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Abstract

We study learning object segmentation from unlabeled
videos. Humans can easily segment moving objects without
knowing what they are. The Gestalt law of common fate, i.e.,
what move at the same speed belong together, has inspired
unsupervised object discovery based on motion segmenta-
tion. However, common fate is not a reliable indicator of
objectness: Parts of an articulated / deformable object may
not move at the same speed, whereas shadows / reflections
of an object always move with it but are not part of it.

Our insight is to bootstrap objectness by first learning
image features from relaxed common fate and then refining
them based on visual appearance grouping within the im-
age itself and across images statistically. Specifically, we
learn an image segmenter first in the loop of approximating
optical flow with constant segment flow plus small within-
segment residual flow, and then by refining it for more co-
herent appearance and statistical figure-ground relevance.

On unsupervised video object segmentation, using only
ResNet and convolutional heads, our model surpasses the
state-of-the-art by absolute gains of 7/9/5% on DAVIS16
/ STv2 / FBMS59 respectively, demonstrating the effective-
ness of our ideas. Our code is publicly available.

1. Introduction

Object segmentation from videos is useful to many vi-
sion and robotics tasks [1,20,31,33]. However, most meth-
ods rely on pixel-wise human annotations [4,5,14,21,24,26,
27, 30, 34, 36, 50, 51], limiting their practical applications.

We focus on learning object segmentation from entirely
unlabeled videos (Fig. 1). The Gestalt law of common fate,
i.e., what move at the same speed belong together, has in-
spired a large body of unsupervised object discovery based
on motion segmentation [6, 19, 23, 29, 44, 47, 49].

There are three main types of unsupervised video object
segmentation (UVOS) methods. 1) Motion segmentation
methods [19,29,44,47] use motion signals from a pretrained
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Figure 1. We study how to discover objectness from unlabeled
videos based on common motion and appearance. AMD [23]
and OCLR [44] rely on common fate, i.e., what move at the same
speed belong together, which is not always a reliable indicator of
objectness. Top: Articulation of a human body means that object
parts may not move at the same speed; common fate thus leads
to partial objectness. Bottom: Reflection of a swan in water al-
ways moves with it but is not part of it; common fate thus leads
to excessive objectness. Our method discovers full objectness by
relaxed common fate and visual grouping. AMD+ refers to AMD
with RAFT flows as motion supervision for fair comparison.

optical flow estimator to segment an image into foreground
objects and background (Fig. 1). OCLR [44] achieves state-
of-the-art performance by first synthesizing a dataset with
arbitrary objects moving and then training a motion seg-
mentation model with known object masks. 2) Motion-
guided image segmentation methods such as GWM [6]
use motion segmentation loss to guide appearance-based
segmentation. Motion between video frames is only re-
quired during training, not during testing. 3) Joint appear-
ance segmentation and motion estimation methods such
as AMD [23] learn motion and segmentation simultane-
ously in a self-supervised fashion by reconstructing the next
frame based on how segments of the current frame move.

However, while common fate is effective at binding parts
of heterogeneous appearances into one whole moving ob-
ject, it is not a reliable indicator of objectness (Fig. 1).
1. Articulation: Parts of an articulated or deformable ob-

ject may not move at the same speed; common fate thus
leads to partial objectness containing the major moving
part only. In Fig.1 top, AMD+ discovers only the mid-
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Figure 2. Advantages over leading unsupervised object segmen-
tation methods MG [47]/AMD [23]/GWM [6]: 1) With motion
supervision instead of motion input, we can segment stationary
objects. 2) With both motion (M) and appearance (A) as supervi-
sion, we can discover full objectness from noisy motion cues. M∗

refers to implicit motion via image warping. 3) By modeling rela-
tive motion within an object, we can handle articulated objects. 4)
By comparing motion-based segmentation with appearance-based
segmentation, we can tune hyperparameters without labels. Our
performance gain is substantial, more with post-processing (†).

dle torso of the street dancer since it moves the most,
whereas OCLR misses the exposed belly which is very
different from the red hoodie and the gray jogger.

2. Reflection: Shadows or reflections of an object always
move with the object but are not part of the object; com-
mon fate thus leads to excessive objectness that covers
more than the object. In Fig.1 bottom, AMD+ or OCLR
cannot separate the swan from its reflection in water.
We have two insights to bootstrap full objectness from

common fate in unlabeled videos. 1) To detect an articu-
lated object, we allow various parts of the same object to as-
sume different speeds that deviate slightly from the object’s
overall speed. 2) To detect an object from its reflections, we
rely on visual appearance grouping within the image itself
and statistical figure-ground relevance. For example, swans
tend to have distinctive appearances from the water around
them, and reflections may be absent in some swan images.

Specifically, we learn unsupervised object segmentation
in two stages: Stage 1 learns to discover objects from mo-
tion supervision with relaxed common fate, whereas Stage 2
refines the segmentation model based on image appearance.

At Stage 1, we discover objectness by computing the
optical flow and learning an image segmenter in the loop of
approximating the optical flow with constant segment flow
plus small within-segment residual flow, relaxing common
fate from the strict same-speed assumption. At Stage 2, we
refine our model by image appearance based on low-level
visual coherence within the image itself and usual figure-
ground distinction learned statistically across images.

Existing UVOS methods have hyperparameters that sig-
nificantly impact the quality of segmentation. For example,

the number of segmentation channels is a critical parameter
for AMD [23], and it is usually chosen according to an an-
notated validation set in the downstream task, defeating the
claim of unsupervised objectness discovery.

We propose unsupervised hyperparameter tuning that
does not require any annotations. We examine how well our
motion-based segmentation aligns with appearance-based
affinity on DINO [2] features self-supervisedly learned on
ImageNet [35], which is known to capture semantic object-
ness. Our idea is also model-agnostic and applicable to
other UVOS methods.

Built on the novel concept of Relaxed Common Fate
(RCF), our method has several advantages over leading
UVOS methods (Fig. 2): It is the only one that uses both
motion and appearance to supervise learning; it can seg-
ment stationary and articulated objects in single images, and
it can tune hyperparameters without external annotations.

On UVOS benchmarks, using only standard ResNet
[13] backbone and convolutional heads, our RCF surpasses
the state-of-the-art by absolute gains of 7.0%/9.1%/4.5%
(6.3%/12.0%/5.8%) without (with) post-processing on
DAVIS16 [33] / STv2 [20] / FBMS59 [31] respectively, val-
idating the effectiveness of our ideas.

2. Related Work
Unsupervised video object segmentation (UVOS) re-

quires segmenting prominent objects from videos without
human annotations. Mainstream benchmarks [1, 20, 31, 33]
define the task as a binary figure-ground segmentation prob-
lem, where salient objects are the foreground. Despite the
name, several previous UVOS methods require supervised
(pre-)training on other data such as large-scale images or
videos with manual annotations [11,17,21,26,34,48,50,51].
In contrast, we focus on UVOS methods which do not rely
on any labels at either training or inference time.

Motion segmentation separates figure from ground
based on motion, which is typically optical flow computed
from a pre-trained model. FTS [32] utilizes motion bound-
aries for segmentation. SAGE [40] additionally considers
edges and saliency priors jointly with motion. CIS [49] uses
independence between foreground and background motion
as the goal for foreground segmentation. However, this as-
sumption does not always hold in real-world motion pat-
terns. MG [47] leverages attention mechanisms to group
pixels with similar motion patterns. SIMO [19] and OCLR
[44] generate synthetic data for segmentation supervision,
with the latter supporting individual segmentation of mul-
tiple objects. Nevertheless, both rely on human-annotated
sprites for realistic shapes in artificial data synthesis. Mo-
tion segmentation fails when objects do not move.

Motion-guided image segmentation treats motion
computed by a pre-trained optical flow model such as RAFT
[39] as ground-truth and uses it to supervise appearance-
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Figure 3. Our object discovery stage uses motion as supervision and follows the principle of relaxed common fate, in which training
signals are obtained by reconstructing the reference RAFT flow with the sum from the two pathways: 1) a piecewise constant flow pathway,
which is created from pooling the RAFT flow with the predicted masks in order to model object-level motion; 2) a predicted pixel-wise
residual flow pathway, which models intra-object motion for articulated and deformable objects. Green arrows indicate gradient backprop.

based image segmentation. GWM [6] assumes smooth
flows within an object and learns appearance-based seg-
mentation by seeking the best segment-wise affine flows
that fit RAFT flows. Such methods can discover stationary
objects in videos and single images.

Joint appearance segmentation and motion estima-
tion methods such as AMD [23] learn motion and segmen-
tation simultaneously in a self-supervised manner such that
their outputs can be used to successfully reconstruct the next
frame based on how segments of the current frame move.

AMD is unique in that it has no preconception of opti-
cal flow or visual saliency. Since our model considers boot-
strapping objectness from optical flow, for fair comparisons,
we consider AMD+, a version of AMD with motion super-
vision from RAFT flows [39] instead.

Existing UVOS methods, whether they examine motion
only or together with appearance, assume that objectness
is revealed through common fate of motion: What move at
the same speed belong together. We show that this notion
fails for objects with articulation and reflection (Fig. 1). Our
RCF first bootstraps objectness by relaxed common fate and
then improves it by visual appearance grouping.

3. Objectness from Relaxed Common Fate

Our RCF consists of two stages: a motion-supervised ob-
ject discovery stage (Fig. 3) and an appearance-supervised
refinement stage (Fig. 4). Stage 1 formalizes relaxed
common fate and learns segmentation by fitting RAFT
flow with both object-level motion and intra-object motion.
Stage 2 refines Stage 1’s motion-based segmentations by
appearance-based visual grouping and then use them to fur-
ther supervise segmentation learning. Neither stage requires
any annotation, making RCF fully unsupervised. We also
present motion-appearance alignment as a model-agnostic
label-free hyperparameter tuner.

3.1. Problem Setting

Let It ∈ R3×h×w be the tth frame from a sequence of T
RGB frames, where h and w are the height and width of the
image respectively. We will omit the subscript t except for
input images for clarity. The goal of UVOS is to produce
a binary segmentation mask M ∈ {0, 1}h×w for each time
step t, with 1 (0) indicating the foreground (background).

To evaluate a method on UVOS, we compute the mean
Jaccard index J (i.e., mean IoU) between the predicted seg-
mentation mask M and the ground truth G. In UVOS,
the ground truth mask G is not available, and no human-
annotations are used throughout training and inference.

3.2. Object Discovery with Motion Supervision

As shown in Fig. 3, during training, our method takes a
pair of consecutive frames and RAFT flow between them as
inputs. To instantiate the idea of common fate, our method
begins by pooling the RAFT Flow with respect to the pre-
dicted masks, creating the piecewise constant flow pathway.
As a relaxation, the predicted residual flow, which models
intra-object motion for articulated and deformable objects,
is added to the piecewise constant flow. The composite flow
prediction is then supervised by the RAFT flow to train the
model. At test time, only the backbone and the segmenta-
tion head are utilized to perform inference per frame.

Specifically, let f(It) ∈ RK×H×W be the feature of It
extracted from backbone f(·), where K, H , and W are
the number of channels, height, and width of the feature.
Let M̂ = g(f(It)) ∈ RC×H×W be C soft segmentation
masks extracted with a lightweight fully convolutional seg-
mentation head g(·) taking the image feature from f(·).
Softmax is taken across channels inside g(·) so that the
C soft masks sum up to 1 for each of the H × W posi-
tions. Following [23], although there are C segmentation
masks competing for each pixel (i.e., C output channels in
M̂ ), only one corresponds to the foreground, with the rest
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capturing background patches. We define co as the object
channel index with value obtained in Sec. 3.4.

Following [6,19,44,47], we use off-the-shelf optical flow
model RAFT [39] trained on synthetic datasets [10, 28] to
provide motion cues between consecutive frames. Let F ∈
R2×H×W be the flow output from RAFT from It to It+1.
Piecewise constant pathway. We first pool the flow ac-
cording to each mask to form C flow vectors P̂c ∈ R2:

P̂c = ϕ2(GuidedPool(ϕ1(F ), M̂c)) (1)

GuidedPool(F,M) =

∑HW
p=1 (F ⊙M)[p]∑HW

p=1 M [p]
(2)

where [p] denotes the pixel index and ⊙ element-wise
multiplication. Following [23], ϕ1 and ϕ2 are two-layer
lightweight MLPs that transform each of the motion vec-
tors independently before and after pooling, respectively.
We then construct predicted flow P̂ ∈ R2×H×W according
to the soft segmentation mask:

P̂ =

C∑
c=1

Broadcast(P̂c, M̂c) (3)

Broadcast(P̂c, M̂c)[p] = P̂c ⊙ (M̂c[p]). (4)

As the mask prediction M̂c approaches binary during train-
ing, the flow prediction approaches a piecewise-constant
function with respect to each segmentation mask, capturing
common fate. Previous methods either directly supervise P̂
with an image warping for self-supervised learning [23] or
matches P̂ and F by minimizing the discrepancies up to an
affine factor (i.e., up to first order) [6].

Nonetheless, hand-crafted non-learnable motion models,
while capturing the notion of common fate, underfit com-
plex optical flow in real-world videos, which often put ob-
ject parts into different segmentation channels in order to
minimize the loss, despite similar color or texture. [6] uses
two mask channels as a remedy, still falling short for scenes
with complex backgrounds.
Learnable residual pathway. Rather than using more
complicated hand-crafted motion models to model the mo-

tion patterns in videos, we employ relaxed common fate
by separately fitting object-level and intra-object motion by
adding a learnable residual pathway R̂ in addition to the
piecewise constant pathway P̂ to form the final flow predic-
tion F̂ . The residual pathway models relative intra-object
motion such as the relative motion of the dancer’s feet to
the body in Fig. 3.

Let h(·) be a lightweight module with three Conv-BN-
ReLU blocks that take the concatenated feature of a pair of
frames {It, It+1} as input and predicts R̂′ ∈ RC×2×H×W ,
which includes C flows with per-pixel upper bound λ:

R̂′ = λ tanh(h(concat(f(It), f(It+1))) (5)

where the upper bound λ is set to 10 pixels unless stated oth-
erwise. The C residual flows form aggregated residual flow
R̂ using mask predictions, which sums up with the piece-
wise constant pathway to form the final flow prediction F̂ :

R̂ =

C∑
c=1

R̂′
c ⊙ M̂c (6)

F̂ = P̂ + R̂ (7)

In this way, F̂ additionally takes into account relative mo-
tion that is within (−λ, λ) for each spatial location. The
added residual pathway provides greater flexibility by al-
lowing the model to relax from common fate that does not
take intra-object motion into account. This leads to better
segmentation results for articulated and deformable objects.

At stage 1, we minimize the L1 loss between the pre-
dicted reconstruction flow F̂ and target flow F in order to
learn segmentation by predicting the correct flow:

Lstage 1 = Lmotion =
1

HW

HW∑
p=1

||F̂ [p]− F [p]||1 (8)

3.3. Refinement with Appearance Supervision

A primary focus of self-supervised learning is to find
sources of useful training signals. While the residual path-
way greatly improves segmentation quality, the supervision
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(a) Misleading optical flow (b) Ambiguous low-level cues

(c) Seg. mask (pre-refine) (d) Seg. mask (post-refine)

Figure 5. Semantic constraint mitigates false positives from
naturally-occurring misleading motion signals. The reflection
has semantics distinct from the main object and is thus filtered
out. The refined mask is then used as supervision to disperse the
misconception in stage 2. Best viewed in color and zoom in.

still primarily comes from motion. This single source of su-
pervision can lead to predictions that are optimal for flow
prediction but often suboptimal from an appearance per-
spective. For instance, in Fig. 4, the segmentation predic-
tion before refinement ignores a part of the dancer’s leg,
despite the ignored part sharing a very similar color and tex-
ture with the included parts. Furthermore, the RAFT flow
tends to be noisy in areas where nearby pixels move very
differently, which leads to segmentation ambiguity.

To address these issues, we propose to incorporate low-
and high-level appearance signals as another source of su-
pervision to correct the misconceptions from motion.
Appearance supervision with low-level intra-image cues.
With the model in stage 1, we obtain the mask prediction
M̂co of It, where co is the objectness channel that could be
found without annotation (Sec. 3.4). We then apply fully-
connected conditional random field (CRF) [18], a training-
free technique that refines the value of each prediction based
on other pixels with an appearance and a smoothness ker-
nel. The refined masks M̂ ′

co are then used as supervision to
provide appearance signals in training:

M̂ ′
co = CRF(M̂co) (9)

Lapp =
1

HW

HW∑
p=1

||M̂co [p]− M̂ ′
co [p]||

2
2 (10)

The total loss in stage 2 is a weighted sum of both motion
and appearance loss:

Lstage 2 = wappLapp + wmotionLmotion (11)

where wapp and wmotion are weights for loss terms.
The CRF in our method for appearance supervi-

sion is different with the traditional CRF used in post-
processing [6,49], as our refined masks provide the supervi-
sion for training the network. Furthermore, we show empir-
ically that our method is orthogonal to the traditional CRF
in the ablation (Sec. 4.4).

Appearance supervision with semantic constraint. Low-
level appearance is still insufficient to address misleading
motion signals from naturally occurring confounders with
similar motion patterns. For example, the reflections share
similar motion as the swan in Fig. 5, which is confirmed by
low-level appearance. However, humans could recognize
that the swan and the reflection have distinct semantics, with
the reflection’s semantics much closer to the background.

Inspired by this, we incorporate the statistically learned
feature map from a frozen auxiliary DINO ViT [2,9] trained
with self-supervised learning across ImageNet [35] without
human annotation, to create a semantic constraint for mask
prediction. We begin by taking the key features from the
last transformer layer, denoted as faux(It), inspired by [43].
Next, we compute and iteratively optimize the normalized
cut [37] with respect to the mask to refine the mask.

Specifically, we initialize a 1-D vector x with a flat-
tened and resized M̂co with shape HW . Then we build an
appearance-based affinity matrix A, where:

Aij = 1(sim(faux(It)i, faux(It)j) ≥ 0.2) (12)

Next, we compute NCut(A,x):

Cut(A,x) = (1− x)Ax (13)

NCut(A,x) =
Cut(A,x)∑HW
i=1 (Ax)i

+
Cut(A,x)∑HW

i=1 (A(1− x))i
(14)

where sim(·, ·) cosine similarity. Since NCut(A,x) is dif-
ferentiable with respect to x, we use Adam [16] to minimize
NCut(A,x) in order to refine x for k = 10 iterations. We
denote the optimized vector as x(k), which is thus the re-
fined version of the mask that carries consistent semantics,
thus decoupling the objects from their shadows and reflec-
tions. With the semantic constraint, Eq. (9) changes to:

M̂ ′
co = CRF(M̂co)⊙ CRF(x(k)) (15)

where x(k) is reshaped to 2D and resized to match the mask
sizes prior to CRF. Since stage 2 is mainly misconception
correction and thus much shorter than stage 1, we generate
the NCut refined masks only once and use the same refined
masks for efficient supervision.

Because the semantic constraint introduces an additional
frozen model faux(·), we benchmark both with and without
the semantic constraint for a fair comparison with previous
methods. We use RCF (w/o SC) to denote RCF without the
semantic constraint. Our method is still fully unsupervised
even with the semantic constraint.

3.4. Label-free Hyperparameter Tuner

Following previous appearance-based UVOS work, our
method also requires several tunable hyperparameters for
high-quality segmentation. The most critical ones are the
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number of segmentation channels C and the object channel
index co. [6, 23] tune both hyperparameters either with a
large labeled validation set or a hand-crafted metric tailored
to a specific hyperparameter, limiting the capability towards
other hyperparameters in a real-world setting.

We propose motion-appearance alignment as a metric to
quantify the segmentation quality. The steps for tuning are:
1. Train a model with each hyperparameter setting.
2. Export the predicted mask M̂co for each image in the

unlabeled validation set.
3. Compute the negative normalized cuts −NCut(A, M̂co)

w.r.t. M̂co and the appearance-based affinity matrix A as
the metric quantifying motion-appearance alignment.

4. Take the mean metric across all validation images.
5. Select the setting with the highest mean metric.

Our hyperparameter tuning method is model-agnostic
and applicable to other UVOS methods. We also demon-
strate its effectiveness in tuning weight decay and present
the pseudo-code in the supp. mat.

4. Experiments
4.1. Datasets

We evaluate our methods using three datasets com-
monly used to benchmark UVOS, following previous works
[6, 23, 44, 47, 49]. DAVIS2016 [33] contains 50 video se-
quences with 3,455 frames in total. Performance is evalu-
ated on a validation set that includes 20 videos with anno-
tations at 480p resolution. SegTrackv2 (STv2) [20] con-
tains 14 videos of different resolutions, with 976 annotated
frames and lower image quality than [33]. FBMS59 [31]
contains 59 videos with a total of 13,860 frames, 720 frames
of which are annotated with a roughly fixed interval. We
follow previous work to merge multiple foreground objects
in STv2 and FBMS59 into one mask and train on all unla-
beled videos. We adopt mean Jaccard index J (mIoU) as
the primary evaluation metric.

4.2. Unsupervised Video Object Segmentation

Setup. Our architecture is simple and straightforward. We
use a ResNet50 [13] backbone followed by a segmenta-
tion head and a residual prediction head. Both heads only
consist of three Conv-BN-ReLU layers with 256 hidden
units. This standard design allows efficient implementation
in real-world applications. Unless otherwise stated, we use
C = 4 object channels, which we determine without hu-
man annotation in Sec. 4.3. We also determine the object
channel index co using the same approach. The RAFT [39]
model we use is only trained on synthetic FlyingChairs [10]
and FlyingThings [28] dataset without human annotation.
For more details, please refer to supplementary materials.
Results. As shown in Tab. 1, RCF outperforms previous
methods under fair comparison, often by a large margin.

Methods Post-process DAVIS16 STv2 FBMS59
SAGE [40] 42.6 57.6 61.2
CUT [15] 55.2 54.3 57.2
FTS [32] 55.8 47.8 47.7
EM [29] 69.8 – –
CIS [49] 59.2 45.6 36.8
MG [47] 68.3 58.6 53.1
AMD [23] 57.8 57.0 47.5
SIMO [19] 67.8 62.0 –
GWM [6] 71.2 66.7 60.9
GWM∗ [6] 71.2 69.0 66.9
OCLR† [44] 72.1 67.6 65.4
TokenCut [43] 64.3 59.6 60.2
MOD [8] 73.9 62.2 61.3
RCF 80.9 76.7 69.9

(+7.0) (+9.1) (+4.5)
CIS [49] CRF + SP‡ 71.5 62.0 63.6
TokenCut [43] CRF only 76.7 61.6 66.6
GWM∗ [6] CRF + SP‡ 73.4 72.0 68.6
OCLR† [44] DINO-based‡ 78.9 71.6 68.7
MOD [8] DINO-based‡ 79.2 69.4 66.9
RCF (w/o SC) CRF only 82.0 78.7 71.9
RCF CRF only 83.0 79.6 72.4

(+6.3) (+12.0) (+5.8)

Table 1. Our method achieves significant improvements over
previous methods on common UVOS benchmarks. RCF (w/o
SC) indicates low-level refinement only (no faux used). ∗: uses
Swin-Transformer w/ MaskFormer [3, 25] segmentation head or-
thogonal to VOS method and thus is not a fair comparison with us.
† leverages manually annotated shapes from large-scale Youtube-
VOS [46] to generate synthetic data. ‡: SP: significant post-
processing (e.g., multi-step flow, multi-crop ensemble, and tem-
poral smoothing). DINO-based: performs contrastive learning or
mask propagation on a pretrained DINO ViT model [2, 9] at test
time; not a fair comparison with us. Our post-processing is a CRF
pass only. CIS results are from [24].

On DAVIS16, RCF surpasses the previous state-of-the-art
method by 7.0% without post-processing (abbreviated as
pp.). With CRF as the only pp., RCF improves on previ-
ous methods by 6.3% without techniques such as multi-step
flow, multi-crop ensemble, and temporal smoothing. RCF
also outperforms GWM [6] that employs more complex
Swin-T + MaskFormer architecture [3,25] by 9.7% w/o pp.
Furthermore, RCF achieves significantly better results com-
pared with TokenCut [43] that also uses normalized cuts
on DINO features [2] (16.6% better w/o pp.). Despite the
varying image quality in STv2 and FBMS59, RCF improves
over past methods under fair comparison, by 9.1% and 4.5%
without pp, respectively. Semantic constraint (SC) could be
included if additional gains are desired. However, RCF still
outperforms previous works without the semantic constraint
(5.3% improvement on DAVIS16 w/o SC), thus not relying
on external frozen features.
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Figure 6. Our proposed label-free motion-appearance metric
aligns well with mIoU on the full validation set. Top: When
tuning the number of segmentation channels C, our method fol-
lows full validation set mIoU better than mIoU on validation sub-
sets with 25% of the sequences labeled. Bottom: Our method
correctly determines the object channel co = 3 for this run, with-
out any human labels. Although co varies in each training run by
design [23], our tuning method has negligible overhead and can be
performed after training ends to find co within seconds.

4.3. Label-free Hyperparameter Tuning

We use motion-appearance alignment as a metric to
tune two key hyperparameters: the number of segmentation
masks C and the object channel index co. To simulate the
real-world scenario that we only have limited labeled vali-
dation data, we also randomly sample 25% sequences three
times to create three labeled subsets of the validation set to
evaluate mIoU on. As shown in Fig. 6, for the number
of mask channels C, despite not using any manual anno-
tation, our label-free motion-appearance alignment closely
follows the validation mIoU compared to mIoU on valida-
tion subsets, showing the effectiveness of our metric on hy-
perparameter tuning. Although increasing the number of
channels improves the segmentation quality of our model
by increasing its fitting power, such an increase saturates at
C = 4. Therefore, we use C = 4 unless otherwise stated.
Regarding the object channel index co, since it changes
with each random initialization [23], optimal co needs to be
obtained at the end of each training run. We propose to use
only the first frame of each video sequence for finding co.
With this adjustment, our tuning method completes within
only 3 seconds for each candidate channel, which enables
our tuning method to be performed after the whole training
run with negligible overhead.

4.4. Ablation Study

Contributions of each component. As shown in Tab. 2,
residual pathway allows more flexibility and contributes
7.8% mIoU. The appearance refinement in the second stage
boosts the performance to 80.9%, resulting in a 9.8% gain
in total. The CRF post-processing leads to 83.0% mIoU, an
11.9% increase over the baseline.

Residual
pathway

Low-level
refinement

Semantic
constraint CRF J (↑)

71.1
✓ 78.9 (+7.8)
✓ ✓ 79.9 (+8.8)
✓ ✓ ✓ 80.9 (+9.8)
✓ ✓ ✓ ✓ 83.0 (+11.9)

Table 2. Effect of each component of our method (DAVIS16).
Residual pathway on its own provides the most improvement in
our method. All components together contribute to an 11.9% gain.

Variants DAVIS16 J (↑)
None 71.1
None (w/ robust loss [38]) 74.0
Scaling 73.8
Residual (affine) 76.3
Residual 78.9

Table 3. Ablations on additional pathway confirm our design
choice of residual pathway. We benchmark without the refine-
ment stage to show the raw performance gain.

DAVIS16 J (↑) Stage 1 only Stage 1 & 2
Without post-processing 78.9 80.9
With CRF post-processing 81.4 83.0
∆ +2.5 +2.1

Table 4. The refinement CRF in our stage 2 is orthogonal to
upsampling CRF in post-processing, since the latter still gives
significant improvements even with CRF in stage 2.

Designing additional pathway. In Tab. 3, we show that ro-
bustness loss [22,38] does not effectively reduce the impact
of misleading motion. We also implemented a pixel-wise
scaling pathway, which multiplies each value of the motion
vector by a predicted value. Furthermore, we fit an affine
transformation per segmentation channel as the residual. In
our setting, the pixel-wise residual performs the best and is
selected for our model, showing the effectiveness of a learn-
able and flexible motion model inspired by relative motion.
Orthogonality of our appearance supervision with post-
processing. The supervision from refined masks after
appearance-based refinement has the same resolution as the
original exported masks. Therefore, the refinement CRF
in stage 2 has an orthogonal effect to the upsampling CRF
in post-processing mainly used to create high-resolution
masks. As shown in Tab. 4, the gains that come from post-
processing remain comparable after applying appearance-
based refinement in stage 2, which also shows our orthogo-
nality to post-processing.
Modeling camera motion? RCF does not explicitly model
the flow from camera motion. To investigate whether mod-
eling camera motion could further benefit RCF, we estimate
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(b)

(d)

Ground TruthOCLR AMD+ OursOptical Flow †

Failure case:

Our PredictionsCurrent Frame Piecewise 
Constant Pathway

Residual 
Pathway

Final Flow 
Prediction

RAFT 
Reference Flow

(e)

(c)

(a)

Figure 7. Our method delivers great performance in challenging scenes. Our method shows significant improvements compared to
OCLR [44] and AMD [23] in scenes with complex foreground motion (a)(b), distracting background motion (a)(c), motion parallax from
camera motion (c). In the failure case (d), neither motion nor appearance information is informative, leading to the front legs being missed
from the segmentation. However, our method still outperforms previous works and segments most of the cow’s hind legs. (e) shows that
the piecewise-constant pathway and the residual pathway work together to fit the reference flow, resulting in high-quality segmentation.
The symbol † denotes AMD with RAFT flow [39] as motion supervision. More visualizations are available in the supp. mat.

Camera motion modeling No Yes
DAVIS16 J (↑) 78.9 77.9

Table 5. Modeling camera motion does not improve our
method. Lower segmentation quality results from removing cam-
era motion as preprocessing. Only stage 1 is used in both settings.

it with the planar homography and RANSAC [12] and re-
move it as a preprocessing step prior to training our method.
Despite the relatively accurate estimation when visualized,
Tab. 5 shows that it is ineffective in improving the segmen-
tation quality. We hypothesize that it is because 3D camera
motion is equivalent to 3D scene motion in an opposite di-
rection and thus additional modeling is unnecessary.

4.5. Visualizations and Discussions

Fig. 7 compares RCF with [23, 44] and shows its ability
to handle challenging cases such as complex non-uniform
foreground motion, distracting background motion, and
camera motion including rotation. However, when neither
motion nor appearance provides informative signals, RCF
may suffer from the lack of information. For instance, in the

absence of relative motion, RCF is misled by the similarity
between the color of the cow’s front legs and the color of the
ground in Fig. 7(d). Although RCF has the ability to rec-
ognize multiple foreground objects with similar motion, it
sometimes captures only one object when the objects move
in very different patterns. Finally, RCF is not designed to
separate multiple foreground objects. More visualizations
and discussions are available in the supp. mat.

5. Summary

We present RCF, an unsupervised video object segmen-
tation method based on relaxed common fate and appear-
ance grouping. Our approach includes a motion-supervised
object discovery stage with a learnable residual pathway,
a refinement stage with appearance supervision, and us-
ing motion-appearance alignment as a label-free hyperpa-
rameter tuning method. Extensive experiments show our
method’s effectiveness and utility in challenging scenarios.
Acknowledgements. The authors would like to thank Zilin
Wang for proofreading this paper.
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6. Additional Visualizations and Discussions

We present additional visualizations on the three main
datasets that we benchmark our method on [1, 20, 31, 33].
We demonstrate high-quality segmentation in several chal-
lenging cases and discuss some limitations of our method
with examples.

6.1. Visualizations of the Residual Pathway

As shown in Fig. 8, the introduction of the residual path-
way allows our segmentation prediction to better fit the flow
of deformable and articulated objects. In addition, it also
relieves our segmentation module from strictly fitting the
flow from 3D rotation and changing depth in a piecewise
constant manner. By modeling relative motion in 2D flow,
the residual pathway makes our method flexible and robust
to objects with complex motion.

6.2. DAVIS2016, SegTrackv2, and FBMS59

We visualize our methods on DAVIS2016, SegTrackv2,
and FBMS59 in Fig. 9, Fig. 10, and Fig. 11, respectively.
Our method shows great robustness in challenging scenes
where there is insufficient motion information, due to its
ability to leverage both motion and appearance.

7. Additional Experiments

Unless otherwise stated, all the ablation experiments in
this section include only stage 1, as the ablations in this sec-
tion are not relevant to the appearance supervision. Results
are without post-processing.

7.1. Abltion on Different Optical Flow Estimation
Methods

As listed in Tab. 6, almost all recent UVOS works rely
on a separate optical flow model pretrained on synthetic
data. We use RAFT [39] flow by default, following pre-
vious works in UVOS. AMD trains [38] from scratch but
achieves much lower mIoU.

To evaluate our method’s robustness to optical flow esti-
mation methods, we evaluate our method on PWCNet [38],
GMFlow [45], and self-supervised ARFlow [22], in addi-
tion to RAFT [39].

As shown in Tab. 7, our method suffers from a mild
drop with noisier optical flow. However, our performance is
largely retained without tuning the hyperparameters when
employing other optical flow methods. We believe the
performance gap between different optical flow estimation
methods will be reduced further with additional hyperpa-
rameter tuning on each flow estimation method.

Method CIS MG EM SIMO Tok.Cut GWM OCLR RCF
Flow Model PWCNet RAFT RAFT RAFT RAFT RAFT RAFT RAFT

Table 6. Optical flow methods that each UVOS approach em-
ploys by default. All methods in the table use pretrained weights
for flow estimation. We utilize RAFT flow with pretrained weights
from synthetic data, which is common among all the UVOS meth-
ods. Other than the methods listed in the table, AMD trains PWC-
Net [38] architecture from scratch but achieves much lower per-
formance compared to RCF.

Method ARFlow [22] PWCNet [38] GMFlow [45] RAFT [39]
DAVIS16 J (↑) 70.3 74.8 76.6 78.9

Table 7. Our method with different optical flow estimation
methods. We use pretrained optical flow on synthetic data for su-
pervised optical flow methods. We benchmark stage 1 only since
we leverage motion supervision mostly in stage 1.

7.2. Preventing Trivial Solutions for Residual Flow
Prediction

There are two factors that prevent trivial solutions: 1)
Regularization with upper bound λ limits the residual pre-
diction to only capturing small relative motion (10 pixels
by default). 2) The residual flow branch is initialized to be
small, which favors the solution to be simple motion pat-
terns.

As shown in Tab. 8, the results (mIoU on DAVIS16)
show that small residual initialization allows RCF to be in-
sensitive to a large range of λ against performance degra-
dation or collapses, even though setting λ too large will
still cause instability in the form of large mIoU fluctuations.
With small residual initialization, λ is relatively stable to
tune.

7.3. Applying Motion-appearance Alignment to
Non-method Specific Hyperparameters

To explore the possibility of using our proposed label-
free hyperparameter tuning method to tune hyperparame-
ters that are non-method specific, we evaluate our metric
on runs with three different weight decay values: 10−6 and
10−2 in addition to our default value of 10−4. We choose
this range of hyperparameter values since we observed that
varying the weight decay by smaller amounts had a negli-
gible impact on the final mIoU. As in other hyperparameter
tuning experiments, we randomly sample 25% of the se-
quences from the validation set three times and evaluate the
effect of using a smaller labeled validation subset for com-
parison. Shown in Tab. 9, while the mIoU values from the
labeled validation subsets vary significantly between sam-
plings, with one of the three runs missing the optimal value,
our metric follows the full validation mIoU trend and selects
the best hyperparameter values among the three.
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Upper bound λ 1 5 10 20 50 100 200 400
Ours Init 72.7 76.5 78.9 78.3 78.3 77.4 72.8 78.3
Default Init 72.7 76.0 78.1 78.5 73.5 73.4 73.3 1.0

Table 8. Using a small initialization and upper bound is im-
portant for the residual flow pathway in our method. Ours Init
refers to an initialization scheme which is 10x smaller than Py-
Torch default init. Red color indicates collapses.

Weight Decay 10−6 10−4 10−2

Motion-app. Alignment -0.672 -0.670 -0.768
Subset 1 mIoU 77.2 77.6 75.7
Subset 2 mIoU 77.0 80.5 72.0
Subset 3 mIoU 77.3 76.8 76.2
Full val mIoU 77.2 78.9 74.8

Table 9. Applying motion-appearance alignment provides the
optimal weight decay without using labels. In contrast, using
subset mIoU misses the optimal value in one of the three runs.
Higher metric values indicate higher segmentation quality for all
metrics.

8. Pseudo-code for Hyperparameter Tuning
With Motion-appearance Alignment

We present the pseudo-code for hyperparameter tuning
with motion-appearance alignment in Algorithm 1.

9. Additional Implementation Details
Our setting mostly follows previous works [6, 23]. Fol-

lowing the official implementation in [23], we treat the
video frame pair {t, t + 1} as both a forward action from
time t to time t+ 1 and a backward action from time t+ 1
and t, since they follow similar rules for visual grouping.
Therefore, we use this to implement a symmetric loss that
applies the loss function on both forward and backward. We
then sum the forward loss and backward loss up to obtain
the final loss. Note that this could be understood as a data
augmentation technique that always supplies a pair in for-
ward and backward to the training batch. However, since
our ResNet shares weights for each image input, the feature
for each input is reused by the forward and backward action.
Furthermore, our residual prediction head has four times the
number of channels of the segmentation head to separately
predict the forward/backward flow in horizontal/vertical di-
rections, due to its better performance. Thus, the symmetric
loss only adds marginal computation and is included in our
implementation as well.

Furthermore, following [23], for DAVIS16, we use ran-
dom crop augmentation during training to crop a square im-
age from the original image. At test time, we directly input
the original image, which is non-square. It is worth not-
ing that the augmentation makes the image size different

Algorithm 1 Pseudo-code for using motion-appearance
alignment for hyperparameter tuning

Input: A set of frames {I} with N frames
Input: A set of settings with different hyperparameter val-

ues {S}
Output: A chosen optimal setting S∗ according to motion-

appearance-alignment
for each setting S in {S} do

Train a model with setting S
Obtain prediction masks {M} with trained model
for each frame-mask pair (Ii, Mi) in {I}, {M} do

Calculate affinity A from frozen ViT features:
Aij = 1(sim(faux(It)i, faux(It)j) ≥ 0.2)
Calculate cut between the predicted foreground

and background Cut(A,x):
x← Flatten(Mi)
Cut(A,x) = (1− x)Ax
Calculate normalized cut between the predicted

foreground and background NCut(A,x):
NCut(A,x) = Cut(A,x)∑HW

i=1 (Ax)i
+ Cut(A,x)∑HW

i=1 (A(1−x))i

Calculate the motion-appearance alignment for
the current frame:

Li ← −NCut(A,x)
end for
LS ← 1

N

∑N
i=1 Li

end for
S∗ = argmaxS LS

for training and testing, but as ResNet [13] takes images of
different sizes, this does not pose a problem empirically. In
STv2 and FBMS59, the images have very different aspect
ratios (some having a height lower than the width), and thus
we resize the images to 480p as a preprocessing before the
standard pipeline. We additionally use pixel-wise photo-
metric transformation [7] for augmentation with the default
hyperparameters for this augmentation.

As for the architecture, we found that simply taking the
feature from the last ResNet stage provides insufficient de-
tailed information for high-quality output. Instead of incor-
porating a more complicated segmentation head (e.g., [3]
in [6]), we chose to keep our architecture easy to imple-
ment by only changing the head in a simple fashion. Fol-
lowing the standard approach of multi-scale feature fusion,
we resized and concatenated the feature from the first resid-
ual block and the last residual block in ResNet, which al-
lows the feature to jointly capture high-level information
and low-level details. Note that such fusion is only ap-
plied to the segmentation head, and residual prediction is
simply bilinearly upsampled. Due to lower image resolu-
tion, no feature merging is performed for STv2 in stage 1.
Following [6], we load self-supervised ImageNet pretrained

10



weights learned without annotation, since the training video
datasets are too small for learning generalizable feature
(e.g., DAVIS16/STv2/FBMS59 has only 3,455/976/13,860
frames), with DenseCL weights [35, 42] on ResNet50 for
our method. This can be replaced by training on uncurated
Youtube-VOS [46] with our training process, as in [23], so
that one implementation can be used throughout training for
simplicity in real-world applications.

In our training, we follow [23] and use a batch size of 16
(with two images in a pair, and thus 32 images processed
in each forward pass). Stage 1 and stage 2 take 200 and 40
epochs, respectively, for DAVIS16. We use a learning rate
of 1× 10−4 with Adam optimizer [16] and polynomial de-
cay (factor of 0.9, min learning rate of 1 × 10−6). We set
weight decay to 1×10−4 for DAVIS and 1×10−6 for STv2
and FBMS59. Due to the fact that normalized cuts is slow to
optimize, we split stage 2 into two sub-stages: one with the
CRF followed by one with normalized cuts optimization,
each of the stage has the same number of training steps.
In the CRF substage in stage 2, we set wmotion = 1 and
wapp = 10 to balance the two losses. However, we observe
training instability if we supervise the network directly by
its output refined by the CRF. Therefore, we apply expo-
nential moving averaging (EMA) to the model weights and
supervise the network by the output from the EMA model,
with momentum m = 0.999. In the normalized cuts sub-
stage, we pre-generate the network’s outputs and use the
refinement as described in the methods section, which in-
volves running CRF before and after normalized cuts refine-
ment and multiplying the refined masks from the two CRF
runs. This is equivalent to applying such refinement with
EMA with m = 1.0. In this substage, we set wmotion = 0.1
and wapp = 2.0.

10. Per-sequence Results

We list our per-sequence results on DAVIS16 [33], STv2
[20], FBMS59 [1, 31] in Tab. 10, Tab. 11, and Tab. 12, re-
spectively. The results are with post-processing.

11. Future Directions

As our method does not impose temporal consistency, it
does not effectively leverage information redundancy from
neighboring frames. Using such information could make
our method more robust in dealing with frames that pro-
vide insufficient motion and appearance information. Tem-
poral consistency measures, such as matching warped pre-
dictions, could be incorporated as an additional loss term or
as post-processing, as in [49].

Furthermore, our method currently does not support seg-
menting multiple parts of the foreground or identifying each
object instance. To address this, methods such as normal-
ized cuts [37] could be used to split the foreground into sev-

eral objects with motion and appearance input to provide
signals to train the model. Another potential approach is
to over-split the scene with many object channels and use
other unsupervised methods such as FreeSOLO [41, 42] to
obtain coarse segmentation proposals to merge the channels
to form object instance segmentation.
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Sequence J
blackswan 76.2
bmx-trees 78.3
breakdance 86.1
camel 92.7
car-roundabout 80.7
car-shadow 80.4
cows 88.0
dance-twirl 90.4
dog 91.7
drift-chicane 94.1
drift-straight 65.6
goat 81.6
horsejump-high 93.4
kite-surf 53.1
libby 96.6
motocross-jump 57.0
paragliding-launch 26.0
parkour 95.8
scooter-black 72.4
soapbox 86.1
Frame Avg 83.0

Table 10. Per sequence Jaccard index J on DAVIS16 [33].

Sequence J
bird of paradise 91.7
birdfall 60.4
bmx 76.6
cheetah 52.4
drift 86.3
frog 82.2
girl 80.6
hummingbird 67.6
monkey 82.5
monkeydog 55.5
parachute 93.2
penguin 66.2
soldier 79.8
worm 85.6
Frame Avg 79.6

Table 11. Per sequence Jaccard index J on STv2 [20].

Sequence J
camel01 88.3
cars1 86.4
cars10 38.2
cars4 70.3
cars5 79.3
cats01 88.2
cats03 82.0
cats06 59.7
dogs01 74.4
dogs02 91.6
farm01 82.6
giraffes01 65.9
goats01 89.8
horses02 86.2
horses04 88.6
horses05 71.6
lion01 84.9
marple12 79.3
marple2 73.7
marple4 87.8
marple6 50.8
marple7 32.1
marple9 38.4
people03 42.9
people1 86.1
people2 88.0
rabbits02 93.8
rabbits03 85.9
rabbits04 20.2
tennis 78.6
Frame Avg 72.4

Table 12. Per sequence Jaccard index J on FBMS59 [1, 31].
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Figure 8. Visualizations for both the piecewise constant and the residual pathways show that the introduction of the residual pathway
allows our segmentation prediction to better fit the flow of deformable and articulated objects. In addition, it also relieves our segmentation
module from strictly fitting the flow from 3D rotation and changing depth in a piecewise constant manner. By modeling relative motion in
2D flow, the residual pathway makes our method flexible and robust to objects with complex motion.
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Ground TruthAMD+ OursOptical Flow

(a)

(b)

(c)

(e)

Failure case:

(d)

(f)

Figure 9. Additional visualizations on DAVIS16 [33]. Our method remains robust in scenes where there is insufficient motion information,
in which cases our method leverages appearance cues to learn high-quality segmentation in (a) to (e). Our method accurately segments
multiple foreground objects as foreground when they move together, which is consistent with human perception in (b). However, our
method may exclude a portion of an object in (f), since the motion misses part of the front wheel of the bicycle and the structure is too
small for appearance to capture.
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Ground TruthCIS OursOptical Flow

Failure cases:

(a)

(b)

(c)

(d)

(f)

(g)

(e)

Figure 10. Additional visualizations on STv2 [20]. Our method, with the residual flow, could model non-uniform 2D flow resulting
from object rotation in 3D in (a), as long as the rotation flow falls within our upper bound constraint for the residual flow. Our method
also captures multiple objects in a foreground group in (b), (c), and (e). Our method is robust to camera motion that leads to non-uniform
background flow in (c) and misleading common motion (reflections) in (d). However, due to the relatively low image resolution, our
method may miss some details of the object. For example, the legs of both animals in (f) and the wings of the bird in (g).
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Ground TruthCIS OursOptical Flow

Failure cases:

(a)

(b)

(c)

(d)

(f)
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(e)

Figure 11. Additional visualizations on FBMS59 [1, 31]. Our method is robust in scenes with complicated and distracting appearances
in (a). Our method also works with fine details in (b) and (e). Our method accurately segments multiple foreground objects in (c) and (d).
However, when multiple objects or object parts exist in one scene and exhibit different motion patterns, our method may be confused in (f)
and (g).
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