

Learning Hierarchical Image Segmentation For Recognition and By Recognition

Tsung-Wei Ke *

Consistency of Visual Parsing instead of Text Labels

Continuum of Internal Segmentation onto Recognition

Concurrency of Segmentation and Recognition

- Always trained, tested, and adapted together
- 2. Segmentation substantiates recognition
- 3. Recognition leads segmentation

Sangwoo Mo*

Our CAST = ViT w/ Superpixels + Graph Pooling

FOR

Recognition

1. Unsupervised Part-Whole Discovery

uncovering part-whole

Stella X. Yu

2. Solidify Recognition by Adapting Segmentation

3. Generalization and Efficiency

model GFLOPS region mIoU boundary F-score								
SAM-B	677 18.03 10.15	20.71	7.25					
SAM-H	3166 21.97 12.07	32.66	11.82					
ViT-B	18 25.34 11.74	10.92	4.64					
CAST-B	13 29.66 13.20	22.32	6.52					

PRF 14 labels		ls	4 labels			1 label			
HSG	20.7	18.6	19.6	24.1	30.6	26.9	20.5	36.1	26.2
CAST	21.1	24.1	22.5	24.8	33.2	28.4	26.3	44.9	33.2
gain	0.4	5.5	2.9	0.7	2.6	1.5	5.8	8.8	7.0

test on PASCAL-VOC	before	tuning	after t	uning	Model	GFLOPS	IN-100	IN-1K
ViT-S ViT-S but with token pooling ViT-S but with superpixels CAST-S	30.9 34.5 32.2 38.4	16.1 19.8 21.2 27.0	65.8 67.2 66.5 67.6	40.7 41.9 46.7 48.1	ViT-S Swin-T CAST-S	4.7 4.5 3.4	78.1 78.3 79.9	67.9 63.0 68.1

- Beats ViT on unsupervised hierarchical segmentation on ImageNet
- 2. Beats SAM on unsupervised object segmentation on PartImageNet
- Beats HSG on unsupervised human-body parsing on DensePose 3.
- Better downstream semantic segmentation 4
- Better recognition and efficiency 5
- 6. Both superpixels and token pooling contribute to performance gains

