
low SBR. We also found that the 2 µm beads had higher SBR cutoff 
values than 500 nm beads at the similar fluorescence volume frac-
tions. Because structural features can be considered as continu-
ous distributions of point sources and their images composed of 
continuously overlapping 3D PSFs centred on these point sources, 
out-of-focus signals of larger features contain comparatively less 

information on aberration, thus require higher SBR for aberration 
measurement and structural retrieval.

CoCoA for in vivo imaging of the mouse brain
Having validated CoCoA for imaging fixed brain slices and investigated 
its performance limits, we then applied it to high-resolution in vivo 
widefield imaging through a cranial window over the left cortex of a 
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Thy1-GFP line M mouse (Methods). We adjusted the correction collar 
of the objective lens to correct for spherical aberration introduced by 
the 0.17-mm-thick glass cranial window.

We first evaluated the accuracy of CoCoA in estimating optical 
aberration for in vivo mouse brain imaging by comparing its perfor-
mance with DWS. Both CoCoA and DWS produced similar corrective 
wavefronts (Fig. 5a) with primary coma being the dominant Zernike 
mode (Fig. 5b), likely caused by a slight tilt of the cranial window away 
from being perpendicular to the optical axis of the objective. By apply-
ing the corrective wavefronts obtained from DWS and CoCoA onto the 
DM, we achieved higher resolution and contrast (quantitative Fourier 
ring correlation analysis in Supplementary Fig. 15), enabling better 
visualization of fine neuronal features, such as dendritic spines (Fig. 5a, 
white arrowheads; Fig. 5c, line signal profiles).

We next employed CoCoA to retrieve 3D neuronal structural 
information from the mouse brain in vivo. From the widefield images 
acquired without AO, CoCoA returned structural features such as den-
dritic spines that were consistent with the widefield images acquired 
with AO (Fig. 5d,e, white arrowheads). Using the same aberrated ‘No 
AO’ image stack as the input, we performed both blind and non-blind 
RLD (Fig. 5e, middle and right). Our results showed that CoCoA and 
non-blind RLD recovered similar synaptic structures (Fig. 5e, white 
arrowheads) while blind deconvolution resulted in artefactual struc-
tures (Fig. 5e, middle, red arrowheads).

The successful aberration estimation and structural recovery 
by CoCoA for in vivo imaging are to be expected, given that the SNR 
and SBR of the input image stacks (49.8 and 1.13, respectively; Fig. 5d) 
exceeded the cutoff values characterized previously. Notably, our 
experiments were conducted using illumination power within the 
typical range for in vivo widefield brain imaging experiments53–55. 
Therefore, our results indicate that CoCoA can be generally applied as a 
software-only approach to accurately estimate aberration and recover 
high-fidelity structures for in vivo brain imaging.

Discussion
Utilizing coordinate-based neural representations and incorporating 
a physical forward model to iteratively extract structural information, 
CoCoA is a new machine learning framework that enables simultane-
ous wavefront aberration estimation and 3D structural recovery from 
a single input, an aberrated widefield image stack. A self-supervised 
machine learning approach, CoCoA stands apart from existing super-
vised machine learning methods in that it does not require an external 
training dataset. Recovering structural features from aberrated images, 
CoCoA also does not require AO hardware such as a wavefront correc-
tive device. Moreover, we believe our physics-informed framework can 
easily be extended to other imaging modalities.

CoCoA is distinct from digital AO strategies that were recently 
developed for aberration correction and image enhancement56,57 of 
two-photon synthetic aperture microscopy and scanning light-field 
microscopy. Although elegant and effective, these methods itera-
tively estimate aberration from multi-view measurements obtained 
either through ptychographic scanning or a lenslet array. In contrast, 
the standard widefield microscopy images that CoCoA utilizes are 
single-view images, which cannot be used for aberration estimation 
by these previously published methods.

Using DWS AO and RLD, we validated the performance of CoCoA 
in accurately estimating optical aberration and recovering structural 
features. Successfully demonstrating the capabilities of CoCoA in imag-
ing neuronal structures in the living mouse brain, our work represents 
a successful in vivo application of machine learning-based AO for 3D 
structural recovery in widefield microscopy.

Importantly, we conducted a detailed investigation into the per-
formance limits of CoCoA, specifically in terms of SBR and SNR and 
determined their cutoff values required for successful CoCoA recon-
struction. Our analyses suggest that there exists a fundamental lower 

limit on the amount of information contained in an image stack that 
is necessary for CoCoA to produce accurate wavefront estimation 
and structural information. These limits likely generally apply to all 
computational, including machine learning-based AO approaches.

Methods
Animal use
All animal experiments were conducted according to the National 
Institutes of Health guidelines for animal research. Procedures 
and protocols on mice were approved by the Institutional Animal 
Care and Use Committee at the University of California, Berkeley 
(AUP-2020-06-13343).

AO widefield fluorescence microscope
The AO widefield microscope had two working modes (Supplementary 
Fig. 2): widefield imaging mode and two-photon excitation (2PE) for 
AO mode. The switch between the two modes was achieved using a 
movable mirror (MM) controlled by an electric nanopositioning stage 
(SmarAct, modulator control system).

In the widefield imaging pathway (Supplementary Fig. 2a, MM 
out), illumination was delivered to the sample and the emitted 
fluorescence was recorded by a sCMOS camera. The output beam 
from a 488-nm continuous laser (Coherent, Sapphire LPX 488, 
400 mW) was expanded 18 times by three beam expanders (two 
×3, Thorlabs, GBE03-A; one ×2, Thorlabs GBE02-A) after passing 
through an acoustic-optic tunable filter (AOTF; AA Opto-Electronic, 
AOTFnC-400.650-TN). The illumination was then relayed to the 
sample by three achromatic lenses (L1, L2 and L3, focal lengths 
(FLs) = 150, 125 and 400 mm, respectively) and an objective lens 
(Nikon, CFI Apo LWD ×25, 1.1 NA and 2-mm WD). Emitted fluores-
cence was collected with the same objective. A dichroic mirror (D1, 
Semrock, Di-405/488/561/635-t3-25×36) was placed between L3 and 
the objective, reflecting illumination and transmitting collected fluo-
rescence. The back focal plane of the objective was relayed to a DM 
(Iris AO, PTT489) by a pair of achromatic lenses (L4 and L5, FL = 400 
and 175 mm, respectively). Fluorescence reflected by the DM was then 
focused and imaged on a sCMOS camera (Hamamatsu, Orca Flash 4.0) 
by three lenses (L6, L7 and L8, FLs = 300, 85 and 75 mm, respectively).

In the AO 2PE pathway (Supplementary Fig. 2b, MM in), the wave-
front of a 2PE fluorescence guide was directly measured to determine 
artificial or sample-induced aberration. The output beam from a 
Ti:sapphire laser (Coherent, Chameleon Ultra II) was expanded 2 times 
by a beam expander (×2, Thorlabs GBE02-B) after being modulated by 
a Pockels Cell (ConOptics, 302RM). The 2PE beam was then scanned 
with a pair of galvanometer mirrors (Cambridge, H2105) that are 
optically conjugated with a pair of achromatic lenses (L12 and L11, 
FL = 85 mm). Another pair of achromatic lenses (L10 and L9) further 
conjugated the galvos to the DM. For wavefront sensing, the emit-
ted 2PE fluorescence first followed the same path as in the widefield 
imaging mode. The MM was placed in to reflect the fluorescence after 
the DM. Being relayed by L11 and L12 and descanned by the galvanom-
eter pair, the fluorescence was reflected by a dichroic mirror (D3, 
Semrock, Di02-R785-25×36) and relayed to an SH sensor by a pair of 
achromatic lenses (L13 and L14, FLs = 60 and 175 mm, respectively). 
The SH sensor was composed of a lenslet array (Advanced Microoptic 
Systems GmbH) conjugated to the objective back pupil plane and a 
camera (Hamamatsu, Orca Flash 4.0) at the focal plane of the lenslet 
array. Focal shifts in the SH pattern were used to calculate wavefront 
distortion. The corrective pattern could be then determined and 
applied to the DM to correct the measured aberration. When needed, 
two-photon fluorescence imaging was enabled by placing a dichroic 
mirror (D1, Semrock, Di02-R785-25×36) into the light path, which 
reflected the emitted fluorescence to be focused on a photomultiplier 
tube (Hamamatsu, H7422-40). Imaging parameters can be found in 
Supplementary Table 2.
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System correction and wavefront sensor calibration
In all experiments, before imaging biological samples, system aberra-
tion caused by optics imperfections and/or misalignment was meas-
ured in the widefield light path using the phase retrieval approach 
based on the Gerchberg–Saxton algorithm58 from a 3D image stack 
of a 200-nm-diameter fluorescent bead and corrected by the DM. 
Fluorescence from a 7.6 × 7.6 µm2 field of 2-µm-diameter fluorescent 
beads (ThermoFisher Scientific FluoSpheres Carboxylate-Modified 
Microspheres, yellow-green 505/515) on a glass slide were two-photon 
excited. After descanning and reflecting off the DM with system aber-
ration correction, the recorded pattern on the SH sensor of the fluo-
rescence wavefront was used as the aberration-free reference pattern 
for wavefront measurement.

Beads sample on glass slide
The 2-µm-diameter fluorescent bead stock solution was diluted (1:500 
in deionized water) and then pipetted onto a microscope glass slide 
precoated with poly-l-lysine hydrobromide (10 mg ml−1; Sigma-Aldrich, 
P7890). The same method was followed to prepare 200-nm-diameter 
fluorescent beads sample for the validation of CoCoA in imaging 
sub-diffraction-limited fluorescent beads (1:10k dilution).

Fixed mouse brain slices preparation
We prepared brain slices from a Thy1-GFP line M transgenic mouse (The 
Jackson Laboratory, stock 007788). After being deeply anaesthetized 
with isoflurane (Piramal), we performed a standard transcardial perfu-
sion first with phosphate-buffered saline (Invitrogen) followed by 4% 
paraformaldehyde (Electron Microscopy Sciences). We then collected 
the mouse brain and immersed it in 2% paraformaldehyde and 15% 
sucrose in PBS solution overnight at 4 °C. After that, the immersion 
solution was replaced with 30% sucrose in PBS, and the brain was stored 
at 4 °C. After another 24 h, the mouse brain was cut to 100-µm-thick 
slices on a microtome (Thermo Scientific, Microm HM430). Brain 
slices were then placed on microscope glass slides and allowed to dry 
for 1 h. Cover glass (Fisherbrand, number 1.5) with mounting medium 
(Vectashield HardSet Antifade mounting medium, H-1400) was then 
placed on top of the glass slides with brain slices. Slices were ready for 
imaging after the mounting medium completely hardened.

Cranial window implantation and in vivo mouse brain imaging
All Thy1-GFP line M mice (The Jackson Laboratory, stock 007788) were 
around four months old at the time of cranial window installation. The 
mice were deeply anaesthetized under isoflurane (2.0% v/v in O2) during 
the whole surgery. A craniotomy (3.5 mm in diameter) was created over 
the left cortex with dura intact. A cranial window was made by gluing 
(Norland 68 Optical Adhesive) together a glass ring (inner diameter, 
3 mm; outer diameter, 4.5 mm) and a glass disk (diameter, 3.5 mm), 
both were laser cut from standard number 1.5 microscope cover glass 
(Fisherbrand). The cranial window was embedded into the craniotomy 
and the glass ring was glued onto the skull by Vetbond (Vetbond, 3M). 
A titanium head-bar was then fixed on the skull with Vetbond and fast 
curing orthodontic acrylic resin (Lang Dental Mfg). In vivo mouse 
brain imaging was conducted under light isoflurane anaesthesia (0.5 
to 1.0% v/v in O2) 2 h after surgery.

Calculating signal-to-background and signal-to-noise ratios
The calculation of SBR follows four steps (Supplementary Fig. 12):  
(1) denoise the image stack using a 3D low-pass Gaussian kernel; (2) 
remove DC components and low-frequency background fluctuations 
using a 3D high-pass Gaussian kernel; (3) fit the image stack with a 
two-component Gaussian mixture model and classify the voxels into two 
groups (that is, background and signal); and (4) compute SBR as the ratio 
of the mean of the signal voxels to the mean of the background voxels.

To compute SNR, we first assessed the gain of the CMOS camera to 
convert grayscale pixel values p to photon count c per pixel. Assuming 

a linear relationship between the two quantities, the pixel value can 
be expressed as p = βc, where β represents the gain in pixel value per 
photon count. Considering that c follows a Poisson random distribu-
tion, with its variance Var[c] equal to its mean E[c], we derived β to be 
the ratio of Var[p] to E[p]. We conducted a characterization of the gain 
at different power levels and observed the constant gain of 2.19.

Using the signal voxels from the SBR analysis, we calculated the 
SNR as

SNR =
̄y/β

√ ̄y/β + (nr/β)
2

(5)

where β is the gain in pixel values per photon count, y denotes the set 
of signal voxels in the image stack and nr represents the readout noise 
calculated as the standard deviation of pixel values in frames acquired 
without light exposure to the camera.

PCC and EMD calculations
To quantify the similarity between two structural reconstructions, we 
employed two metrics: PCC and EMD. PCC is defined as the normalized 
inner product of the two reconstructions:

PCC (s1, s2) =
∑i (s1i − s1) (s2i − s2)

√∑i(s1i − s1)
2∑i(s2i − s2)

2
. (6)

For EMD, we computed a Monte Carlo approximation of the 
p-sliced Wasserstein distance59, with p = 2 and 200 projections used 
for the approximation.

Blind and non-blind RLD implementation
Both blind and non-blind deconvolution processes were performed 
using a GPU-accelerated Python implementation of RLD41. Both 
non-blind and blind RLD were applied to image stacks acquired without 
AO correction. Non-blind RLD utilized the 3D PSF calculated from the 
wavefront aberration measured from DWS. The non-blind reconstruc-
tions were achieved with 500 iterations (87 s of computation) for the 
brain slice sample (Fig. 2) and 2000 iterations (445 s of computation) 
for in vivo mouse brain (Fig. 5) of the RLD algorithm.

Blind RLD first estimated the 3D PSF using 100 iterations of the 
maximum likelihood algorithm utilizing MATLAB’s deconvblind func-
tion60 and then deconvolved the image stack with the estimated PSF 
using the same number of RLD iterations as the non-blind case. Con-
sequently, blind RLD took substantially longer than non-blind RLD: 
estimating PSF took 1141 s for the brain slice sample (Fig. 2) and approxi-
mately 1.25 h for the in vivo mouse brain (Fig. 5). The deconvolution step 
took the same amount of time as non-blind RLD above. Therefore, the 
total computation time of blind RLD was 1,228 s and 1.37 h for the slice 
and in vivo imaging, respectively.

Ethics
All animal experiments were conducted according to the National 
Institutes of Health guidelines for animal research. Procedures 
and protocols on mice were approved by the Institutional Animal 
Care and Use Committee at the University of California, Berkeley 
(AUP-2020-06-13343).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data used for the results in the paper, for example, fixed mouse 
brain slice (Fig. 2) and mouse brain in vivo (Fig. 5), are available at 

http://www.nature.com/natmachintell
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https://github.com/iksungk/CoCoA (ref. 61). Due to repository storage 
limitations, please email the corresponding authors (I.K. and Q.Z.) for 
access to the rest of the data for both the paper and supplementary 
material.

Code availability
Code is publicly available at https://github.com/iksungk/CoCoA  
(ref. 61).
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