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Abstract

Deep learning has shown remarkable success in ana-
lyzing grounded imagery, such as consumer photos due to
large-scale human annotations are available for dataset,
e.g., ImageNet. However, such extensive supervision is not
the case for remote sensing data.

We propose a highly effective semi-supervised approach
tailored specifically for remote sensing data. Our approach
encompasses two key contributions. We adapt the frame-
work from semi-supervised learning approach, such as Fix-
Match, to remote sensing data by designing a set of ro-
bust strong and weak augmentations suitable for this do-
main. By learning from actual labeled data, combining with
pseudo-labeled data, yet address the pseudo-labeling im-
balance, we leverage a recently proposed debiased learning
approach to mitigate the bias in pseudo-labeling.

Validated by extensive experimentation, our simple semi-
supervised framework with 30% annotations delivers signif-
icant accuracy gains over the supervised learning baseline
by 7.1%, and over recent supervised state-of-the-art, CDS
by 2.1% on remote sensing Xview data.

1. Introduction
Deep learning has enjoyed remarkable success in ana-

lyzing natural images, primarily due to the extensive hu-
man annotation available in datasets such as ImageNet [17].
However, the scenario changes significantly when it comes
to remote sensing data [18, 31, 39]. While there is an abun-
dance of remote sensing data available, there are limited
annotations due to the challenges in annotating such data.
The scarcity of annotations is primarily attributable to the
uncommon viewing angles and the ambiguity present in the
remote sensing data, making it difficult for humans to per-
form annotation accurately.

Previous works, such as transfer learning approaches,
have shown significant success in handling specific data do-
mains by starting with a model pretrained on ImageNet [17]
and fine-tuning it with a few samples of the target domain.
These approaches have been highly effective in medical

Figure 1. Our semi-supervsed learning approach outperforms
FixMatch [30], supervised baseline, and CDS [29] on remote
sensing data. By effectively addressing pseudo-labeling imbal-
ance using debiased learning, we surpass FixMatch by 4.6% ac-
curacy with 10% labeled data in the semi-supervised setting. Fur-
thermore, our method showcases enhanced performance with in-
creased labeled data, outshining the supervised learning baseline
by 7.1% and surpassing the recent state-of-the-art, CDS, by 2.1%
on remote sensing xView [18] data. These findings underscore the
remarkable effectiveness of our approach in handling remote sens-
ing data, leading to substantial performance improvements com-
pared to existing methods.

imaging [27] and self-driving [16] tasks. However, unlike
these image domains, remote sensing data is characterized
by a lack of high-resolution details and class-imbalanced
properties, making it challenging to transfer from a pre-
trained model directly [10, 26, 33].

Additionally, several self-supervised learning meth-
ods [6,12,14,38] have been proposed, which can learn a rep-
resentation without human-annotated data. However, learn-
ing self-supervised models without pretraining is expensive
and time-consuming. Moreover, the ability to discriminate
positive and negative pairs can be worse on remote sensing
data than on natural images due to the ambiguity in the data.

In remote sensing scenarios with limited annotated data



Figure 2. Our semi-supervised learning framework. The frame-
work consists of two key components. The first component fo-
cuses on the design of robust strong and weak augmentations
specifically tailored for remote sensing data. These augmentations
are carefully crafted to enhance the performance of the frame-
work. The second component leverages a state-of-the-art debiased
learning approach [36] to effectively address the bias present in
pseudo-labeling. By mitigating this bias, the framework achieves
improved accuracy and reliability in handling remote sensing data.

and abundant unlabeled data, semi-supervised learning
techniques hold significant promise. FixMatch [30] is a
popular approach that combines weak and strong augmenta-
tions with pseudo-labeling to enhance the learning process.
However, to adapt these techniques to remote sensing do-
mains, we focus on the design of robust weak and strong
augmentations specifically tailored for this context. We in-
vestigate the benefits of incorporating rotation, scaling, and
horizontal flipping, aiming to improve the analysis and in-
terpretation of remote sensing data. By thoughtfully inte-
grating these augmentation strategies, we unlock the full po-
tential of semi-supervised learning, enabling more effective
and context-aware analysis techniques in remote sensing.

Furthermore, some previous studies have shown that
machine-generated pseudo-labels often suffer from inher-
ent imbalances [36]. This imbalance poses a challenge
for learning models as it introduces a bias towards false

majorities within the pseudo-labels. Similar issues have
been observed in widely used datasets like CIFAR and Im-
ageNet [36]. To address this bias problem specifically in
the context of remote sensing data, we incorporate the De-
biasPL [36] method, which aims to alleviate the bias asso-
ciated with pseudo-labeling. In Figure 2, we illustrate the
framework of our approach, and we summarize our key con-
tributions in this work as follows:

1. We adapt the framework of semi-supervised learning
approaches, such as FixMatch, to remote sensing data
by designing a set of robust strong and weak augmen-
tations specifically tailored to this domain.

2. We leverage the recently proposed DebiasPL method
to mitigate the bias in pseudo-labeling by combining
actual labeled data with pseudo-labeled data and ad-
dressing the imbalance in pseudo-labels.

3. We conduct extensive experiments that demon-
strate the effectiveness of our approach, Validated
through extensive experimentation, our simple semi-
supervised framework with 30% annotations achieves
significant accuracy gains over the supervised learn-
ing baseline by 7.1% and outperforms the recent super-
vised state-of-the-art, CDS, by 2.1% on remote sensing
Xview data. This is illustrated in Figure 1.

2. Related Works
Semi-supervised learning (SSL) learns over both limited
labeled data and relatively larger unlabeled data. A large
portion of SSL approaches [2, 3, 19, 20] follow the self-
training scheme that generates pseudo-labels to the unla-
beled data based on the model learned from limited labeled
data. FixMatch [30] learns to predict pseudo-labels using
weakly- and strongly-augmented versions of an image and
then matches both predictions via the cross-entropy loss.
There are other lines of work such as consistency regular-
ization [22,32] that apply perturbations to affect the classifi-
cation loss. Transfer learning [7] approaches first learn a su-
pervised or self-supervised model, then fine-tune the model
with a supervised classifier via limited labeled data. Though
previous SSL approaches achieve considerable success on
natural image data and remote sensing data [37], the focus
of this work is to leverage insights of SSL to remote sens-
ing image data to develop a robust augmentation pipeline,
yielding better performance.
Imbalanced-class learning learns representations that are
suitable for rare classes without significantly reducing per-
formance on majority classes. In most scenarios, the class
imbalanced problem exists in real-world data [13, 34], pre-
senting a huge challenge to deep neural networks [1].
Previous works are composed of 1) re-balancing and re-
weighting approaches [9, 23] that provide more weighting



to the rare classes, 2) margin-based approaches [5] that aim
to impose a large margin to rare classes and have shown
to be effective for the generalization of minority classes,
and 3) ensemble-based approaches [35] that learn multi-
expert models across classes to mitigate the data bias and
variance. Unlike all the aforementioned works that mainly
focus on imbalanced human annotation, we apply an ap-
proach that aims to alleviate the bias of machine annotation
(i.e., pseudo-labeling) in the training data.

3. Debiased Semi-Supervised Learning
Our work provides a comprehensive review of recent

advancements in addressing the data imbalance in remote
sensing images. Specifically, we first review the Fix-
Match [30] and semi-supervised learning. We then discuss
the two sources of imbalance in remote sensing data and
review two methods for addressing them: debiased learn-
ing [36] to address pseudo-label imbalance and logit adjust-
ment [21] to address training label imbalance. Finally, we
present our new findings on the most effective augmenta-
tions in remote sensing data. Overall, our paper provides
valuable insights for researchers and practitioners working
in the field of remote sensing data.

3.1. FixMatch

FixMatch [30] is a semi-supervised learning approach
based on pseudo-labeling. The two branches of inputs
are based on weak- and strong-augmented images to gen-
erate augmented samples for unlabeled data. Suppose
we have been given a mini-batch of labeled data X ={(
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where H (·, ·) is the cross-entropy function, and W(·) is
the weak augmentation. In order to deal with the unla-
beled data U , the widely used strategy is to generate the
pseudo-label by obtaining the prediction via weak augmen-
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The objective function of FixMatch [30] consists of two
components: L = Ls + λLu. Here, Ls represents the loss

Figure 3. Remote sensing data, such as xView [18], has two
sources of imbalance. One is training label imbalance provided
by humans, the other is pseudo-label imbalance generated by
semi-supervised learning framework during learning on remote
sensing data. Note that the average probability distributions of
FixMatch [30] are computed by averaging over all unlabeled data.
The class indices are then sorted based on their corresponding av-
erage probabilities.

term computed using labeled data, while Lu represents the
loss term computed using unlabeled data. The scalar hy-
perparameter λ controls the relative importance of the two
terms in the overall loss function.

3.2. Sources of Imbalance in Remote Sensing Data

One challenge in using semi-supervised learning ap-
proaches based on pseudo-labeling is to deal with the imbal-
anced nature of both 1) the training data and 2) the pseudo-
labels. The debiased learning approach [36] illustrates that
imbalances exist not only in the human-annotated labels but
also in the machine-generated labels, i.e., pseudo-labels.

In order to gain a deeper understanding of this issue,
we analyze the distribution (Figure 3) of imbalanced train-
ing data and pseudo-labels generated by the FixMatch [30]
semi-supervised learning approach on xView [18], a remote
sensing dataset. Our investigation reveals that these imbal-
ances in the data sources can introduce notable biases dur-
ing the learning process, ultimately affecting the model’s
performance. Thus, our work aims to

1. apply the debiased learning method [36] to alleviate
the imbalanced pseudo-labels.

2. incorporate logit adjustment [21] to mitigate the im-
balanced training labels in the remote sensing data.

3.3. Debiased Learning (Pseudo-Labels)

Our approach applies a proposed debiased learning
method, DebiasPL [36] on the semi-supervised learning
task. The framework of DebiasPL is mainly based on Fix-
Match, and further embedded with an adaptive debiasing
module and a marginal loss.



Adaptive debiasing module. DebiasPL is motivated by
Causal Inference [11, 24, 28] that has been shown to be ef-
fective in mitigating the selection bias in several tasks. The
DebiasPL aims to integrate causality of producing debiased
predictions via counterfactual reasoning. Based on [11,25],
the debiased pseudo-labeling could be performed via the de-
biased logit with counterfactual reasoning:

f̃i = f (W (xi))− λ log p̂ (3)

p̂← mp̂+ (1−m)
1

µB

µB∑
k=1

pk (4)

where m is the coefficient of momentum, f (W (·)) refers
to logits of weakly-augmented unlabeled instance.
Adaptive marginal loss. Motivated by the issue that the
biases in pseudo-labels usually come from inter-class con-
fusion, the DebiasPL aims to have a larger margin between
highly biased classes by designing an adaptive marginal loss
Lmargin to alleviate the inter-class confusion. The marginal
loss can be expressed as:

Lmargin = − log
e(zŷi −∆ŷi

)
e(zŷi−∆ŷi) +

∑N
k ̸=ŷi

e(zk−∆k)
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as Lmargin, the final unsupervised loss could be updated by
Eq. (2) with Eq. (3) and Eq. (5).

3.4. Logit Adjustment (Training Labels)

The performance of each majority and minority class can
often be biased due to imbalanced training data. This is
because the classifier may not have enough examples to
learn how to distinguish the minority class from the ma-
jority class. [29] shows that the imbalanced remote sensing
data also suffer from this bias, leading to poor class-wise
performance. To address this issue, we aim to apply logit
adjustment [21], a technique that can produce a more bal-
anced class-wise performance during evaluation. Logit ad-
justment adjusts the logits of each class based on their fre-
quency in the training data. Specifically, the adjusted logits
are computed as follows:

ŷi =
log( pi

1−pi
)∑

j log(
pj

1−pj
)

(6)

where ŷi is the adjusted output for class i, pi is the fre-
quency of class i in the training data, and the sum in the
denominator ensures that the adjusted logits sum to 1. By
applying logit adjustment, we expect to achieve more bal-
anced performance across all classes in remote sensing data.

3.5. Our New Findings on Remote Sensing Data

Remote sensing data possesses unique properties that set
it apart from natural images, such as pixel-level data and
non-uniform ground sampling distance (GSD) [18]. De-
spite the impressive success of debiased learning in natural
images [36], it remains uncertain whether these techniques
can be effectively applied to remote sensing data. Further-
more, it is unclear

1. which types of data augmentation are most suitable for
remote sensing data, and

2. what modifications may be necessary for existing tech-
niques to achieve optimal performance.

These questions have yet to be fully addressed in debiased
learning approach [36] or other related works [29, 30]. Our
research aims to bridge these knowledge gaps by explor-
ing the efficacy of debiased learning techniques in remote
sensing data and identifying appropriate modifications and
practices to achieve superior performance.

Original RandAugment RandAugment RandAugment
(m = 6) (m = 8) (m = 10)

Figure 4. RandAugment [8] appears to be too complicated for
remote sensing data [18] with artifacts. A series of random
transformations are applied to orginal images (Column 1). By in-
creasing the transformation magnitude in terms of parameter m,
which controls transformation intensity, we can observe more pro-
nounced and visually diverse augmentations, such as artifacts at
the border of image.

Data augmentations for remote sensing datasets. In
semi-supervised learning (SSL) settings, the debiased learn-
ing method [36] has been shown to be effective, using ran-
dom resize cropping and horizontal flipping for weak aug-
mentation and RandAugment [8] for strong augmentation
on natural images. However, these augmentation techniques
do not generalize well to remote sensing data due to the
distinct properties of the latter, such as a lack of details in
the imagery. In Figure 4, we illustrate examples by apply-



ing RandAugment [8] with different intensities of the trans-
formations. RandAugment appears to be too complicated
for remote sensing data. To address this issue, we empiri-
cally select appropriate augmentations that can improve the
SSL performance on remote sensing data. Our approach in-
cludes random resize cropping and horizontal flipping for
weak augmentation, and horizontal flipping, rotation, and
scaling for strong augmentation.

Table 1 shows the augmentations that were selected for
use with remote sensing data, along with the reasons for
their selection. Rotation and scaling were both used to sim-
ulate variations in imaging angles and ground sampling dis-
tances, respectively, which are important factors in general-
izing to remote sensing data. Additionally, horizontal flip-
ping was included to simulate mirror-reflected scenes. Ran-
dAugment was not used due to potential overfitting to the
training set of remote sensing data [39].

Table 1. Selected augmentations for remote sensing data,
Xview [18]. The table lists the augmentations used for remote
sensing data, including whether or not they were used and the rea-
son for their selection. The augmentations include rotation, scal-
ing, and horizontal flipping. The use of RandAugment is discussed
and not used due to potential overfitting.

Augmentations Used Reason
RandAugment [8] × The use of RandAugment with

high intensity of transforma-
tions may result in overfitting
to the training set, which can
be detrimental for generaliza-
tion on remote sensing data.

Rotation ✓ random rotation (± 10 degrees)
can simulate variations in re-
mote sensing imaging angles.

Scaling ✓ scaling(0.8, 1.2) can simulate
variations in ground sampling
distances, which is important
for generalization on remote
sensing data.

Horizontal Flip ✓ horizontal flipping simulates
mirror-reflected scenes in re-
mote sensing data

The effectiveness of each augmentation method varies,
and we present a table in Section 4 to illustrate the perfor-
mance gain from each augmentation strategy we leveraged.
Notably, the augmentations used in previous SSL works,
such as debiased learning, may not always be beneficial to
SSL settings in remote sensing images.

4. Experiments
We assess the effectiveness of our semi-supervised learn-

ing approach, on the imbalanced classification task us-
ing the xView remote sensing dataset by 1) comparing

the instance-wise accuracy and class-wise accuracy of our
model and baselines; 2) conducting several ablation studies
on data augmentation, data preprocessing, and the learning
recipe for optimizing the proposed method on remote sens-
ing data. We note all experiments are carried out on a single
machine equipped with four Nvidia RTX 2080 Ti GPUs.

4.1. Experimental Setup

Dataset. We conducted a thorough evaluation of the per-
formance of our semi-supervised learning approach on the
xView [18] dataset, which has large-scale multi-spectral im-
ages featuring 8-band channels obtained from satellite data.

EV Helicopter PV RV Storage

Aircraft MV Pylon Container Truck

Figure 5. xView data overview. The data contains ten individual
classes and has the properties of a highly imbalanced distribution,
which is also shown in Figure 3.

To ensure consistency with previous studies [29], we pre-
processed the data by selecting a subset of 10 categories out
of 60 classes, namely StorageTank, Helicopter, Pylon, Mar-
itime Vessel (MV), ShippingContainer, Fixed-Wing Aircraft
(FWAircraft), Passenger Vehicle (PV), Truck, Railway Ve-
hicle (RV), and Engineering Vehicle (EV). These categories
are illustrated in Figure 5. The dataset consisted of 20431
training samples, 2270 validation samples, and 63279 test
samples. Notably, we selected the R, G, B bands from the
8-band channels to form RGB images.
Baseline methods. As our baseline methods, we em-
ployed FixMatch [30] for its straightforward implementa-
tion and proven performance in semi-supervised learning.
In addition, we included a ResNet-18 supervised learning
baseline and the recently proposed complex-valued model,
CDS [29], to demonstrate the effectiveness of our semi-
supervised learning approach.
Training and evaluation. In the semi-supervised learning
setup, we employed ResNet-50 [15] as the backbone and
adopted the same set of hyperparameters used in FixMatch



Figure 6. Improve the performance of our semi-supervised
learning framework by increasing the amount of labeled data.
The instance-wise accuracies of our method are shown with 5%
to 30% of labeled data. We improve the performance and outper-
form the 100% labeled data trained state-of-the-art, CDS [29] by
including more labeled data.

to ensure a fair comparison. We initialized the model using
the pretrained ImageNet model that was trained with MoCo
v2 + EMAN [4] for 800 epochs, before fine-tuning on the
xView dataset for another 150 epochs. As for the supervised
learning baselines and CDS [29], we utilized ResNet-18 as
the backbone and did not use any data augmentation dur-
ing the training phase, following their respective learning
recipes. In terms of evaluation, we measured the top-1 ac-
curacy of our models using two metrics:

1. instance-wise accuracy: the ratio of correctly classi-
fied instances (images) to the total number of data;

2. class-wise accuracy: the average accuracy of each
individual class, to assess the models’ generalization
ability to imbalanced classes.

4.2. Instance-wise Comparisons

Table 2 shows a comparison of our approach against
semi-supervised and supervised learning baselines. In our
initial setup, we had our framework learn on 10% labeled
data with a ResNet-50 backbone pretrained on ImageNet.
As shown in Table 1, the our approach achieved 80.8% ac-
curacy, outperforming the semi-supervised learning base-
line, FixMatch, by 4.6%, and the supervised learning base-
line by 5.5%, respectively.

Moreover, our method outperformed the best setting of
the state-of-the-art complex-valued model for remote sens-
ing, CDS [29], which was trained with 100% labeled data,
by a 0.5% gain. In Figure 6, we demonstrate that the perfor-
mance of our semi-supervised learning framework can be

Method Pretrained Labels (%) Backbone Augmented? Top-1 (%)

Supervised [29] × 100 RN-18 × 75.3
CDS [29] × 100 RN-18 × 80.3

FixMatch [30] ✓ 10 RN-50 ✓ 76.2
Ours ✓ 10 RN-50 ✓ 80.8
Ours ✓ 30 RN-50 ✓ 82.4

Table 2. Top-1 accuracy comparison (%) of our semi-supervised
learning method, FixMatch, supervised learning baseline [29], and
CDS [29] on remote sensing dataset, xView. our method con-
sistently improves FixMatch and outperforms supervised learning
baseline and CDS. Note that data augmentations in our framework
include horizontal flipping, random rotation, scaling.

Figure 7. Improve class-wise accuracy by including logit ad-
justment. The class-wise accuracies are shown to demonstrate
the results for each class, ordered from the majority class (PV) to
the minority class (Pylon). To improve the performance, we incor-
porate the logit adjustment [21].

further improved by increasing the amount of labeled data,
surpassing supervised CDS approach.

4.3. Class-wise Comparisons

Figure 7 displays the class-wise performance of the mod-
els, showcasing their ability to classify majority and mi-
nority classes. Moreover, by incorporating logit adjust-
ment [21], the performance of our method for each class
can be further boosted.

4.4. Ablation Studies

The ablation study focused on evaluating the effective-
ness of selected augmentation strategies on the remote sens-
ing dataset, xView [18]. We observed that the augmenta-
tion strategies in DebiasedPL were not directly applicable
to this domain due to the complexity of RandAugment [8].
Therefore, we carefully selected and adapted appropriate
augmentations to improve the performance of the model.



Table 3. Performance gain from selected augmentation strategy.
We found that the RandAugment [8] strategy in DebiasedPL [36],
which performed well on other image classification datasets, was
too complex and not applicable to remote sensing data. Our find-
ings involved carefully selecting and adapting augmentations to
improve performance on the remote sensing dataset [18].

Weak augmentation

None ✓ × × ✓ × ×
Random Resize Cropping × ✓ ✓ × ✓ ✓
Horizontal flipping × ✓ ✓ × ✓ ✓

Strong augmentation

ResizeCropping + Horizontal flipping ✓ ✓ ✓ ✓ ✓ ✓
Rotation(± 10 degrees) × × × ✓ ✓ ✓
Scaling(0.8, 1.2) × × × ✓ × ✓
RandAugment(m=10) ✓ ✓ × × × ×
RandAugment(m=5) × × ✓ × × ×
Top-1 accuracy (%) 69.8 75.6 76.3 79.4 79.7 80.8

Table 3 summarizes the performance gain achieved
through selected augmentations on xView. Our findings
suggest that the adapted augmentations can effectively im-
prove the performance of the model, achieving a top-1 ac-
curacy of 80.8%, by 5.2% gain from the original DebiasPL
augmentations. These results demonstrate the importance
of selecting and adapting appropriate augmentations for re-
mote sensing datasets, which can significantly improve the
accuracy of the semi-supervised learning model.

5. Conclusion

We proposed a semi-supervised approach specifically
designed for remote sensing data. Our paper addressed both
training label and pseudo label imbalances in this domain.
Our paper has two key contributions.

Firstly, we adapt the framework of FixMatch, to remote
sensing data by designing robust strong and weak augmen-
tations tailored for this context. Secondly, we leverage a
recently proposed debiased learning approach to mitigate
the bias in pseudo-labeling, effectively combining actual la-
beled data with pseudo-labeled data.

The results of our study highlight the significant po-
tential of our straightforward semi-supervised framework,
which effectively utilizes limited annotations (30%) to
achieve notable performance enhancements. These findings
contribute to the advancement of remote sensing data anal-
ysis and underscore the importance of developing tailored
methodologies to tackle the challenge of limited annota-
tions in this specific domain.
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