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a b s t r a c t 

Existing long-tailed recognition methods focus on learning global image representation by re-weighing, 

re-sampling, or global representation learning. However, we observe that solving real-world long-tailed 

recognition problems requires a fine-grained understanding of local parts within the image in order to 

avoid confusion among images with similar global configurations. We propose a novel self-supervised 

learning framework based on local pseudo-attributes (LPA) that are learned via clustering of local features 

without any human annotations. Such pseudo-attributes are often more balanced compared to image- 

level class labels. Our method outperforms the state-of-the-art on various long-tailed image classification 

datasets, such as CIFAR100-LT, iNaturalist, and ImageNet-LT. 
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. Introduction 

Deep learning has remarkable successes in visual recognition 

2–4] , by virtue of large-scale annotated datasets such as Ima- 

eNet [5] for visual recognition, MS COCO [6] for object detection, 

r Places [7] for place recognition. 

However, these datasets are often curated to be class balanced, 

nlike long-tailed data distributed real-world datasets ( Fig. 1 ) 

here a few non-rare classes own most instances, and most classes 

ave a few instances [1,8–16] . 

Training a classifier with imbalanced data leads to biased pre- 

ictions towards the few non-rare classes [15] , with very low ac- 

uracies for most of the rare classes [8,17–19] . Long-tailed recog- 

ition has thus remained an active research topic in the past few 

ears [14,20–25] . 

Several approaches have been proposed for long-tailed recogni- 

ion, including re-sampling [8,17,26–28] , re-weighting [20,29–33] , 

nd multi-expert approaches [14,34,35] . 

Existing methods treat long-tailed recognition as a machine 

earning problem, where images are indivisible given data points. 

n contrast, we take a vision perspective and break the image into 

ivisible components: Not only can they be shared across classes, 

ut their local relationships can also be studied and characterized 

or better recognition and generalization. 

Different from tiny images in CIFAR-LT [20,30] , images in large- 

cale datasets such as ImageNet-LT [1] contain larger scenes with 
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ne-grained classes within dogs or birds super-classes. A model can 

e easily confused among rare class images ( Robin or Hummingbird 

n Fig. 2 ) with similar global configurations . The key to distinguish- 

ng such rare-class images from their majority counterparts lies in 

he local parts of the object, such as the color of the body or the

ength of the beak. We observe in Fig. 1 that a pair of rare- and

ommon- class images also share attributes such as long tail for the 

ird or pointed ears for the dog . These common class instances help 

s identify local attributes that are also present in rare classes, ef- 

ectively transferring knowledge from common to rare classes and 

roviding more reliable mid-level representations for further visual 

iscrimination ( Fig. 2 ). 

We propose a novel concept, local pseudo-attributes (LPA), to 

apture our intuition. LPA can be obtained without using any hu- 

an annotations: We run K-means clustering on the pixel-level 

eature vectors from a model to obtain the pseudo-attribute labels . 

e conjecture that each cluster indicates a specific visual pattern 

uch as forest-like or sky-like . We then aggregate pseudo-attribute 

cores of all the instances in the same class to compute class-level 

seudo-attribute labels . 

For example, in Fig. 2 , we have local pseudo-attributes Blue sky, 

lunt beak, Long tail for the rare Robin class, Blue sky, Pointed beak, 

hort tail for the rare Hummingbird class, and Green forest, Blunt 

eak, Long tail for the common Bulbul class. Please note that we 

nly name attributes for the sake of description; our method does 

ot need naming or require knowledge of the language. 

Treating each image as a global pattern, the sheer size of Blue 

ky would easily confuse the two rare classes: Robin with Hum- 

ingbird . However, when we consider the image as a collection of 

hese local pseudo-attributes, they are pushed further apart due 
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Fig. 1. Paired rare (top row) and common (bottom row) class instances from 

ImageNet-LT [1] . Although two images in the same column appear different, they 

share local parts with similar attributes, e.g., from Columns 1 to 4: long tail of birds, 

pointed ears of dogs, white body of birds , and dotted patterns of lizards . We propose 

to leverage such local psuedo-attributes, which can be obtained without human an- 

notations, to learn a model that is more discriminative for rare classes. 

t

f

c

u

b

b

b

i

t

f

c

b

t

i

l

(

r

l

r

3

l

a

t

a

r

2

m

p

t

(

o

a

w

o

d

r

s

s

c

s

d

h

t

t

s

d

t

p

m

m

h

T

a

e

e

b

a

F

p

m

l

o the two other distinctive attributes. The model is guided away 

rom Blue sky distractions and focuses instead on parts truly dis- 

riminative for these rare classes. 

Specifically, given a pseudo-attribute label for each class, we 

se supervised contrastive learning [36] to force the predictions 

etween instances of similar (different) pseudo-attribute labels to 

e similar (different). Consequently, Robin becomes closer to Bul- 

ul instead of Hummingbird , which shares big Blue sky with Robin 

n their very few instances, thereby increasing visual discrimina- 

ion among many tail classes. 

Please note that, since pseudo-attributes are based on visual 

eatures of local parts, they are more likely to be less imbalanced 

ompared to image-level class labels, another aspect that leads to 

etter conditioning during model training. 

Our method outperforms the state-of-the-art on extensive long- 

ailed image classification datasets such as CIFAR100-LT [20,30] , 

Naturalist [16] , and ImageNet-LT [1] . 

The key contributions of our work can be summarized as fol- 

ows: 1) We propose the novel concept of local pseudo-attributes 

LPA) which can be learned via clustering of local features without 

equiring any human annotation. 2) We leverage pseudo-attribute 

abels to train a classifier via contrastive learning so that the model 

eceives discriminative supervision on detailed local object parts. 
ig. 2. Illustration of our method with image examples from ImageNet-LT [1] . We run K

seudo-attributes. Then, we assign each training image with pseudo-attribute labels and

odel learns to distinguish the rare class, Robin , from the Hummingbird class by giving

everaging knowledge from common Bulbul class. 

52 
) We benchmark our method, local pseudo-attributes, on various 

ong-tailed recognition datasets such as CIFAR100-LT, iNaturalist, 

nd ImageNet-LT dataset. Our LPA surpasses the existing state-of- 

he-art long-tailed recognition methods. 

An earlier version of this work was first presented at a non- 

rchival workshop [37] . Here we provide more analysis, additional 

esults, and comprehensive implementation details. 

. Related work 

To address long-tail distributed visual recognition, various 

ethods have been proposed [14,38–42] for long years. The 

revious works for long-tailed recognition can be divided into 

hree different categories: (1) class re-balancing [12,30,43,44] . 

2) multi-stage training [20,21] , and (3) multi-expert meth- 

ds [14,34,35,41,45] . 

Class re-balancing. The most straightforward and classic way to 

ddress the long-tailed distribution problem is class re-balancing 

hich modulate the effect of the each samples in the training set 

n the target model. In particular, class re-balancing can be further 

ivided into of (1) re-sampling the training data [8,21,26,29,46] , (2) 

e-weighting loss function [40,47–51] , and (3) increasing the diver- 

ity of the rare class via data augmentation [46,52] . It has been 

hown that many class re-balancing methods improve the image 

lassification performance overall. However, these methods tend to 

how degraded accuracy on non-rare classes especially on small 

atasets. 

Multi-stage training. The methods with multi-stage training 

ave several different stages during training. For instance, the 

raining procedure by Kang et al. [21] is divided into represen- 

ation learning stage and classifier learning stage. The multiple 

tages in the training method of Li et al. [53] includes knowledge 

istillation. Moreover, other works like [54,55] suggest an addi- 

ional post-process for shifting the model logits. Such additional 

rocesses might increase the overhead of the training whereas our 

ethod only adds a simple K-means clustering process which al- 

ost doesn’t harm the training efficiency. 

Multi-expert methods. Finally, multi-expert based methods 

ave been studied including LFME [41] , BBN [42] , RIDE [14] , 

ADE [35] , and ACE [34] . Multi-expert methods have shown favor- 

ble performance in long-tailed recognition by virtue of extra mod- 

ls that learn more diverse knowledge. However, such extra mod- 

ls lead to the increase of the complexity not only during training 

ut also during inference. In contrast, we propose a totally new 

nd efficient approach by introducing pseudo-attributes that are 
-means clustering to obtain a set of clusters of local features; we call them local 

 utilize these labels to refine the model in a self-supervised learning fashion. Our 

 different supervision signals ( pointed vs. blunt beak and short vs. long beak ) by 
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Table 1 

Our model consistently outperforms the state-of-the-art methods (rows) across dif- 

ferent imbalance factors (columns) on CIFAR100-LT. 

Top-1 accuracy (%) � imbalance ratio 100 50 10 

Softmax 39.1 44.0 55.8 

Focal [47] 38.4 44.3 55.8 

LDAM-DRW [20] 42.0 46.6 58.7 

LWS [21] 42.3 46.0 58.1 

BBN [42] 42.6 47.0 59.1 

LDAM + DAP [51] 44.1 49.1 58.0 

LFME [41] 43.8 - - 

Causal Norm [62] 44.1 50.3 59.6 

Balanced Softmax [40] 45.1 49.9 61.6 

M2m [52] 43.5 - 57.6 

LADE [63] 45.4 50.5 61.7 

Hybrid-SC [64] 46.7 51.9 63.1 

MisLAS [65] 47.0 52.3 63.2 

Logit Adj [54] 43.9 - - 

RIDE [14] 49.1 - - 

DiVE [66] 45.4 51.1 62.0 

SSD [53] 46.0 50.5 62.3 

ACE [34] 49.6 51.9 - 

PaCo [36] 52.0 56.0 64.2 

TSC [67] 43.8 47.4 59.0 

GCL [68] 48.7 53.6 - 

BS + CMO [69] 46.6 51.4 62.3 

CMO [69] 50.0 53.0 60.2 

Our Baseline 51.3 55.8 63.2 

LPA (Ours) 53.3 57.1 65.1 

Table 2 

Our method outperforms the state-of-the-art methods on 

iNaturalist 2018 with the ResNet-50 backbone. 

Method Top-1 accuracy (%) 

Focal 58.0 

CB-Focal [30] 61.1 

LDAM-DRW [20] 68.0 

τ -norm [21] 65.6 

LWS [21] 65.9 

DAP [51] 67.6 

BBN [42] 66.3 

FSA [46] 65.9 

Balanced Softmax [40] 70.6 

LADE [63] 69.3 

MiSLAS [65] 70.7 

Logit Adj [54] 66.4 

RIDE [14] 72.6 

IB [72] 65.4 

SSD [53] 69.3 

TIDE [35] 72.9 

ACE [34] 72.9 

PaCo [36] 73.2 

TSC [67] 69.7 

WD&Max [73] 70.2 

CMO [69] 72.8 

GCL [68] 72.0 

LPA (Ours) 73.6 
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ore balanced and help improve the discriminative ability of the 

odel. 

. Local pseudo-attributes 

We introduce local pseudo-attributes and our contrastive learn- 

ng with pseudo-attributes for long-tailed recognition. 

.1. Problem definition 

Given the input image in the training data x and its class label 

 , a neural network consists of encoder f (·) and decoder g(·) and 

omputes the class probability ˆ y . Let W , H, D , and C denote the

idth and height of the latent spatial feature, the dimension of 

he feature vector, and the number of classes. We have: 

 = f (x ) ∈ R 

W ×H×D (1) 

 = GAP (Z ) , z k = 

1 

W H 

W ∑ 

i =1 

H ∑ 

j=1 

Z i jk (2) 

ˆ 
 = g(z ) ∈ R 

C , (3) 

here z is the latent feature vector from the global average pooling 

GAP). Traditional image classification methods, especially for long- 

ailed recognition, mostly utilize the global image representation 

 by averaging the whole latent representation along the spatial 

imension according to the ResNet architecture [3] . 

In PaCo [36] for long-tailed recognition, the pooled feature vec- 

or z and the class prediction 

ˆ y are used to compute the supervised 

ontrastive loss function L PaCo ( ̂ y , z , y ) to train the classifier model. 

.2. Learning with pseudo-attributes 

Averaging local representations loses important details that 

re essential for distinguishing fine-grained details, especially be- 

ween many long-tailed rare classes. We retain local informa- 

ion by proposing local pseudo-attribute (LPA), obtained simply 

y clustering the W × H number of D -dimensional local features 

rom Z of the training data which is popularly used in self- 

upervised [56,57] or unsupervised [58,59] learning works. In par- 

icular, we use K-means clustering to obtain the K number of 

luster centers. 

As illustrated in Fig. 2 , each LPA cluster represents a pseudo- 

ttribute automatically derived from the training data without any 

uman annotations, as opposed to actual attributes that are la- 

eled by human experts. Please note that pseudo-attributes are 

ess biased than images’ semantic class labels in that common and 

are classes could share many similar local parts. 

We then aggregate pseudo-attribute scores of instances within 

he same class to compute the class-level pseudo-attribute la- 

el a (y ) . Similar to the recent pseudo-label-based semi-supervised 

earning works [60] , we use the supervised contrastive learn- 

ng objective [61] to force the predictions between the in- 

tances of similar (different) pseudo-attribute labels to be similar 

different). 

Our final training loss is a combination of the pseudo-attributes 

ased contrastive learning loss and the standard supervised classi- 

cation loss, weighted by hyperparameter α: 

 PaCo ( ̂ y , z , y ) + α · L SupCon (z , a (y )) . (4)

. Experiments 

We first describe our experimental setup. We then compare our 

ethod with other baseline methods on various datasets. Finally, 

e conduct additional analysis to validate the effect of our pseudo- 

ttributes. 
53 
.1. Experimental setup 

Datasets. We follow the popular evaluation setup described 

n [1,36] for the long-tailed recognition tasks. In particular, the 

raining data has a long-tailed distribution, whereas the test 

ataset follows a uniform distribution. Following previous works, 

e conduct experiments on popular datasets, including the long- 

ailed version of CIFAR-100 [20,30] , iNaturalist 2018 [16] , and Ima- 

eNet [1] datasets. 

CIFAR100-LT . CIFAR-100 consists of 60K images categorized into 

00 classes (50K for training and 10K for testing). To implement 

he CIFAR dataset with long-tailed distribution, we borrow the set- 

ing described in [20,30,42] . The imbalance ratio of the dataset γ
s defined as γ = 

N max 
N where N max and N min are the numbers of 
min 
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Table 3 

Our method outperforms the state-of-the-art across all the metrics on ImageNet-LT 

with ResNeXt-50 backbone. 

Top-1 accuracy (%) Many Med. Few All 

Cross Entropy 65.9 37.5 7.7 44.4 

OLTR [1] - - - 46.3 

cRT [21] 61.8 46.2 27.4 49.6 

LWS [21] 60.2 47.2 30.3 49.9 

SSD [53] 64.2 50.8 34.5 53.8 

TSC [74] 63.5 49.7 30.4 52.4 

CMO [69] 66.4 53.9 35.6 56.2 

LPA (Ours) 66.7 55.4 39.0 57.5 

Table 4 

The prediction statistics of the rare class samples in ImageNet-LT before and after 

applying our method. Applying our method not only improves the classification ac- 

curacy for the rare samples but also alleviates the bias of the wrong predictions 

toward non-rare classes. 

Ratio (%) Correct Many Med. Few-{GT} 

Our Baseline 32.8 30.4 31.5 5.3 

LPA (Ours) 39.0 21.5 30.5 9.0 
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amples in the training data for the classes with the largest and 

mallest number of samples. We use imbalance ratios of 100, 50, 

nd 10 in our experiments following [42] . 

iNaturalist 2018 . The iNaturalist 2018 [16] is the large-scale and 

ne-grained species classification dataset, which is also known to 

ave heavy long-tailed distribution. This dataset consists of 437.5K 

mages categorized into 8142 classes. 

ImageNet-LT . ImageNet-LT is a long-tailed version of ImageNet 

ataset [70] by sampling a subset following the Pareto distribution 

ith power value 6. This dataset has 115.8K images with 1K cate- 

ories, with samples ranging between 5 and 1,246. 

Implementation Details. We use ResNet-50 [3] as our basic 
ackbone architecture. All models are trained via SGD with mo- o

ig. 3. Image retrievals with the same pseudo-attributes for a rare class sample. Row 1 sho

ow 2 shows the results per the pseudo-attribute for the watch-like structure whereas th

54 
entum μ = 0 . 9 . Similar to [36,71] , we use a cosine scheduler 

rom 0.02 to 0 for the learning rate and set the batch size to 128

er GPU. The model is trained for 400 epochs using 4 GPUs. The 

emperature for contrastive learning is set to 0.2. For CIFAR-100-LT, 

e define the temperature hyper-parameter to be 0.05 and set the 

emaining to follow [40] . 

.2. Results 

CIFAR100-LT. Our method is implemented in the same setting 

s that of PaCo [36] . The baseline “PaCo” in Table 1 refers to the

cores reported in the PaCo [36] paper, and “Our Baseline” refers to 

he model trained with the method that we reproduce described 

n [36] . Table 1 shows that our LPA model consistently outper- 

orms PaCo [36] and CMO [72] , across all different imbalance fac- 

ors by a large margin. In particular, our method surpasses PaCo by 

.3%, 1.1%, and 0.9% under imbalance factors 100, 50, and 10, re- 

pectively, which shows the efficacy of our method. Note that our 

aseline model shows lower performance than PaCo across differ- 

nt imbalance factors. 

iNaturalist and ImageNet. Table 2 lists experimental results on 

Naturalist 2018. In this setting, our LPA method consistently sur- 

asses recent state-of-the-art methods, e.g. , TSC [67] , CMO [72] , 

nd GCL [68] . Table 3 shows results on ImageNet-LT. Our method 

till outperforms the current state-of-the-art long-tailed recogni- 

ion method, CMO [69] , across all the metrics, corroborating the ef- 

ectiveness of our method. Finally, Table 5 shows results on the Full 

mageNet dataset. We compare the classification accuracy between 

ur method and our baseline method (PaCo) with the ResNet-50 

ackbone. As no other long-tailed recognition works evaluate their 

ethods on Full ImageNet, we only compare them with the PaCo. 

ur method is also able to improve the classification performance 
n a balanced dataset as well. 

ws that the model correctly learns the pseudo-attribute for the dome-like structure. 

e tendency is less prominent for our baseline. 
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Table 5 

Classification accuracy of our method and our baseline method 

(PaCo) on the Full ImageNet dataset with the ResNet-50 back- 

bone. Our method is also able to improve the classification per- 

formance on a balanced dataset as well. 

Method Top-1 accuracy (%) 

PaCo [36] 78.7 

PaCo [36] + LPA (Ours) 79.6 

t

s

a

t

d

p

s

l

a

l

n

a

I

t

t

W

p

W

n

t

a

t

t

a  

t

i

h

o

s  

p

l

c

m

t

p

L  

F

p

m

b

r

m

Fig. 5. Classification accuracy on CIFAR100-LT dataset with different imbalance ra- 

tios ( γ = 10 , 50 , 100 ) with a different number of clusters K. We also show the per- 

formance of our baseline model as a reference (dotted line). Our method outper- 

forms the baseline models overall regardless of the number of clusters. Among var- 

ious design choices, the model with K = 200 generally shows the best performance. 
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Learned Local Pseudo-attributes. In order to understand what 

hese local pseudo-attributes look like, we retrieve images with the 

ame pseudo-attribute labels given the rare class sample as a query 

nd compare it with that of our baseline model. Figure 3 shows 

hat the learned pseudo-attributes help the model correctly pre- 

ict the class of the test images, whereas the tendency is less 

rominent for our baseline. For example, the first and second rows 

how the retrieval result of the pseudo-attributes for the dome- 

ike and watch-like structures, respectively. Note that these pseudo- 

ttributes are self-supervisedly learned and do not require human 

abor to label them. 

Prediction Statistics. We analyze how our LPA improves recog- 

ition performance on many tail classes. There are 385, 479, 

nd 136 in many, medium, and few-shot classes, respectively, in 

mageNet-LT. For each instance in the few-shot classes, we look at 

he top prediction: It could be the correct few-shot class or mis- 

aken as one in the many, medium, or any other few-shot classes. 

e collect these statistics and calculate the distribution of these 

rediction types. Note that the sum of these ratios is always 100%. 

e compare the prediction statistics between our baseline and fi- 

al models (LPA). Table 4 shows that the model is heavily biased 

owards majority classes and confuses rare class instances mostly 

s many- or medium-shot classes. Our method not only improves 

he few-shot class accuracy from 32.8 to 39.0, but the distribu- 

ion of mistakes is also flattened more among many-, medium-, 

nd other few-shot classes, from 5 . 8 : 5 . 9 : 1 to 2 . 4 : 3 . 4 : 1 respec-

ively, reducing the bias of confusion by roughly a factor of 2. That 

s, our LPA improves long-tailed recognition by reducing both tail- 

ead confusion and confusion bias. We also show the distribution 

f the incorrect predictions for given all the classes in the confu- 

ion matrix form in Fig. 4 . For the baseline, it is notable that the

redictions are biased to many- and medium-shot classes regard- 

ess of the ground truth class. In addition, for any ground truth 

lasses, our method flattens the distribution of the mistakes of the 

odel. 

Hyper-parameters. We show the hyper-parameter analysis on 

he number of clusters during the K-means clustering in Fig. 5 . In 

articular, we show the classification accuracy on the CIFAR100- 

T dataset with different imbalance ratios ( γ = 10 , 50 , 100 ) with
ig. 4. Distribution of the incorrect predictions in ImageNet-LT before and after ap- 

lying our method. Y-axis indicates whether the input samples are from many-, 

ed-, or few-shot classes. The X-axis indicates what class the model predicted to 

e. For the baseline, the predictions are biased to many- and medium-shot classes 

egardless of the ground truth class. Our method flattens the distribution of the 

istakes. 
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55 
 different number of clusters K. We also show the performance 

f our baseline model as a reference (dotted line). Our method 

utperforms the baseline models overall regardless of the number 

f clusters. Among various design choices, the model with K = 200 

enerally shows the best performance. 

. Conclusion 

We introduce the novel concept of local pseudo-attributes (LPA), 

erived from data automatically without requiring human annota- 

ions, and incorporate it into long-tailed recognition with an addi- 

ional self-supervised learning loss. 

Our experimental results on CIFAR100-LT, iNaturalist, and 

mageNet-LT demonstrate that our method (LPA) consistently out- 

erforms various state-of-the-art methods. 

Our ideas can also be extended to other tasks that suffer from 

imilar data bias problems, such as visual question answering [75] , 

emi-supervised learning [24,76] or active learning [77–79] . 
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