

ResoNet: Noise-Trained Physics-Informed MRI Off-Resonance Correction

Alfredo De Goyeneche¹, Shreya Ramachandran¹, Ke Wang¹, Ekin Karasan¹, Joseph Y. Cheng², Stella X. Yu^{1,3}, Michael Lustig¹ ¹Electrical Engineering and Computer Sciences, UC Berkeley, ²Radiology, Stanford University. ³Computer Science and Engineering, University of Michigan

Introduction

- Magnetic Resonance Imaging (MRI) collects samples in the spatial Fourier domain (k-space) in many shots, called readouts.
- Non-Cartesian trajectories provide rapid imaging¹ and robustness to patient motion², but are more susceptible to off-resonance artifacts.

Goal: develop a physics-informed deep learning-based reconstruction framework to correct off-resonance in MRI.

Off-Resonance Blurring

• Artifacts due to main magnetic field inhomogeneities and tissue properties.

Physics-Informed Forward Model A

· Model the object as a stack of sharp images at multiple frequency bins. E: encode (e.g., Non-Uniform FFT). M_{Af} : phase modulate. Σ : sum across bins.

Mimic Power Spectral Density (PSD) of real data.

Physics-Informed Deep Learning Framework

- Previous works aim to deblur images directly⁴⁻⁶ or require/estimate field maps⁷⁻⁸.
 - X Neglect the physics during reconstruction^{4,6-7}

Synthetic Noise-Like Training Data

- X Do not handle fat/water partial volume effects⁴⁻⁸
- X Rely on training datasets collection⁶⁻⁸ Require extra scans⁵

RERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

- Our approach:
 - Model leverages physics model A and deep learning to reconstruct images.
 - Correct off-resonance and handle fat/water separation from a single echo-time Spiral scan.

Inference stage

Generalize to diverse anatomies and contrasts without retraining. Freeze D_{du}.

In-Vivo Results: T1-Weighted Abdominal Uncorrected

Uncorrected

NEURAL INFORMATION PROCESSING SYSTEMS

Reference Uncorrected

Short Readout Imag

In-Vivo Results: T1-Weighted Brain

Uncorrected

Short Readout Imar

References

[1] M. A. Bernstein, K. F. King, X. J. Zhou, Handbook of MRI pulse sequences. Elsevier, 2004. [2] Y. Yang et al., "Comparison of fast MR [1] thr the demander, it :: http://www.com/antibiotocol/finite/publics/antibiotocol/finite/publics/antibiotocol/finite/publics/antibiotocol/finite/publics/antibiotocol/finite/publics/antibiotocol/finite/publics/antibiotocol/finite/publics/antibiotocol/finite/publics/antibiotocol/finite/finite/antibiotocol/finite/fini with spatially variant sample density correction, 2005. [6] Zeng DY et al. Deep residual network for off-resonance artifact correction with application to pediatric body MRA with 3D cones. Magn Reson Med. 2019. [7] Lun Y et al. Deblurring for spiral real-time MRI using convolutional neural networks. Magn Reson Med. 2020. [8] Haskell MW et al. Deep learning field map estimation with model based image reconstruction for off-resonance correction of brain images using a spiral acquisition. ISMRM Workshop on Data Sampling and Image Reconstruction. 2020.