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Summary: We guess a neural network’s gradients without computing a loss or knowing the label
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1. Pick a random direction & (Sohoni et al)

2. Find directional derivative along &
using forward-mode automatic
differentiation (cheap!).

3. Scale € by directional derivative:

Results — MLPs

Directional Descent: Random guess for weights
Activation Perturbation: Random guess for activations
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Architecture-based guessing

Observation: gradients lie in the column
space of the Jacobian matrix

Results — LocalMixer
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, Variance explained by the top k components How bias leads to better quesses over time

Bias impedes convergence when momentum is used

Mixture Inputs

'U m—= A ctivation subs =
L P e
c% 0.6 Random S‘?bSp??? — = Lo Self-sharpening Train Accuracy Self-sharpening Cosine Similarity
— : 1.001
& ' 5 2
= 0.4 S s Self-sharpening E 0.75 1
8 8 0.6 Activation Mixing é Self-sharpening
c% <Qé . Directional Descent tn 0.50 Activation Mixing
— 0.2 . Tl
Cs-é ' = 0.4 g Directional Descent
> E g 0.251
0.00
Number of components 0 50 100 150 200 0 250 500 750 1000

Epochs Epochs

Idea (ACt' vation M le.ng): Use random Low-rank guess— low-rank weight — smaller guess space
mixture of activations as guess — higher cosine similarity



