How to Guess a Gradient

Summary: We guess a neural network's gradients without computing a loss or knowing the label

 $\nabla \mathcal{L}$

 $(\epsilon \cdot \nabla \mathcal{L})\epsilon$

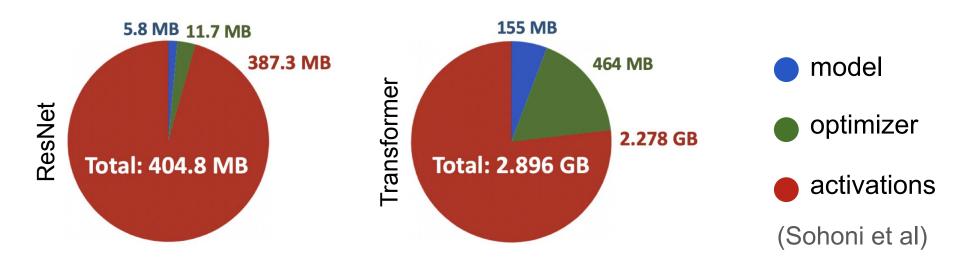
Backpropagation requires a lot of memory and is not biologically plausible. **Directional descent** is a previously proposed alternative:

- 1. Pick a random direction $\boldsymbol{\varepsilon}$
- 2. Find directional derivative along *ε* using forward-mode automatic differentiation (cheap!).
- 3. Scale $\boldsymbol{\varepsilon}$ by directional derivative:

$$w_{t+1} = w_t - \alpha(\epsilon \cdot \nabla \mathcal{L})\epsilon$$

Pros:

- Unbiased estimator of $\nabla \mathcal{L}$
- Guaranteed to be within 90° of true gradient.
- Doesn't require storing activations like backprop **Cons:**



<u>Results – MLPs</u>

Directional Descent: Random guess for weights **Activation Perturbation**: Random guess for activations

•	Method	Cosine Similarity	1-step effectiveness	
-	Backprop (Oracle)	1	1	
	Directional Descent	0.0003	1 x 10 ⁻⁶	
Ours	Activation Perturbation	0.016	6.9 x 10 ⁻⁴	
	Activation Mixing	0.025	3.4 x 10 ⁻³	
	WT	0.030	$1.7 \ge 10^{-3}$	

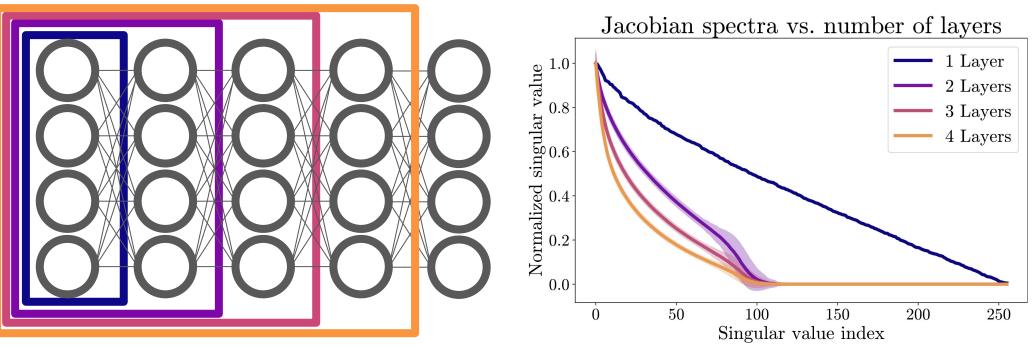
• Cosine similarity decreases with guess dimensionality as $O(\frac{1}{\sqrt{N}})$

Main Question: How can we narrow guess space?

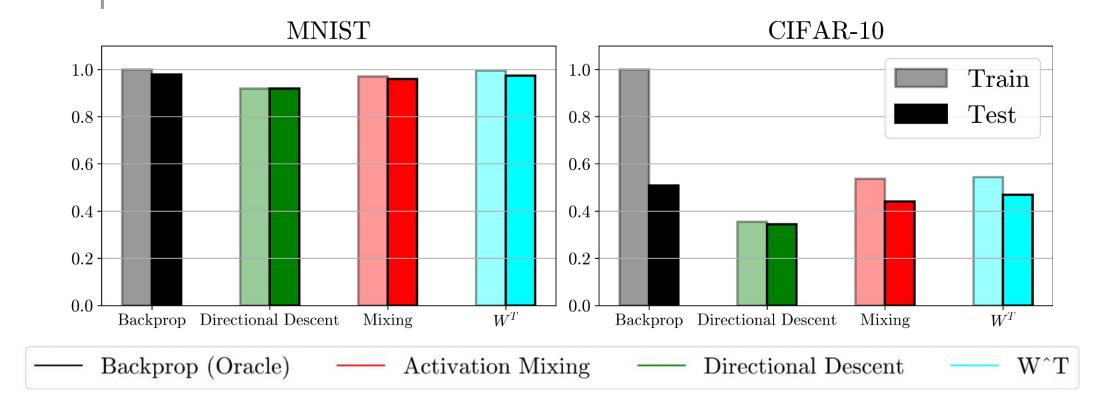
Answer: Use local feature/architecture knowledge!

Architecture-based guessing

Observation: gradients lie in the column space of the Jacobian matrix

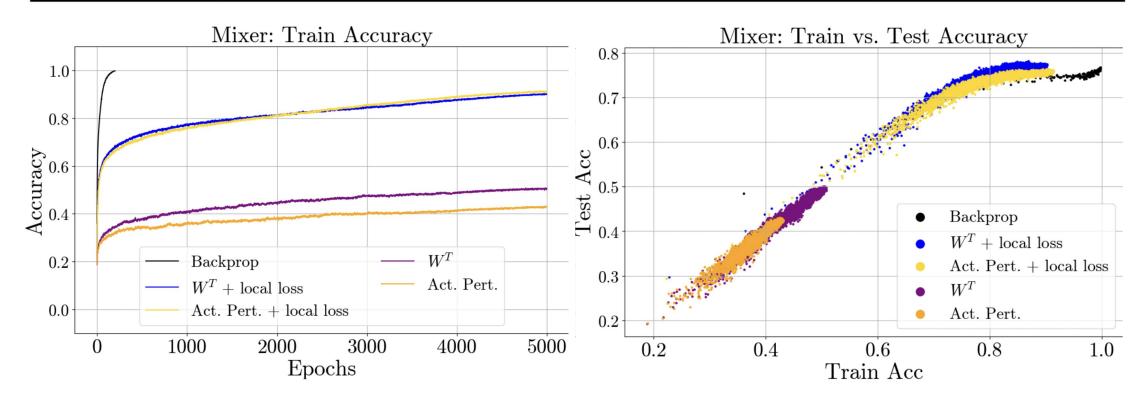


Idea (W^{T}): Filter a random guess through the next layer's weight matrix (part of Jacobian) $g_{true} = J_1 J_2 J_3 \dots J_n e$



Results – LocalMixer

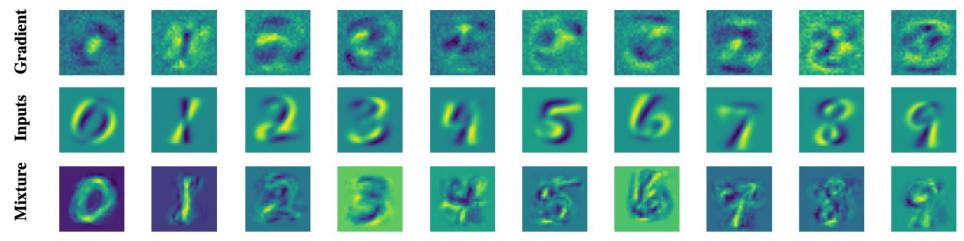
	Backprop	Ren et al. (2022)	Mixing	W^T
Reported (Ren et al. (2022))	<u>66.4</u>	69.3	-	-
Reproduced with Adam	71.2	<u>71.2</u>	68.8	72.5 (+1.3)
Augmentation (500 epochs)	76.4	72.2	68.2	<u>74.4</u> (+1.2)
Augmentation (5000 epochs)	77.6	76	69.4	<u>77.4</u> (+1.4)

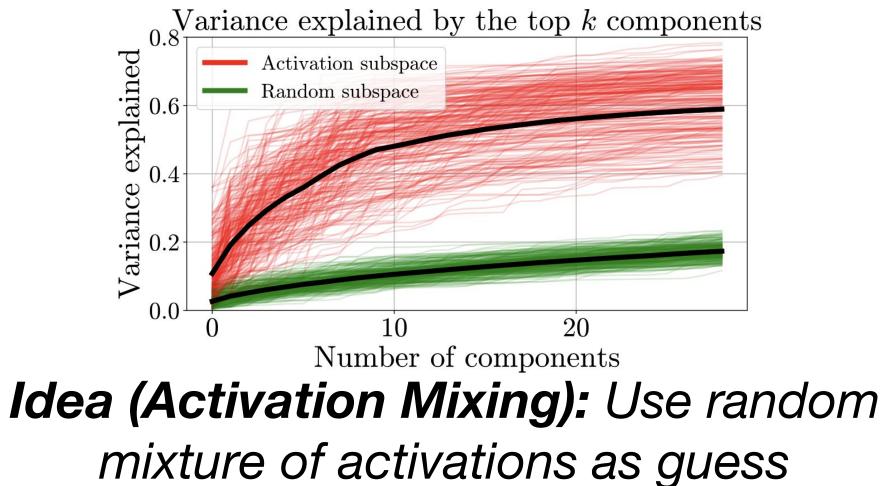


 $\epsilon = J_1\eta, \quad \eta \sim \mathcal{N}(0,I)$

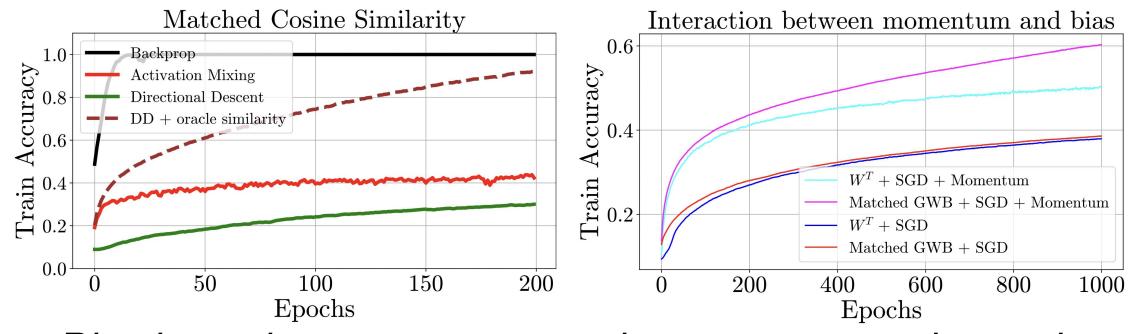
Data-based guessing

Observation: gradient and activation subspaces have a large overlap





Gradient guess bias vs. optimization



Bias impedes convergence when momentum is used

How bias leads to better guesses over time

