

MultiEarth Workshop 2023

Debiased Learning from Naturally Imbalanced xView Data

Chun-Hsiao Yeh¹, Xudong Wang¹, Stella X. Yu^{1,2}, Charles Hill³, Zackery Steck³,

Scott Kangas³, Aaron A. Reite⁴

¹UC Berkeley ²University of Michigan ³Etegent Technologies, Ltd ⁴NGA

06/19/2023

This work was supported, in part, by the National Geospatial Intelligence Agency / Etegent Technologies Ltd. contract HM047620C0063.

Our Task: Remote Sensing Data

8-Band Images (xView Dataset)

color RGB 1.coastal blue 2.blue 3.green 4.yellow 5.red 6.red edge 7.near-IR18.near-IR2

An Image is a Function from Domain to Co-Domain

Domain: Pixel Locations (x,y)

Co-Domain: Pixel Values (RGB)

color

C-scaling

scaling

rotation

Co-Domain is Related to Diversity of Image Types

Singhal, Utkarsh, Yifei Xing, and Stella X. Yu. "Co-domain symmetry for complex-valued deep learning." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2022.

xView Results: Simpler and Better Ultra-lean

xView Dataset

Our Task: Remote Sensing Data Classification

Our Task: Remote Sensing Data

Related Semi-Supervised Learning Methods

JUNE 18-22, 2023

Our Semi-Supervised Learning Framework

Debiased Pseudo-Labeling

Contribution #1: Robust Augmentations

Design a set of robust strong and weak augmentations suitable for remote sensing data.

Contribution #2: Debiased Pseudo-Labeling

Leverage DebiasedPL to mitigate the bias in pseudo-labeling.

RandAugment Appears to be too Complicated for Remote Sensing Data

Our New Findings: Data Augmentations for Remote Sensing Data

Augmentations	Used	Reason				
RandAugment [8]	×	The use of RandAugment with				
		high intensity of transforma-				
		tions may result in overfitting				
		to the training set, which can				
		be detrimental for generaliza-				
		tion on remote sensing data.				
Rotation	\checkmark	random rotation (\pm 10 degrees)				
		can simulate variations in re-				
		mote sensing imaging angles.				
Scaling	\checkmark	scaling(0.8, 1.2) can simulate				
		variations in ground sampling				
		distances, which is important				
		for generalization on remote				
		sensing data.				
Horizontal Flip	\checkmark	horizontal flipping simulates				
		mirror-reflected scenes in re-				
		mote sensing data				

Weak augmentation						
None	\checkmark	×	×	\checkmark	×	×
Random Resize Cropping	×	\checkmark	\checkmark	×	\checkmark	\checkmark
Horizontal flipping	×	\checkmark	\checkmark	×	\checkmark	\checkmark
Strong augmentation						
ResizeCropping + Horizontal flipping	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Rotation(\pm 10 degrees)	×	×	×	\checkmark	\checkmark	\checkmark
Scaling(0.8, 1.2)	×	×	×	\checkmark	×	\checkmark
RandAugment(m=10)	\checkmark	\checkmark	×	×	×	×
RandAugment(m=5)	×	×	\checkmark	×	×	×
Top-1 accuracy (%)	69.8	75.6	76.3	79.4	79.7	80.8

Two Sources of Imbalance (Training Label & Pseudo

JUNE 18-22, 2023

Quantitative Results

Class-wise accuracy

Increasing the amount of labeled data