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Exponential Growth in DNN Size
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Freely scalable and reconfigurable optical hardware for deep learning. Bernstein et al. (2021)



https://www.nature.com/articles/s41598-021-82543-3

New Paradigm for Compact and Optimal Deep Learning

compress

a) Existing method b) Our method (RPG)



Linearly Constrained Neural Optimization

practical weight W generation matrix G effective weight W
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Networks are optimized with a linear constraint W = GW

The constrained (practical) parameter W of each network layer was generated by the generating matrix G from the
free (effective) parameter W, which is directly optimized.

W is unpacked large model parameter while the size of W is the model DoF (degree of freedom).



Recurrent Parameter Generator (Special Case)

Generating matrix
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Intuition 1: Retrieval from the Associative Memory
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Superposition of many models into one. Cheung et al. (2020)



https://arxiv.org/pdf/1902.05522.pdf

Intuition 2: Linearly Constrained Neural Optimization

Unconstrained optimization
(existing method)
Equal-accuracy set

My

Optimal model set  ~.~

High DoF constraint

Constrained optimization /
our RPG)

—"" Low DoF
W = GLW

Parameter W space



Extreme DoF Compression

Acc. (%) R18-RPG R18-vanilla R34-RPG R34-vanilla
ImageNet 40.0 67.2 70.5 70.5 41.6 69.1 73.4 73.4
CIFAR100 60.2 75.6 77.6 77.6 61.7 76.5 78.9 79.1
Model DoF 45K 2M 5.5M 11M 45K 2M 11M 21M

For ImageNet classification, RPG achieves 96% of ResNetl18’s performance with
only 18% DoF (the equivalent of one convolutional layer)
RPG achieves 52% of ResNet34’s performance with only 0.25% DoF!



ImageNet accuracy (%)

Log-Linear DoF-Accuracy Relationship
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Model DoF (degree of freedom)

* Accuracy and model DoF follow a power law.
* The exponents of the power laws are the same for ResNet18-RPG and ResNet34-RPG on ImageNet.
* RPG enables under-parameterized models for large-scale datasets such as ImageNet, which may unleash new findings.

CIFAR10 Accuracy (%)
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RPG Performs Better at the Same Model DoF

Image Classification Pose Estimation Multitask Regression
DoF | Acc. (%)
R18-vanilla 11M 77.5
R34-RPG.blk 1IM | 785
Acc. (DoF) | CPM [62] | RPG  [Noshared w. RMSE (%) Depels | narminl
R34-RPG 1IM | 789 Tx sub-net 847 (3.3M) Vanilla model 255 | 41.0
R34-random weight share 11IM 74.9 s RPG with shared BN 247 | 403
R34-DeepCompression 123] 1M 72.2 2x sub-nets | 86.1 (33M) 86.5 (33M) 87.1 (67M) Reuse & new BN 24.0 304
R34-Hash [12] 1M 75.6 4x sub-nets | 86.5 (3.3M) | 87.3 (3.3M) | 88.0 (13.3M) Reuse & new BN & perm. and reflect.| 22.8 | 39.1
R34-Lego [67] 1IM | 784

R34-vanilla [ 2IM | 79.1




RPG can be Pruned and Quantized for Faster Runtime

Pruning RPG
fine-grained pruning
acc before | acc after | DoF | acc drop | model DoF
R18-IMP [1%] 923 90.5 1.8 274k
R18-RPG 95.0 93.0 2.0 274k
coarse-grained pruning
DoF before pruning | Pruned acc. | FLOPs
R18-Knapsack 11.2M 69.35% 1.09e9
Pruned R18-RPG 5.6M 69.10% 1.09e9
Quantize RPG
# Params | Acc before | Acc after | quantization | Acc drop
R18-vanilla 11M 69.8 69.5 0.3
R18-RPG 5.6M 70.2 70.1 0.1




Accuracy (%)

RPG Converges Faster
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RPG converges faster than the vanilla model
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RPG converges faster for different batch sizes




Summary: New Paradigm for Compact and Optimal Deep Learning

small
large model model
l unpack
l COmpress
small large model
model
a) Existing method b) Our method (RPG)

RPG starts from a lean model with a small DoF, which can be unpacked into a large model with many
parameters. We can let the gradient descent automatically find the best model under this DoF constraint.



