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Abstract

Magnetic Resonance Imaging (MRI) is a powerful medical imaging modality
that offers diagnostic information without harmful ionizing radiation. Unlike
optical imaging, MRI sequentially samples the spatial Fourier domain (k-space)
of the image. Measurements are collected in multiple shots, or readouts, and in
each shot, data along a smooth trajectory is sampled. Conventional MRI data
acquisition relies on sampling k-space row-by-row in short intervals, which is
slow and inefficient. More efficient, non-Cartesian sampling trajectories (e.g.,
Spirals) use longer data readout intervals, but are more susceptible to magnetic field
inhomogeneities, leading to off-resonance artifacts. Spiral trajectories cause off-
resonance blurring in the image, and the mathematics of this blurring resembles that
of optical blurring, where magnetic field variation corresponds to depth and readout
duration to aperture size. Off-resonance blurring is a system issue with a physics-
based, accurate forward model. We present a physics-informed deep learning
framework for off-resonance correction in MRI, which is trained exclusively on
synthetic, noise-like data with representative marginal statistics. Our approach
allows for fat/water separation and parallel imaging acceleration. Through end-
to-end training using synthetic randomized data (i.e., images, coil sensitivities,
field maps), we train the network to reverse off-resonance effects across diverse
anatomies and contrasts without retraining. We demonstrate the effectiveness of
our approach through results on phantom and in-vivo data. This work has the
potential to facilitate the clinical adoption of non-Cartesian sampling trajectories,
enabling efficient, rapid, and motion-robust MRI scans. Code is publicly available
at: https://github.com/mikgroup/ResoNet

1 Introduction

Magnetic Resonance Imaging (MRI) is a powerful medical imaging modality that enables the
acquisition of diagnostic information of soft tissue without harmful ionizing radiation. MRI visualizes
hydrogen spins, mostly in water and lipids that are subjected to a very strong yet homogeneous
magnetic field. When spins are excited, they emit a signal at a frequency proportional to the magnetic
field present. Spatial encoding is possible by applying additional so-called gradient fields, which
vary linearly in space and result in a Fourier relationship between the position of the spins and the
frequency spectrum of the acquired signal. Since position is mapped to frequency, any additional
magnetic field inhomogeneities will result in incorrect mapping and lead to image distortions and
undesired artifacts. Magnetic field inhomogeneity can occur due to magnetic susceptibility differences
between air and tissue, such as near the sinuses and ear canals in the head or near the lungs and

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/mikgroup/ResoNet


bowel in the body. Also, due to different molecular environments, spins in water and fat see different
magnetic fields, which results in the so-called chemical shift phenomenon in the signal frequency.
The severity of these off-resonance effects depends on different imaging parameters, with a general
trade-off between scan time or signal-to-noise ratio and the level of artifacts.

1.1 MRI Acquisition While there are numerous intricacies to MRI acquisition, the process can
be succinctly understood as the collection of data in the spatial frequency domain, or k-space, of the
imaged object magnetization m(r⃗). The relationship between the image and k-space data M(k⃗) is
defined by the Fourier relationship,

M(k⃗) = F{m(r⃗)} =

∫
vol

m(r⃗)e−j2π(k⃗·r⃗)dV. (1)

Here, r⃗ is the position vector in the object space, and k⃗ are the coordinates in k-space.

The MRI system employs a k-space traversal strategy where data is acquired sequentially over time
along lines or smooth trajectories k⃗(t). The time-dependent signal y(t) corresponds to samples of
M(k⃗(t)), described by the equation [1]:

y(t, k⃗(t)) = M(k⃗(t)) =

∫
vol

m(r⃗)e−j2π(k⃗(t)·r⃗)dV (2)

Figure 1 illustrates different two-dimensional k⃗(t) trajectories. The k-space measurements are
collected in multiple shots, called readouts, with the scan time increasing linearly with the number
of readouts. In most clinical scans, k-space is sampled in a row-by-row Cartesian manner, which
consists of many short readouts. However, these brief readout durations are relatively inefficient in
covering k-space, resulting in prolonged scan times and susceptibility to motion artifacts. Researchers
have developed more efficient non-Cartesian sampling trajectories, such as Spiral, which utilize
longer but fewer readouts, allowing traversal of k-space in a significantly shorter time. However,
these longer readouts make the trajectory more susceptible to off-resonance effects.

1.2 Off-Resonance in MRI Off-resonance arises from two main sources: 1) undesired spatial
variations in the main magnetic field, which cause spins to resonate at a frequency offset ∆f(r⃗)

Cartesian Trajectory
Short readout, slow scan

EPI Trajectory
Long readout, fast scan

Spiral Trajectory
Long readout, fast scan

Spatially varying distortion Spatially varying blur

Figure 1: Trade-offs between MRI acquisition strategies and off-resonance effects: The MRI
system directly samples the spatial Fourier domain (k-space) M(k⃗) of the object m(r⃗) in many shots,
called readouts, each represented a by yellow arrowed path. The illustrated acquisition strategies
assume a fully sampled k-space, where off-resonance effects depend on readout duration and geometry.
Cartesian trajectories collect k-space samples in many short readouts in a row-by-row manner, with
minimal off-resonance artifacts. Echo-planar imaging (EPI) and Spiral trajectories collect k-space
samples via longer but fewer readouts in a significantly shorter total time. However, these are more
susceptible to off-resonance effects, manifesting as image distortions in EPI and image blur in Spiral.
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proportional to the inhomogeneities, and 2) the inherent chemical properties of tissue types in the
object, such as fat and water, where spins in fat tissue resonate at a fixed frequency offset ∆ffat from
those in water. These offsets are relative to a carrier frequency f0 - the resonant frequency of hydrogen
protons in water - which we omit in our equations for simplicity, presenting instead the baseband
signal. Equation 2 assumed a homogeneous magnetic field and single tissue type, specifically water;
however, since images contain both water and fat components and both components experience the
spatially varying off-resonance ∆f(r⃗), Equation 2 can be extended to

y(t, k⃗(t)) =

∫
vol

(
mwater(r⃗) +mfat(r⃗)e

−j2π∆ffatt
)
e−j2π∆f(r⃗)te−j2πk⃗(t)·r⃗dV. (3)

In this equation, the additional exponential terms introduce space-varying linear phase modulation to
image samples, where the range of the phase modulation increases with the readout duration, t, thus
breaking the Fourier model. Therefore, reconstruction using an inverse Fourier transform will result
in image artifacts that depend on the trajectory used.

In Cartesian trajectories, all the readouts are in the same direction, accruing linear phase across
k-space. This results in image domain shift according to the Fourier shift property and thus to
geometric distortion for space-varying inhomogeneities. Due to the short duration of Cartesian
readouts, these off-resonance artifacts are negligible compared to those from trajectories with longer
readouts, like Spirals (Figure 1). Please refer to [2] for a detailed derivation of the exact shift. Since
Spiral trajectories go outwards from the center of k-space, the phase accrual is center-out. This
results in spatial frequency components being displaced in different directions, leading to blurring
and loss of sharpness in the image. The Point Spread Function (PSF) of this effect corresponds to a
spatially varying blurring kernel proportional to the amount of local off-resonance. Please refer to the
supplementary material for visual representations of these PSFs.

The mathematics underlying off-resonance blurring resembles that of optical blurring due to depth,
as illustrated in Figure 2. The spatially varying magnetic field is mathematically similar to a spatial
variation in depth, while the trajectory readout length is analogous to the size of the optical aperture.
Just like larger apertures increase both SNR and blurring from depth variations, longer readouts
increase both SNR and blurring from variations in resonant frequency. However, unlike blurring in
optical systems, off-resonance blurring is additive, layering out-of-focus regions on top of those in
focus. One could bring off-resonant regions into focus by demodulating the signal equation with
a specific phase offset (Figure 2). For instance, extracting the fat phase term e−j2π∆ffatt from the
integral in Equation 3 and demodulating by it makes the fat image components sharp, leaving water
components blurred. Also, MRI introduces an additional complexity known as partial volume effects
[3], where a single voxel can contain both resonant (water) and off-resonant spins (fat).

1.3 Our Approach Off-resonance blurring is a system problem and has a known forward model,
but solving for a direct solution is challenging due to its ill-posed nature. Recently, Deep Learning
(DL) has enabled significant improvements over classical methods for solving inverse problems [5–8].
However, there are concerns over the black-box nature of end-to-end networks, overfitting, potential
hallucinations [9], and the necessity of large representative training datasets. Physics-inspired DL
methods, such as model-based unrolled networks [6, 10], mitigate these concerns by enforcing
consistency to the acquired data with the known forward model of the system. Utilizing a forward
model also enables the simulation of a training dataset, circumventing the need to collect large
amounts of training data on an MRI scanner representative of all anatomies and contrasts.

In this work, we propose a physics-inspired unrolled-DL framework for off-resonance correction in
MRI. The key contributions of this work are as follows:

• End-to-end training using only synthetic data: A distinguishing feature of our approach is the
exclusive utilization of synthetic data with representative marginal statistics for network training
(inspired by [11]). By leveraging synthetic random field maps, synthetic coil sensitivities, and
noise-like images, we eliminate the requirement for real MRI data during the training process. This
approach allows us to overcome the limitations of acquiring large training datasets on an MRI
scanner, which can be costly, time-consuming, and unfeasible in diverse scenarios.

• Estimation of a resonance frequency spectrum per voxel using a physics-informed DL framework:
This effectively handles partial volume effects, i.e., separates fat and water contributions within
each voxel. While we demonstrate results for a Spiral trajectory, we propose a generic framework
that could be applied to other non-Cartesian trajectories.
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Figure 2: Illustration of off-resonance blurring effects in Spiral MRI and analogy with Depth of
Focus. Top row: Water-based phantom data exhibiting off-resonance effects. The reference short-
readout image required 4x the scan time. Middle row: a simulated example with non-overlapping
water and fat circles. Demodulating at the water resonance frequency (f0) brings the water circle
into focus but causes blurring of fat, and vice versa. Bottom row: [4] Analogy with depth of focus
in optical imaging, where focal point is sharp, while other depths are blurred. In MRI, different
demodulation frequencies correspond to different focal lengths. Unlike optical blurring, off-resonance
blurring is additive, with out-of-focus regions blurring on top of in-focus areas, making it challenging
to create a seamless all-in-focus image by stitching together multiple demodulated images.

• Generalizability to multiple anatomies and contrasts: The proposed framework demonstrates
strong generalizability, effectively correcting off-resonance artifacts across different anatomies and
contrasts without the need for retraining.

1.4 Related Work Recent developments in MRI highlight the potential of physics-driven DL
methods in reconstruction tasks, spanning from physics-informed loss functions to unrolled network
architectures [10]. In off-resonance correction, traditional approaches include direct deblurring
methods like autofocusing [12], which iteratively determines the sharpest image resonance frequency
per voxel; however, these often rely on simplified sharpness criteria from optics [13], limiting their
ability to generalize to more complex off-resonance scenarios encountered in MRI, such as partial
volume effects. Model-based analytical methods, such as conjugate phase reconstruction [14], require
a magnetic field map measured from additional scans. The field map model does not represent partial
volume, introduces additional scan time, and is susceptible to motion artifacts; hence, this method
often cannot completely correct for off-resonance [15].

More recently, data-driven DL-based approaches have been proposed to use convolutional neural
networks (CNNs) to directly deblur the image [16–18] or estimate the field map from the image [19].
However, these approaches often neglect the physics of off-resonance blurring, do not handle partial
volume effects, are limited in handling multi-coil acceleration, and rely on specific training data
tailored to certain anatomies and contrasts.

2 Methods

Our proposed approach addresses the limitations of previous off-resonance correction methods by
developing a forward model that handles partial volume effects and is compatible with multi-coil
acceleration. By slicing the object into multiple frequency bins, we represent the tissue resonant at
each frequency, leading to a comprehensive model that captures the full spectrum of frequency offsets.
Our approach recognizes that off-resonance is a system problem intrinsic to the MRI acquisition
process rather than a direct image feature problem. As a result, we leverage training on synthetic data,
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providing an effective strategy to address this challenge and improve generalization across different
anatomies and contrasts.

2.1 Physics-Informed Forward Model The key in our approach is that we do not model the
spatially varying field and fat shift directly. Instead, we extend the dimensionality of our image to
x(r⃗,∆f) which includes a frequency dimension ∆f such that:

m(r⃗) =

∫
∆f

x(r⃗,∆f) d∆f (4)

We approximate this representation as a sum of multiple frequency bins xi(r⃗) = x(r⃗,∆fi), such that
m(r⃗) ≈

∑
i xi(r⃗), with each bin resonating at a uniform frequency ∆fi due to field inhomogeneities

and water/fat frequency offsets. Relating back to the optical imaging analogy, this is equivalent to
representing a 3D scene instead of a 2D scene with a depth map. Using this modeling and the linearity
of the signal equation 3, we can express the contribution to the signal from each frequency bin ∆fi as

yi(t, k⃗(t)) =

∫
vol

xi(r⃗)e
−j2π∆fite−j2πk⃗(t)·r⃗dV, (5)

where y(t, k⃗(t)) =
∑

i yi(t, k⃗(t)). Since the phase modulation in a bin applies uniformly to the
image bin content, it can be taken outside of the integral, i.e.,

yi(t, k⃗(t)) = e−j2π∆fit

∫
vol

xi(r⃗)e
−j2πk⃗(t)·r⃗dV. (6)

Discretizing the Fourier Transform, we obtain
yi = M∆fiExi, (7)

where E is an encoding matrix implementing a Non-Uniform Fourier Transform (NUFFT), and M∆fi

is a diagonal matrix with elements e−j2π∆fit in the diagonal. M∆fi phase modulates the k-space of
the bin by the sample time and frequency offset.

Putting it all together, we can construct a complete forward model

y =
∑
i

yi = Ax, (8)

where x is the multi-frequency bin image, and A is the complete encoding matrix which combines
the Fourier and modulation operators. Figure 3 illustrates our forward model.

It is important to note that for the sake of brevity and simplicity, we ignore in our description the use
of multiple receiver coils in MRI, which readers can refer to in the following references [20, 21].
However, by using a general linear encoding operator E it is trivial to extend our approach from a
single receiver in which E represents a Fourier operator to a multiple receiver case where E also
includes multi-channel receiver sensitivities.

…
…

…
…

k-space
Frequency 
bin images

…

!

Figure 3: Physics-informed forward model A: The image is modeled as a stack of sharp images at
different frequency bins. Each bin image is encoded using an encoding matrix E (e.g., Non-Uniform
Fast Fourier Transform (NUFFT)), and then phase modulated by M∆fi corresponding to its bin
frequency. Finally, the k-spaces across the bins are summed (Σ) to reconstruct the acquired k-space.
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2.2 Synthetic Training Data Generation Inspired by [11], all the training data consists of
simulated synthetic random field maps, fat/water partial-volume effects, coil sensitivities, and noise-
like images. The statistics and smoothness of these synthetic images are designed to model those
of real data. Specifically, we generate random images and field maps ∆f(r⃗) by applying an FFT
to exponentially weighted random complex data, where the weighting radius determines the level
of smoothness. Additionally, to create image examples I , we combine multiple random images to
obtain edges with various sharpness levels. Similarly, random sensitivity maps S are generated from
weighted random SPIRiT kernels [22].

To model the fat-water partial volume effects, we generate a random weight map W that determines
the percentage of fat vs. water at each voxel (Figure 4). From this weight map and image I , we
obtain a fat image Ifat and a water image Iwater. Since fat has a resonant frequency offset from water,
in addition to the random magnetic field map frequency offset ∆f(r⃗), the fat image also includes
a constant offset ∆ffat. Subsequently, the fat and water images are assigned to different frequency
bins based on the random field map ∆f(r⃗), fat offset ∆ffat, and the corresponding bin frequency
values. This results in a multi-bin image representation x, fed into the forward model A to obtain the
simulated k-space data y.

2.3 Model Architecture To address the ill-posed nature of the problem, we employ a neural
network for regularization. Inspired by the MoDL approach [6], we adopt an unrolled iterative model
that is trained end-to-end. The input to the model is AHy, a stack of images demodulated at multiple
frequencies obtained by applying the adjoint operator AH on the raw k-space y. Regions of the
object are sharp at the frequency bin corresponding to their local resonant frequency, while other
off-resonant regions blur on top (Figure 5b). The objective of our model is to obtain a clean image at
each frequency bin, as well as a combined output image, a water image, and a fat image, all without
off-resonance blurring.

The unrolled model consists of Data Consistency (DC) modules and CNN-based proximal steps, as
illustrated in Figure 5b. The objective function for the DC module is defined as follows:

xk = argmin
x

||Ax− y||22 + λ||x−Dϕk
(xk−1)||22 (9)

Here, xk represents the reconstructed image at iteration k, A is the forward model, y is the acquired
data, Dϕk

denotes the CNN with learnable parameters ϕk, and λ controls the trade-off between data
consistency and regularization. The objective aims to minimize the discrepancy between the forward
model’s prediction and the acquired data, as well as the difference between the reconstructed image
and the output of the preceding CNN. From Equation 9, we can obtain:

(AHA+ λI)xk = AHy + λDϕk
(xk−1), (10)

which can be solved using the Conjugate Gradient (CG) method [23] to update xk at each iteration.

The CNN takes as input complex bin images with the real and imaginary components represented
as separate channels. It includes residual blocks [24] and incorporates an attention module over

!"!"#!"!"# − $%&' !"!"# + $%&'

"$"$ − $%&' "$ + $%&'

2D 
IFFT

+
Post

Processing
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IFFT
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Figure 4: Synthetic training data generation. Random noise-like image I , fat/water percentage
map W , off-resonance field map ∆f(r⃗) are generated by applying an Inverse Fourier Transform to
exponentially weighted white noise images, where the weighting radius controls smoothness. From I
and W , fat and water images, Ifat and Iwater are obtained. Each voxel in these images is assigned to
a frequency bin based on ∆f(r⃗) and the fat frequency offset ∆ffat, obtaining our multi-frequency
image x. Finally, x is processed via the forward model A to generate the k-space data y.
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Figure 5: Physics-informed deep learning framework for MRI off-resonance correction. (a)
Training process: The model is trained using randomly generated data, including images (I , Iwater,
Ifat) and frequency bins (x). Simulated k-space data y is obtained by applying the forward model
A to x.The network, fed with images demodulated from AHy, reconstructs frequency bins x̂ and
images Î , Îfat, Îwater, and is directly supervised by the original data. (b) Inference process: Acquired
k-space y is processed through AH and fed to the model to reconstruct bins and images. The unrolled
network comprises N unrolls of CNNs and Data Consistency (DC) modules. Each DC module takes
A, y and previous CNN estimate Dϕk

(xk−1) to solve for xk using the Conjugate Gradient method.

frequency bins. This module allows the network to selectively focus on features from specific
frequency ranges at each spatial location. Following the attention module, a series of residual blocks
are employed. Finally, a convolutional layer produces the cleaner complex images at each frequency,
which can then be fed into the DC module. Additionally, the network of the last unroll outputs a final
combined image Î , a fat image Îfat, and a water image Îwater.

2.4 Model Training and Inference During training, we utilize our synthetic data strategy to
generate images I , Iwater, Ifat, and the bin representation x, from which we obtain simulated k-space
y data using the forward model A. The unrolled model is fed with AHy as input, alongside A and y

for the DC modules. We task the model with reconstructing the bin representation x̂ and images Î ,
Îwater, Îfat, with direct supervision provided by the synthetic data (Figure 5a).

The forward model A incorporates the acquisition characteristics of the readout trajectory in the
NUFFT step, such as the type of non-Cartesian k-space trajectory, readout duration, number of
interleaves, resolution, and field of view (FOV). The model learns to correct for a specific PSF
associated with the trajectory, and a single model becomes versatile and adaptable to various anatomies
and MRI contrasts, such as proton density (PD), T1-weighted, and T2-weighted images [1].

During inference, real acquired k-space data y, the forward model A, and AHy are provided to the
network to reconstruct the bin representation and images (Figure 5b).

3 Experiments & Results

3.1 Phantom and In-vivo Acquisitions To further evaluate the performance of our model, we
acquired phantom data, as well as brain, knee, and abdominal in-vivo data using a GE 3T MR750W
System. MR Pulse Sequences were designed using SpinBench Software, and data was acquired
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using RTHawk v2.5.2 Software (Vista Inc., Palo Alto, CA.). The in-vivo data was acquired from four
volunteers who provided informed consent, and the study was conducted with IRB approval.

For the phantom, knee, and brain scans, we used a Spiral trajectory with 36 interleaves, a 5.2
ms readout duration, a resolution of 1mm2, and a 23 cm FOV. We acquired a Proton Density
(PD) weighted images for the knee and T1- weighted images for the brain. Alongside each scan,
we acquired a reference scan with the same resolution and FOV but with a shorter readout (148
interleaves, 1.48 ms readout) to reduce artifacts. It is worth noting that for the knee scan, where we
used a 2-second repetition time (TR), the acquisition time using the shorter readout trajectory is 5
minutes for a single slice, compared to 1.2 minutes for the longer readout sequence, resulting in a 4x
speedup.

T1-weighted abdominal scans employed a 38-interleave Spiral trajectory with a 10.4 ms readout
duration, a 1mm2 resolution, and a 35 cm FOV, with data acquired during breath holds. A short
readout reference scan was also acquired (320 repetitions, 1.52ms readout duration); however, as
breathing was permitted between scans, slices will not exactly align. With a 50ms TR, the long
readout trajectory takes less than 2 seconds to acquire versus 16 seconds for the short readout one.

More details on Pulse Sequences, coils, and other parameters used are in the supplementary material.

3.2 Model and Training Details In a 3T MRI, the fat frequency offset, ∆ffat, is reported to be
approximately −440Hz [1, 25]. In our model, we simulated an off-resonance field map covering a
range of ∆f(r) = ±180Hz. To approximate the off-resonance spectrum, we utilized 21 frequency
bins within the range of −600Hz to 200Hz, with a step size of 40Hz between bins. To better capture
partial volume effects and avoid subtle data artifacts [26], data generation was performed at a high
resolution, three times better than the reconstructed spatial resolution and ten times the reconstructed
frequency bin resolution. Subsequently, the generated data was decimated in the Fourier domain to
match the target resolution and dimensions.

The network architecture featured four unrolls. Each CNN module in these unrolls included three
residual blocks, each containing two convolutional layers with 128 filters and a kernel size of 5,
employing ReLU activation. The DC module used 12 conjugate gradient iterations with a trainable
regularization parameter λ, empirically initialized to ensure that a ground truth input remained
uncorrupted (λ = 1). We trained our model using PyTorch [27] in a Nvidia RTX3090 GPU,
employing ℓ1 losses and the Adam optimizer [28]. We used the torchkbnufft library [29] for NUFFT
operations. We pre-generated a training dataset to optimize memory usage and speed during training.

Two models were trained: one for the 23cm FOV trajectory, and another for the 35cm FOV scans.

In addition to our proposed model, we aimed to replicate the methods in [16] and [17] to provide a
relevant baseline for comparison, referred to as the “DL Baseline”. We used the fastMRI brain dataset
[30] with simulated Spiral trajectories and employed the network architecture and augmentation
strategy proposed by [16] for training. It is important to note that this method only outputs a combined
corrected image, without separate fat and water images or a spectrum across frequencies.

3.3 Results on Phantom and In-vivo The phantom and in-vivo results were obtained using
models for specific trajectories and trained solely on noise data. Sensitivity maps for the acquired
k-space y were estimated using ESPIRiT [31] with the BART toolbox [32]. Though these maps may
not always be perfectly accurate, they are fed to the model alongside the k-space, and our model
remains robust to their potential inaccuracies.

Figure 6 showcases a phantom scan, a T1-weighted brain scan, a Proton Density (PD) weighted
knee scan, and a T1-weighted abdominal scan, illustrating the capability of the network to generalize
across multiple anatomies and contrasts. The figures depict 1) the uncorrected long readout input
data demodulated at the water frequency f0, corresponding to the image a clinician would use for
diagnosis, 2) the predicted water image output, 3) fat image output, and 4) combined clean output.
Additionally, we compare our results against 5) the DL Baseline described in section 3.2 and 6)
Autofocus [12] technique, which both aim to correct without the need for a separately acquired field
map. Finally, we present 7) the uncorrected short readout reference image and 8) the reference field
map obtained with separate scans. Please refer to the supplementary material for more detailed results
showing all input and network output bins.
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Figure 6: Results of the proposed method on phantom and in-vivo data. Results are presented
for Water-based ACR phantom, as well as in-vivo T1-weighted brain, PD-weighted knee, and T1-
weighted abdominal scans. Top-to-bottom rows: 1) The uncorrected long readout input image, 2)
output water image Îwater, 3) output fat image Îfat, 4) combined output image Î . Reference baselines
include 5) DL Baseline output image, 6) Autofocus [12] corrected image, 7) reference uncorrected
short readout image (4x scan time for phantom, brain, and knee; 8x for abdominal scans). Lastly, 8)
reference field map to visualize resonance frequency variations.
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3.4 Results on Simulated Off-Resonance Validation Set While obtaining reference scans with
shorter data readouts is possible, these scans will alter image contrast and introduce different artifacts.
As a result, obtaining directly comparable ground truth data to compute meaningful quantitative
metrics is infeasible. Therefore, as a performance proxy, we conducted an evaluation on a validation
set created using the fastMRI brain dataset [30]. This set consists of brain anatomy images that were
corrupted with simulated random off-resonance field variations and fat/water partial volume effects.
The validation set comprised 1000 examples.

We compared the performance of our proposed approach and the DL Baseline by measuring the
NRMSE (Normalized Root Mean Squared Error) and PSNR (Peak Signal to Noise Ratio) on the
magnitude of the combined output images within the validation set. We report average metrics and
their standard deviation over the 1000 examples in Table 1. Despite our approach being trained solely
on synthetic non-anatomy data, it outperforms the DL Baseline regarding NRMSE and PSNR.

Method \ Metric NRMSE (↓) PSNR (↑)
Our approach 0.016 ± 0.011 37.1 ± 4.7

Deep Learning (DL) Baseline 0.049 ± 0.028 27.7 ± 5.7

Table 1: Performance comparison on simulated off-resonance validation set. NRMSE (lower is
better) and PSNR (higher is better) for our method and the DL Baseline on a synthetic validation
set of fastMRI [30] brain images with simulated random off-resonance and partial volume effects.
Metrics show the average and standard deviation over 1000 examples.

4 Discussion

In this work, we propose a physics-inspired unrolled DL framework for off-resonance correction in
MRI, showcasing its effectiveness through training solely on synthetic data. This approach addresses
the challenges of collecting real MRI datasets for off-resonance correction, which can be unfeasible.
Off-resonance blurring varies greatly across different anatomies due to differences in magnetic field
variations, as seen in Figure 6. Our in-vivo evaluation showcases the generalization capabilities of
our model across various contrasts and anatomies. Correcting off-resonance in MRI is particularly
valuable for enabling non-Cartesian trajectories, such as Spirals, which significantly reduce scan time,
leading to fewer motion-induced artifacts, shorter MRI exams, and improved clinical throughput.

The proposed framework and training strategy could bring further value to fields outside of MRI. The
mathematics that arises from off-resonance correction in MRI is a generalization of lens aberration
and depth from focus problems in microscopy and astronomy [33, 34]. The proposed technique could
be adapted to these cases where there is a system error, like lens imperfection or atmospheric blurring.

4.1 Limitations and Future Work Despite promising results, our framework has limitations and
areas for future improvement. Currently, networks are trained for specific trajectories, and future work
involves handling multiple trajectories within a single model. This will include diverse trajectory
patterns (such as Rosette [35], Looping Star [36]), resolutions, and FOVs. Another aspect for future
improvement is simulating more extreme magnetic field map variations during training and increasing
forward model resolution and network capacity, allowing for correction in settings such as regions
close to air in the ear canals and nose. Currently, performance degrades when moving beyond the
distribution of the training data simulation range.

5 Conclusion

In conclusion, we have presented a physics-informed unrolled DL framework for off-resonance
correction in MRI. Our approach incorporates data consistency using a multi-frequency forward
model that represents a resonance frequency spectrum for each voxel. We have bypassed the
challenges of collecting large training datasets by training our network solely on synthetic data.

We have demonstrated results in generalization and performance across diverse anatomies and
contrasts. By addressing off-resonance issues, our framework has implications for accelerating
scanning, increasing clinical throughput, and making MRI more accessible. Continued research
and refinement in this area will further contribute to the advancement of MRI technology and its
application in healthcare.
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