

Bootstrapping Objectness from Videos by Relaxed Common Fate and Visual Grouping

Long Lian

UC Berkeley

Microsoft Research Asia

Code, Model Zoo, and Demos

Zhirong Wu

Stella X. Yu

University of Michigan

Bootstrapping Objectness from Videos by Relaxed Common Fate and Visual Grouping

Long Lian

UC Berkeley

Microsoft Research Asia

Code, Model Zoo, and Demos

Zhirong Wu

Stella X. Yu

University of Michigan

Input: Unlabeled Videos

Output: Objectness Segmentation

Our Task: Unlabeled Videos \Rightarrow Object Segmentation

(Our RCF Segmentation)

Given optical flow detector

Existing Methods Rely on Common Fate

Motion Grouping. ICCV. 2021. OCLR. NeurIPS 2022. GWM. BMVC 2022. AMD. NeurIPS 2021.

Objectness = What Move Together Belong Together

Motion Grouping. ICCV. 2021. OCLR. NeurIPS 2022. GWM. BMVC 2022. AMD. NeurIPS 2021.

Two Failure Modes From Gestalt Law of Common Fate

Optical Flow

Articulation

Reflection

AMD+

OCLR

Fragmented Objectness

Excessive Objectness

Two Failure Modes From Gestalt Law of Common Fate

Optical Flow

Articulation

Reflection

AMD+

OCLR

Our Solution

Relaxed Common Fate

Visual Grouping

Our Approach Addresses Both Caveats

Optical Flow

Articulation

Reflection

Existing Methods: Three Camps

1. Motion Segmentation

Motion Grouping

Motion Grouping." ICCV. 2021. OCLR. NeurIPS 2022. GWM. arXiv:2205.07844 (2022). AMD. NeurIPS 2021.

OCLR

Existing Methods: Three Camps

- **Motion Segmentation** 1.
- 2. Motion Guided Segmentation

Training / Unsupervised video segmentation

Evaluation / Unsupervised image segmentation

Motion Grouping." ICCV. 2021. OCLR. NeurIPS 2022. GWM. arXiv:2205.07844 (2022). AMD. NeurIPS 2021.

Existing Methods: Three Camps

- **Motion Segmentation** 1.
- 2. Motion Guided Segmentation
- 3. Motion and Segmentation Jointly Learned

Motion Grouping." ICCV. 2021. OCLR. NeurIPS 2022. GWM. arXiv:2205.07844 (2022). AMD. NeurIPS 2021.

Insight 1: Dealing with Articulation

Video Frame

Constant/Affine Flow Fre w.r.t. Mask

Insight 1: Dealing with Articulation

Free-form Flow

Pred. Mask (Being optimized)

Common Fate

Constant/Affine Flow w.r.t. Mask

Insight 1: Dealing with Articulation

Free-form Flow

Pred. Mask (Being optimized)

Common Fate

Constant/Affine Flow Free w.r.t. Mask

Insight 1: Fitting Flow with Relaxed Common Fate

Free-form Flow

Pred. Mask (Being optimized)

Video Frame

Relaxed Common Fate

Constant/Affine Flow w.r.t. Mask

Residual Flow (Intra-mask motion)

Insight 2: Dealing with Artifacts from Motion

Motion Supervision Only

Let motion and appearance complement each other for supervision.

Insight 2: Visual Grouping within the Image

Motion Supervision Only

Let motion and appearance complement each other for supervision.

Motion + Appearance

Insight 2: Dealing with Reflection

Motion Supervision Only

Let motion and appearance complement each other for supervision.

Insight 2: Visual Grouping Based on Semantics across Images

Motion Supervision Only

Iteratively minimize the normalized cut of DINO feature

Let motion and appearance complement each other for supervision.

Motion + Appearance

Advantages of Our RCF to Previous Methods

UVOS Method	Motion Grouping	Emergence of Objectness	Guess What Moves	Our work (RCF)
Sources of supervision	Motion	Motion (Frame Warping)	Motion	Motion + Appearance
Segment stationary objects	×			
Handle articulated/ deformable objects				
Label-free hyperparameter				

Our RCF: SOTA on Unsupervised Object Segmentation

Without post-processing

OCLR

No post-processing applied: results can be further enhanced with post-processing

RCF (Ours)

RCF (Ours)

No post-processing applied: results can be further enhanced with post-processing

Code, Model Zoo, and Demos Available