
• Previous works aim to deblur images directly4-6 or require/estimate field maps7-8. 

• Our approach:
 Model leverages physics model A and deep learning to reconstruct images.
 Correct off-resonance and handle fat/water separation from a single echo-time Spiral scan.

Neglect the physics during reconstruction4,6-7

Do not handle fat/water partial volume effects4-8

Rely on training datasets collection6-8

Require extra scans5

• Artifacts due to main magnetic field inhomogeneities and tissue properties.
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Synthetic Noise-Like Training Data
• Magnetic Resonance Imaging (MRI) collects samples in the spatial Fourier 

domain (k-space) in many shots, called readouts.
• Non-Cartesian trajectories provide rapid imaging1 and robustness to 

patient motion2, but are more susceptible to off-resonance artifacts.

• Goal: develop a physics-informed deep learning-based reconstruction 
framework to correct off-resonance in MRI.

Cartesian Trajectory
Short readout, slow scan

EPI Trajectory
Long readout, fast scan

Spiral Trajectory
Long readout, fast scan,

Spatially varying distortion Spatially varying blur

Off-Resonance Blurring

Physics-Informed Deep Learning Framework

In-Vivo Results: Proton Density-Weighted Knee

In-Vivo Results: T1-Weighted Abdominal

Physics-Informed Forward Model A

3Analogy with 
Depth of Focus

in Optical Imaging
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• Model the object as a stack of sharp images at multiple frequency bins.     
E: encode (e.g., Non-Uniform FFT). MΔf: phase modulate. Σ: sum across bins.

• Mimic Power Spectral Density (PSD) of real data.
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(b) Inference

Solve for %' with Conjugate Gradient Descent:
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Inference stage

Training stage

   Train model exclusively on synthetic noise-like data. Bypass dataset collection challenges.

   Generalize to diverse anatomies and contrasts without retraining. Freeze 𝐷!!. 

1.2 min scan 5 min scan

In-Vivo Results: T1-Weighted Brain
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