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Purpose: This work was aimed at proposing a supervised learning-based method
that directly synthesizes contrast-weighted images from the Magnetic Resonance Fin-
gerprinting (MRF) data without performing quantitative mapping and spin-dynamics
simulations.
Methods: To implement our direct contrast synthesis (DCS) method, we deploy a con-
ditional generative adversarial network (GAN) framework with a multi-branch U-Net
as the generator and a multilayer CNN (PatchGAN) as the discriminator. We refer to
our proposed approach as N-DCSNet. The input MRF data are used to directly synthe-
size T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images
through supervised training on paired MRF and target spin echo-based contrast-weighted
scans. The performance of our proposed method is demonstrated on in vivo MRF scans
from healthy volunteers. Quantitative metrics, including normalized root mean square
error (nRMSE), peak signal-to-noise ratio (PSNR), structural similarity (SSIM), learned
perceptual image patch similarity (LPIPS), and Fréchet inception distance (FID), were
used to evaluate the performance of the proposed method and compare it with others.
Results: In-vivo experiments demonstrated excellent image quality with respect to that
of simulation-based contrast synthesis and previous DCS methods, both visually and
according to quantitative metrics. We also demonstrate cases in which our trained
model is able to mitigate the in-flow and spiral off-resonance artifacts typically seen in
MRF reconstructions, and thus more faithfully represent conventional spin echo-based
contrast-weighted images.
Conclusion: We present N-DCSNet to directly synthesize high-fidelity multicontrast MR
images from a single MRF acquisition. This method can significantly decrease exami-
nation time. By directly training a network to generate contrast-weighted images, our
method does not require any model-based simulation and therefore can avoid recon-
struction errors due to dictionary matching and contrast simulation (code available at:
https://github.com/mikgroup/DCSNet).
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1 INTRODUCTION

MRI is an effective imaging modality offering tremendous
benefits to both science and medicine. The main advan-
tage of MRI is the richness of soft tissue contrast that
can be generated by simply changing the pulse sequence
parameters. Image contrast in MRI is dominated by bio-
physical tissue properties, such as proton density (PD),
longitudinal/transverse relaxation (T1/T2), magnetic sus-
ceptibility, and diffusion. These parameters provide infor-
mation on the tissue composition and its micro-structure,
and are excellent biomarkers for diagnosing and assess-
ing disease. Measuring the quantitative value of tissue
parameters, that is, through quantitative MRI, is desir-
able, because it provides a standardized metric for tissue
properties.1 However, quantitative MRI has been notori-
ously challenging to implement and standardize in clini-
cal practice. Traditional mapping sequences require many
lengthy scans to map a single parameter and thus are
unsuitable for rapid imaging. Consequently, current diag-
nostic examinations are composed of a series of several
scans, each qualitatively emphasizing one of the phys-
ical parameters above. For example, routine brain MRI
includes PD-weighted scans, wherein brighter pixel inten-
sities indicate a higher density of protons; T1-weighted
(T1w) scans, wherein brighter intensities indicate shorter
T1 recovery; T2-weighted (T2w) scans, wherein brightness
indicates longer T2 relaxation; fluid-attenuated inversion
recovery (T1/T2-FLAIR), wherein fluid signals are sup-
pressed; and diffusion scans, wherein brighter intensities
indicate less diffusivity. The relative contrast differences
within and across these scans can aid in the assessment of
disease.

Owing to the need for multiple scans to obtain multi-
ple contrasts, the typical MRI protocol is lengthy, requiring
patients to remain still for tens of minutes and hinder-
ing scanner throughput. In recent years, notable research
efforts have focused on acquiring or synthesizing multi-
contrast images from single scans or fewer scans to shorten
the total examination time.2-7 These techniques have
shown early success in clinical practice.8,9 For example,
synthetic MR methods2,8,10-12 acquire multiple short scans
and use parameter fitting and physical models to simu-
late a variety of contrast-weighted images. T2 shuffling3,13

reconstructs multiple contrast-weighted images along the
transverse relaxation curve by using a single volumetric
fast spin echo acquisition, through randomly shuffling
the phase encoding view ordering and performing sub-
space modeling. Similarly, multitasking14,15 approaches
use tensor low-rank constraints to reconstruct multiple
contrast-weighted images from a single rapid acquisition.
The above approaches all require scan parameters to be
carefully chosen to limit confounding factors and isolate a

small number of quantitative MRI parameters contribut-
ing to the overall image contrast.

Instead of decreasing confounding factors, an alterna-
tive approach known as magnetic resonance fingerprint-
ing (MRF)5,6,8 was proposed to mix many quantitative
parameters by using a short acquisition with random-
ized scan parameters. MRF has accelerated the pace of
clinical quantitative MRI by demonstrating the ability to
rapidly and reliably generate multiple quantitative param-
eter maps from a single scan. MRF acquisition is usually
based on gradient echo sequences and consists of rapid
repetition times (TR) with under-sampled spiral readouts,
in which the flip angle is modified for every TR, such that
the steady state of spin dynamics is never achieved. MRF
produces a sequence of images in which tissues with dif-
ferent relaxation and field properties (T1, T2, PD, B0, and
B1) produce a unique time series or “fingerprint.” The
quantitative parameters of the tissue are then extracted
by matching the resulting time series of each pixel to the
closest signal in a precomputed dictionary constructed by
simulating the Bloch equation for parameter combinations
within a realistic range.

The fact that quantitative parameters can be extracted
from MRF also indicates that the information embed-
ded should be sufficient to synthesize contrast-weighted
images. Although quantitative parameter maps provide
meaningful physical tissue parameters, clinicians still rely
primarily on contrast-weighted images for clinical diag-
nosis. Therefore, an opportunity exists for MRF to enable
both parameter maps and synthetic contrast MRI to be
provided by a single sequence.

One approach to synthesizing contrast-weighted
images from MRF is to first fit the quantitative param-
eters and then simulate the contrast-weighted images.10

Figures 1 and 2A show the spin-dynamic simulation
pipeline, which uses quantitative parameter maps to
synthesize different contrast-weighted images by using
the Bloch equation or extended phase graphs (EPG).16

Unfortunately, contrast-weighted images generated in this
manner often exhibit artifacts because of many sources
of error. Errors can arise from discrepancies between the
MRF sequence and the dictionary simulation, for example,
when flow, diffusion, magnetization transfer, excitation
slice profile, or partial volume is not modeled appro-
priately. This limitation is most pronounced in FLAIR
contrast, in which errors are seen along the boundaries of
cerebrospinal fluid.9

An alternative, and relatively more straightforward,
pipeline avoids explicit modeling and instead directly
learns how to synthesize contrast-weighted images from
the MRF data through neural networks. We refer to this
approach as Direct Contrast Synthesis (DCS). Previous
work17 has proposed a supervised DCS method in which
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F I G U R E 1 Contrast synthesis from magnetic resonance fingerprinting (MRF) via a current simulation-based pipeline and proposed
direct contrast synthesis (DCS) pipeline. The simulation-based method takes the predicted quantitative parameter maps from MRF and
synthesizes different contrast-weighted images by simulating the MRI physics. Our proposed DCS uses a spatial convolutional neural
network to transform the MRF time series directly into different contrast-weighted images. DCS bypasses dictionary matching and contrast
simulation steps, avoids modeling and acquisition imperfections, and produces high-fidelity contrast-weighted images.
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F I G U R E 2 Three possible pipelines to generate contrast-weighted images from magnetic resonance fingerprinting (MRF).
(A_ Synthetic MR generates multicontrast images through dictionary matching and sequence simulation (e.g., Bloch equation, extended
phase graph). (B) PixelNet uses a one-dimensional pixel-wise time-domain convolutional neural network to output a qualitative contrast
weighting for each voxel. (C) Our proposed N-DCSNet leverages a generative adversarial network-based architecture and
spatial-convolutional network to synthesize multicontrast images.

a network was trained to take a single voxel MRF
time series and map it to a specific contrast weight-
ing (e.g., T1w, T2w, or FLAIR). This approach, which
we refer to as PixelNet, is illustrated in Figure 2B. By
training on many pairs of MRF and contrast-weighted
images, PixelNet can achieve better results than dictio-
nary mapping and simulation-based contrast synthesis.

However, by processing each pixel independently, PixelNet
does not leverage the spatial structure in the data and
thus can suffer from noise and spatial inconsistency. To
address this issue, we propose to implement DCS as
an image sequence-to-image translation task to leverage
structural information. In the field of computer vision,
image-to-image translation is an established problem
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that aims to translate an image from a source domain
to a target domain (e.g., reconstructing objects from
edge maps18 and colorizing images19). Recent studies
have shown promising results through image-to-image
convolutional neural networks (CNNs) and generative
adversarial networks (GANs).18,20 The seminal work of
pix2pix18 investigated conditional adversarial networks
as a general-purpose solution to image-to-image transla-
tion problems. CycleGAN21 improved upon the technique
of learning image-to-image translation in the absence of
paired examples. Image-to-image translation has also been
applied in the fields of medical imaging and MRI. For
example, References 22-24 learned cross-modality image
synthesis between MRI and CT images; References 25
and 26 synthesized T2w images from T1w images; Refer-
ence 27 synthesized 7T high-resolution, high-SNR images
from 3T input images; and Reference 28 introduced a
multi-task deep learning model to synthesize multicon-
trast MRI images from multi-echo sequences. Recently,
Reference 29 proposed a residual transformer-based deep
learning model for multimodal cross-contrast MR image
synthesis.

Inspired by previous works, we propose to use a
conditional GAN-based architecture for DCS from MRF
that enables substantial improvements in image quality
and computation efficiency over simulation-based con-
trast synthesis and PixelNet. We refer to our approach
as N-DCSNet, first described in Reference 30, where
N represents N different contrasts that can be synthe-
sized by our network (here N = 3). Figure 2 summarizes
the three pipelines of producing synthetic, multicontrast
images.

As illustrated in Figures 1 and 2C, N-DCSNet directly
synthesizes different contrast weighted images, that is,
T1w, T2w, or FLAIR, from the MRF time series data
through a spatial CNN. Our generator is designed as a
U-Net with a single encoder and multibranch decoders.31

We implement a multilayer CNN (PatchGAN)18 as the
discriminator. The generator is based on spatial convo-
lutions, thus allowing the network to learn and exploit
spatial structural information. Different contrast-weighted
outputs share the same encoder to exploit the shared infor-
mation across contrasts. Separate decoders are designed
to learn the unique features of each contrast. During the
training procedure, we leverage a conditional GAN frame-
work, wherein the time average of the MRF time series is
also used as an input to the discriminator to constrain the
GAN training.

In-vivo experiments on healthy volunteers show
that N-DCSNet can generate high-fidelity, multi-contrast
images from MRF time-series. Our approach outper-
forms contrast synthesis from parameter maps and Pix-
elNet both qualitatively and quantitatively. Furthermore,

we demonstrate that N-DCSNet can inherently mitigate
some artifacts that appear in MRF, such as slice in-flow
artifacts and spiral off-resonance blurring. Our main con-
tributions can be summarized as follows:

• We introduce a spatial CNN-based method to
learn the mapping between MRF time series and
contrast-weighted images (i.e., T1w, T2w, and FLAIR).
Our approach can avoid the simulation errors typically
seen in Synthetic MR.

• We use a conditional GAN-based framework to encour-
age finer textures and produce more faithful contrasts.
Additionally, our N-DCSNet can inherently mitigate
slice in-flow artifacts as well as spiral off-resonance
blurring.

• N-DCSNet outperforms simulation-based contrast syn-
thesis from parameter maps and PixelNet qualitatively
and according to quantitative metrics. It also has sig-
nificant computation advances. During inference, our
approach is significantly faster than simulation-based
contrast synthesis and PixelNet, thus improving the
potential for clinical adoption.

2 METHODS

In this section, we first describe the data acquisition
protocols and the simulation-based contrast synthesis
via parameters used as our baseline for comparisons
(Section 2.1). Then, we introduce our GAN-based frame-
work design for N-DCSNet (Section 2.2). Next, we detail
the loss functions (Section 2.3) and the training process.
Finally, we compare our method with previous approaches
(Section 2.4).

2.1 Data acquisition and contrast
synthesis via parameters

2.1.1 Data acquisition

After obtaining IRB approval, we scanned 21 men, rang-
ing from 29 to 61 years of age, with a 1.5 T Philips
Ingenia scanner using a 15-channel head coil. A total
of 13 channels were selected by using automatic coil
selection. To avoid conducting so-called “data crimes,”32

we report our data preparation pipeline as follows. Four
consecutive axial brain scans were acquired for each
examination session. The participants were instructed
to remain still throughout the examination so that
data across scans remained registered. The scans were
as follows:

 15222594, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29766 by U

niversity O
f M

ichigan L
ibrary, W

iley O
nline L

ibrary on [30/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2120 WANG et al.

• A spoiled gradient echo33 MRF sequence with 500 time
points, constant TE= 3.3 ms, TR= 20 ms (Each TR con-
sisted of a spiral-out readout. The spirals between two
consecutive TR were rotated by 9◦.). The readout time
is 12 ms and the undersampling factor is 20.

• T1w spin echo with TE= 15 ms, TR= 450 ms, flip angle
= 69◦, and two averages.

• T2w turbo spin echo with TE= 110 ms, TR= 1990–2215
ms, ETL = 16, flip angle = 90◦ and two averages.

• FLAIR inversion recovery turbo spin echo with TE =
120 ms, TR = 8500 ms, TI = 2500 ms, ETL = 41, flip
angle = 90◦ and two averages.

All scans were acquired with an in-plane resolution
of 0.72 × 0.72 mm (FOV 230 × 230 mm2, matrix size 320 ×
320) and nine to ten slices with a thickness of 5 mm.

Of the 21 participants, 17 were scanned twice (on
different days), thus resulting in a total of 38 examinations.
FLAIR sequences were acquired for only 26 of the 38 exam-
inations. Only the 26 examinations with all four sequences
were used in this study, of which 21 were used for training,
two were used for validation, and three were used for test-
ing. The data from participants used for testing were not
included in any of the training sets.

To further minimize residual motion or misalign-
ment between scans, we employ a two-dimensional (2D)
rigid in-plane registration per slice, aligning the ground
truth contrast-weighted images with the time-averaged
MRF image. Moreover, we manually inspect the images
and discard those exhibiting significant in-plane and
through-plane movements.

2.1.2 Preprocessing

Each of the three contrast-weighted image data was nor-
malized with respect to the 95th percentile of the inten-
sity values for each image. MRF time series images were
reconstructed from each TR by using gridding with den-
sity compensation34,35 followed by coil combination with
Philips’ CLEAR. The MRF data were then normalized as
follows. For each dataset, an averaged image from the 500
time points was computed. The 95th percentile of the mag-
nitude values from the average MRF image was then used
to normalize the time series.

2.1.3 Parameter maps and contrast
simulation

The dictionary for MRF parameter mapping was simulated
by using EPG.16 The dictionary consisted of 22 031 MRF

signals with T1 parameters ranging from 4 to 3000 ms and
T2 parameters ranging from 2 to 2000 ms. Each simulated
signal in the dictionary was scaled to have a Euclidean
norm equal to one. We used cosine similarity6 to match the
acquired MRF signal to the nearest neighbor in the simu-
lated dictionary (Figure 2A). Additional factors, such as B1
inhomogeneity and slice profile, were not included in the
simulated dictionary.

The parameter maps (T1, T2) obtained from dic-
tionary matching were then used to simulate the
contrast-weighted images. The T1w spin echo (SE) has a
closed form for specific TE and TR, and PD parameters:

SE(PD,T1,T2,TE,TR) = PD ⋅ (1 − e−
TR−TE

T1 ) ⋅ e−
TE
T2
. (1)

PD was computed by taking the magnitude of the inner
product between the acquired MRF signal and the nearest
neighbor in the simulated dictionary. The T2w and FLAIR
sequences are based on turbo spin echo and do not have
closed forms. For these, we used EPG16 to simulate the
contrast-weighted images.

2.2 N-DCSNet framework

Figure 3 illustrates the overall pipeline of our proposed
N-DCSNet. Our network expects the complex-valued MRF
time series MRFin ∈ Ct×h×w as input, where t, h, and w
correspond to the number of time points, image height,
and image width, respectively (t, h,w ∈ N). The network
outputs are real-positive (magnitude) contrast weighted
images ̂T1w, ̂T2w, ̂FLAIR ∈ Rh×w. In our experiments,
t = 500, h = w = 320.

We designed a conditional GAN-based framework for
N-DCSNet, the standard framework in References 18 and
21, consisting of a generator (G) and a discriminator (D).

First, for the input complex-valued MRF data with
dimensions 500 × 320 × 320 (time × width × height), we
concatenate the real and imaginary parts along with the
time dimension as channels to the network. This results in
a real-valued input with dimensions 1000 × 320 × 320.

Our generator is a modified U-Net,31 which con-
sists of one shared encoder and multiple independent
decoders. The shared encoder exploits structural similari-
ties across the multicontrast images, whereas the indepen-
dent decoders learn the unique features of the different
contrasts. At test time, N-DCSNet produces multi-contrast
images with a single network. The discriminator (D) is a
multilayer CNN (patchGAN)18 that penalizes structure at a
patch scale. D aims to classify whether each N × N patch in
an image is real or fake. We run this discriminator convo-
lutionally across the image, averaging all responses to pro-
vide the final output of D. To constrain the GAN training,
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500 time points
MR Fingerprinting

Generator

Multi-branch U-Net

Per-pixel Loss
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+

Real or Fake?
Adversarial 

Loss

Discriminator

T1w

Synthesized Target

T2w

FLAIR

Time average of MRF

Time average

F I G U R E 3 Illustration of our proposed N-DCSNet framework. Given a complex-valued magnetic resonance fingerprinting (MRF) time
series MRFin ∈ Ct×h×w, with number of time points t ∈ N and image dimensions h,w ∈ N, N-DCSNet synthesizes three contrast-weighted
images (T1w, T2w, and FLAIR) with a single network. We designed a multibranch U-Net as the generator and a multilayer convolutional
neural network (CNN) as the discriminator by following the conditional generative adversarial network (GAN) training strategy. To constrain
the GAN training, we additionally input the time average of MRF to the discriminator. A combination of per-pixel 𝓁1 loss, perceptual VGG
loss, and adversarial loss is imposed on the network. N-DCSNet generates high-fidelity contrast-weighted images with sharper edges, finer
textures, and more faithful contrasts than simulation-based contrast synthesis and PixelNet.

we follow Reference 18 and further input the magnitude of
the MRF time-averaged image to the discriminator to pro-
vide structural guidance. This image has mixed contrast,
because of averaging, and significantly fewer spiral under-
sampling artifacts than the MRF time-series images. We
denote it MRFavg.

During training, the generator G learns to predict
high-quality contrast-weighted images that cannot be dis-
tinguished from the real acquired images (ground truth)
by an adversarially trained discriminator D. Meanwhile,
D is simultaneously trained to distinguish the generated
images (labeled as “fake”) from the ground truth images
(labeled as “real”).

2.3 Loss functions

Our proposed N-DCSNet is fully supervised, with the pur-
pose of generating high-fidelity contrast-weighted images
that are close to the ground truth real acquisitions. The
loss function of our generator G is a combination of three
components: (1) 𝓁1 reconstruction loss, (2) perceptual
loss, and (3) adversarial loss. Given our generator G and
the input MRF signal MRFin, G outputs the synthesized
contrast-weighted images (T1w, T2w, and FLAIR):

̂T1w, ̂T2w, ̂FLAIR = G(MRFin). (2)

Then the cumulative 𝓁1 loss is formulated as:

L𝓁1 = EMRFin(|| ̂T1w − T1w||1 + || ̂T2w − T2w||1

+ || ̂FLAIR − FLAIR||1), (3)

where T1w,T2w, and FLAIR represent the real,
ground-truth acquisitions of the three contrast-weighted
images (Section 2.1). Per-pixel losses such as the 𝓁1 loss
are known to exhibit image blurring.18,36-38 Therefore, we
incorporate additional perceptual and adversarial losses
to encourage detailed reconstructions.

Perceptual losses36,38 have been used successfully in
super-resolution and image synthesis28 tasks to improve
image quality and encourage delicate structures. The
underlying idea is that layer features of task-based net-
works, such as image classification networks, can capture
high-level perceptual information in the image. Therefore,
minimizing the loss in the feature space can preserve such
perceptual information.36 In this work, the perceptual loss
is implemented as the 𝓁2 distance between relu2-2 layer
features of an ImageNet39 pretrained VGG Network.40 We
denote the function used to extract these features as 𝜙(⋅),
where 𝜙(x) extracts the relu2-2 layer features of a specific
image x. Each contrast-weighted image is scaled to [0, 1],
duplicated three times, and concatenated along the chan-
nel dimension (to simulate RGB channels) before feeding
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into 𝜙(⋅). Then, the overall VGG perceptual loss term can
be written as:

Lvgg = EMRFin(||𝜙( ̂T1w) − 𝜙(T1w)||2 + ||𝜙( ̂T2w)
− 𝜙(T2w)||2 + ||𝜙( ̂FLAIR) − 𝜙(FLAIR)||2). (4)

The third component of our loss function is an adversarial
loss. This term is used to further encourage high-frequency
details and achieve more realistic synthesized outputs.18

The generator G is trained to produce outputs that can-
not be distinguished from “real” images. We concatenate
the acquired images [MRFavg,T1w,T2w,FLAIR] along
the channel dimension, and treat it as the “real" sam-
ple Sreal = [MRFavg,T1w,T2w,FLAIR]. Meanwhile, we
create Sfake = [MRFavg, ̂T1w, ̂T2w, ̂FLAIR] as the “fake"
sample Sfake. Then, the adversarial loss for our generator is
given by:

Ladv = −ESfake[log(D(Sfake))]. (5)

The overall objective function for the generator becomes:

LG = L𝓁1 + 𝜆vggLvgg + 𝜆advLadv, (6)

where 𝜆vgg and 𝜆adv are the weights of the perceptual loss
and adversarial loss, respectively. In our experiments, we
empirically set 𝜆vgg = 0.03 and 𝜆adv = 0.015.

Our discriminator is adversarially trained to detect the
generators’ outputs as “fake" images. According to Refer-
ence 20, the objective function for our discriminator LD is
given by:

LD = −ESreal[log(D(Sreal))] − ESfake[log(1 − D(Sfake))]. (7)

We update the parameter weights of G and D by alterna-
tively minimizing the objectives LG and LD.

2.4 Experiments

To demonstrate its effectiveness, we evaluate our
N-DCSNet against simulation-based contrast synthesis
(synthesis via parameters) and PixelNet on the same test-
ing dataset (detailed in Section 2.1). The EPG simulation
using the dictionary-matched parameters was run for
all voxels in parallel by using the joblib package41 on 24
CPUs. On the basis of the architecture introduced in Ref-
erence 17, we implemented PixelNet as a one-dimensional
temporal CNN to map the MRF time series at every voxel
to the corresponding three contrast-weighted scans. The
PixelNet network consists of three convolutional layers
followed by three fully connected layers and is trained with
an 𝓁2 loss. The inference time for the different approaches
is calculated by computing the average runtime of 20

separate runs of a single MRF slice. Ablation studies were
also conducted to analyze the impacts of the different loss
functions on the synthesized contrast-weighted images.

2.4.1 Evaluation metrics

To quantitatively compare our results to the ground truth,
we report the following evaluation metrics: normalized
root mean square error (nRMSE), peak signal-to-noise
ratio (PSNR), structural similarity (SSIM),42 learned per-
ceptual image patch similarity (LPIPS)43 with AlexNet,44

and Fréchet inception distance (FID) score.45 When com-
puting LPIPS and FID, the output images were scaled to
the range [0, 255] and saved as png files.

2.4.2 Implementation details

All the proposed algorithms and networks were imple-
mented with PyTorch 1.846 on 24 GB NVIDIA 3090 graph-
ics processing units (GPUs). Our generator and discrim-
inator were trained by using Adam optimizer,47 with a
batch size of 4 and a learning rate of 1 × 10−4.

We supervise the DCS with magnitude contrast
weighted images. However, the MRF time series is inher-
ently complex-valued. To reduce the sensitivity to phase,
during training, we augment the phase of the MRF data
on the fly by multiplying each time-series with random
constant phase e𝑗𝜃 , where 𝑗 =

√
−1 and 𝜃 is uniformly

distributed between [0, 2𝜋].
The ablation study evaluating the loss functions’ con-

tributions was performed by comparison of the proposed
combined loss function (Equation 6) against L𝓁1 , L𝓁1 +
𝜆vggLvgg, and L𝓁1 + 𝜆advLadv losses.

3 RESULTS

3.1 Comparisons with contrast
synthesis via parameters and PixelNet

Figure 4 summarizes the results of the different con-
trast synthesis methods applied to a representative 2D
brain slice. Compared with EPG simulation-based synthe-
sis (synthesis via parameters),16 and PixelNet,17 N-DCSNet
produces finer and cleaner structural details, sharper
edges, and better perceptual agreement with the true
acquisition (ground truth).

The EPG simulation-based results (synthesis via
parameters) exhibit incorrect contrast and noise artifacts
due to the modeling and acquisition imperfections (as
expected in Section 1). PixelNet significantly improves the
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T1w

T2w

FLAIR

PixelNetSynthesis
via parameters

N-DCSNet
(proposed)

True acquisition
(ground truth)

F I G U R E 4 Representative contrast synthesis results of
different methods (upper brain). From left to the right, we compare
our proposed N-DCSNet with simulation-based contrast synthesis
via parameters,16 PixelNet,17 and the true acquisition. N-DCSNet
shows better visual agreement with the true acquisition, producing
finer textures and higher overall image quality than the other
approaches. Zoomed-in details are displayed next to each image.

synthesized image quality, but the noise artifacts persist
(as shown in T1w and T2w). In comparison, N-DCSNet
leverages both temporal and spatial information, produc-
ing more faithful contrast, preserving finer details, and
showing better agreement with the ground truth images.

Figure 5 compares the results of another representative
2D slice from the lower brain. Regions of the vasculature
are zoomed in and expanded at the bottom right corners.
Because of the blood flow, MRF cannot retrieve accu-
rate parameter maps by dictionary matching.48 Therefore,
synthesis via parameters fail to deliver precise contrasts
in the vasculature regions (as shown in T2w images). In
comparison, N-DCSNet produces accurate contrast and
can successfully reconstruct the delicate vessel structures
(as shown in T2w results). From the synthesized FLAIR
images, we observe that PixelNet produces noisier images
with flattened contrasts in the back of the brain. Instead,
N-DCSNet successfully depicts the detailed textures and
produces high-quality, sharper images.

Figure S1 displays an extensive collection of N-DCSNet
synthesized images, accompanied by the correspond-
ing parameter maps (i.e., PD, T1, T2). These parame-
ter maps are obtained through dictionary matching. Our
approach highlights the capability to produce complemen-
tary parameter maps and contrast-weighted images from a
single scan.

T1w

T2w

FLAIR

PixelNetSynthesis
via parameters

N-DCSNet
(proposed)

T2w

FLAIR

True acquisition
(ground truth)

F I G U R E 5 Representative contrast synthesis results of
different methods (lower brain). From left to the right, we compare
our proposed N-DCSNet with simulation-based synthesis via
parameters,16 PixelNet,17 and the true acquisition. Zoomed-in
images show the inflow (vasculature) regions where
parameter-based synthesis (left column) fails to deliver correct
contrast, owing to the moving blood flow. In comparison, N-DCSNet
successfully reconstructs delicate textures and produces
high-quality contrast-weighted images.

Table 1 compiles the quantitative evaluation met-
rics (nRMSE, PSNR, SSIM, LPIPS, and FID) of differ-
ent methods (synthesis via parameters,16 PixelNet17 and
N-DCSNet) for each contrast. We compute the metrics
across the testing dataset and report the mean and SD. As
indicated in the table, for all three contrasts (T1w, T2w,
and FLAIR), our method consistently outperforms other
methods in all five evaluation metrics. Of note, LPIPS and
FID use learned features to measure perceptual similarity
between two images or two distributions, thus resulting
in better matching with human judgment than pixel-wise
(nRMSE) or patch-wise (SSIM) metrics.43,45 N-DCSNet,
compared with PixelNet, significantly reduces the LPIPS
by more than 30% and the FID by more than 50% for all
three contrasts, thus demonstrating the superiority of our
proposed method in terms of perceptual image quality.

Table 2 summarizes the inference times of the different
approaches. As indicated in the table, simulation-based
synthesis (synthesis via parameters) requires an average of
24.37 s because of the time-consuming dictionary match-
ing and contrast simulation procedures that are repeated
for each voxel across the entire image. PixelNet is more
efficient, and averages 0.3421 s by leveraging parallel GPU
computing (on a single NVDIA 3090). In comparison,
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2124 WANG et al.

T A B L E 1 Quantitative comparisons (nRMSE, PSNR, SSIM, LPIPS, and FID) among different contrast synthesis methods (mean ± SD).

Contrasts Methods nRMSE (%) ↓ PSNR (dB) ↑ SSIM ↑ LPIPS ↓ (×10−2) FID ↓

T1w Synthesis via parameters16 6.44 ± 1.25 24.0 ± 1.93 0.786 ± 0.030 20.1 ± 1.14 130.8

PixelNet17 4.58 ± 0.83 26.9 ± 1.71 0.880 ± 0.026 11.3 ± 1.81 109.6

N-DCSNet (ours) 3.57 ± 0.64 29.1 ± 1.63 0.923 ± 0.019 6.33 ± 1.87 57.32

T2w Synthesis via parameters16 13.4 ± 1.68 17.5 ± 1.11 0.671 ± 0.032 21.1 ± 1.60 148.1

PixelNet17 5.24 ± 0.64 25.7 ± 1.11 0.853 ± 0.027 12.6 ± 1.92 114.1

N-DCSNet (ours) 3.76 ± 0.59 28.6 ± 1.35 0.921 ± 0.017 5.77 ± 1.02 57.01

FLAIR Synthesis via parameters16 19.4 ± 2.75 14.3 ± 1.25 0.576 ± 0.028 20.6 ± 2.50 185.4

PixelNet17 4.69 ± 0.67 26.7 ± 1.30 0.797 ± 0.025 11.3 ± 1.35 126.9

N-DCSNet (ours) 3.64 ± 0.65 29.0 ± 1.75 0.883 ± 0.018 8.63 ± 0.839 63.17

Notes: We calculate the metrics for each contrast (T1w, T2w, and FLAIR) separately. N-DCSNet is compared with contrast synthesis via parameters16 and
PixelNet.17 Our proposed method consistently outperforms other approaches in all five metrics for each contrast. Bold corresponds to the best results. ↑ means
that higher is better, ↓ means that lower is better.
Abbreviations: FID, Fréchet inception distance; FLAIR, fluid-attenuated inversion recovery; LPIPS, learned perceptual image patch similarity; nRMSE,
normalized root mean square error; peak signal-to-noise ratio (PSNR), structural similarity (SSIM).

T A B L E 2 Inference times of different methods for contrast
synthesis from a two-dimensional MRF time series.

Synthesis via
parameters PixelNet

N-DCSNet
(ours)

Inference time (s) ↓ 24.37 0.3421 0.01617

Notes: N-DCSNet reduces the inference time by more than 20-fold with
respect to that of PixelNet, demonstrating superior computation efficiency
and the potential for clinical adoption. All experiments are implemented on
a single w. Bold corresponds to the best result.

our N-DCSNet has 20 times faster inference time than
PixelNet. N-DCSNet requires an average of 0.01617 s to
synthesize three contrast-weighted images from a single
2D MRF time series, demonstrating superior computa-
tion efficiency and a potential for clinical translation. All
experiments were run on a single NVIDIA 3090 GPU.

3.2 Ablation study of different loss
functions

To investigate and better understand the effects of loss
functions (Section 2.3) on the resulting image quality,
we conducted an ablation study by comparing our over-
all loss function LG (Equation 6) to L𝓁1 , L𝓁1 + 𝜆vggLvgg
and L𝓁1 + 𝜆advLadv losses. We trained separate models with
different objective functions and used the same training
setup and datasets (i.e., training set, learning rate, epochs,
etc.). Figure 6 shows the results on a representative 2D
brain slice. The model trained with pure L𝓁1 (left col-
umn) suffers from degraded perceptual image quality and

exhibits some blurring, in agreement with the findings
in literatures.18,28,38 Adding perceptual VGG loss (second
column) encourages finer details and sharper edges. How-
ever, blurring artifacts remain (as seen in T2w and FLAIR).
Adding adversarial loss on top of L𝓁1 (third column)
encourages even finer structures but suffers from resid-
ual blurring (T2w) and recurrent checkerboard artifacts
(FLAIR). By incorporating both perceptual loss and adver-
sarial loss, the model trained with our proposed objective
(fourth column, Equation 6) further improves the synthe-
sized image quality by reconstructing more delicate tex-
tures (T2w example) and producing more faithful contrast
(FLAIR example).

Table 3 summarizes the five evaluation metrics for
N-DCSNet trained with the different loss functions.
Because the model trained with pure L𝓁1 loss optimizes
the pixel distances, it produces the best nRMSE and PSNR
results. However, nRMSE and PSNR are known not to
match human perception.43 For perception-representative
metrics (SSIM, LPIPS, and FID), N-DCSNet trained
with our proposed full objective outperforms the other
loss functions for all three contrasts (except SSIM for
T1w), thus demonstrating the effectiveness of our loss
functions in producing high-fidelity contrast-weighted
images.

3.3 Mitigation of spiral off-resonance
artifacts

Beyond the aforementioned superior performance, we
also demonstrate cases in which N-DCSNet effectively
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WANG et al. 2125

F I G U R E 6
Representative visual
comparison of N-DCSNet with
different loss functions. From
left to right, our full objective
(fourth column; Equation 6) is
compared with L𝓁1

,
L𝓁1

+ 𝜆vggLvgg, L𝓁1
+ 𝜆advLadv

and the ground truth.
Perceptual VGG loss
encourages sharper edges than
pure L𝓁1

, whereas adversarial
loss further improves the image
quality. The model trained with
our full objective is able to
recover subtle structures and
show better visual agreement
with the ground truth.

T1w

T2w

FLAIR

Lossl
1

l
1

l
1

l
1

Loss + 
perceptual Loss

Loss + perceptual Loss
+ adversarial Loss (full)

Loss True acquisition
(ground truth)+ adversarial Loss

T A B L E 3 Quantitative comparisons (nRMSE, PSNR, SSIM, LPIPS, and FID) of N-DCSNet with different loss function designs (mean ±
SD).

Contrasts Methods nRMSE (%) ↓ PSNR (dB) ↑ SSIM ↑ LPIPS ↓ (×10−2) FID ↓

T1w L𝓁1
3.34 ± 0.63 29.7 ± 1.69 0.918 ± 0.018 8.02 ± 2.40 67.39

L𝓁1
+ 𝜆vggLvgg 3.43 ± 0.82 29.5 ± 2.16 0.926 ± 0.022 9.14 ± 2.53 66.66

L𝓁1
+ 𝜆advLadv 3.68 ± 0.93 28.7 ± 1.72 0.921 ± 0.020 8.04 ± 2.18 62.94

L𝓁1
+ 𝜆vggLvgg + 𝜆advLadv 3.57 ± 0.64 29.1 ± 1.63 0.923 ± 0.019 6.33 ± 1.87 57.32

T2w L𝓁1
3.57 ± 0.67 29.2 ± 1.64 0.914 ± 0.018 10.08 ± 1.73 71.44

L𝓁1
+ 𝜆vggLvgg 3.67 ± 0.61 28.8 ± 1.45 0.918 ± 0.018 8.67 ± 1.46 64.55

L𝓁1
+ 𝜆advLadv 3.79 ± 0.72 28.4 ± 1.55 0.919 ± 0.024 7.57 ± 1.18 60.30

L𝓁1
+ 𝜆vggLvgg + 𝜆advLadv 3.76 ± 0.59 28.6 ± 1.35 0.921 ± 0.017 5.77 ± 1.02 57.01

FLAIR L𝓁1
3.44 ± 0.66 29.4 ± 1.72 0.879 ± 0.017 11.1 ± 0.98 93.01

L𝓁1
+ 𝜆vggLvgg 3.73 ± 0.61 28.7 ± 1.55 0.878 ± 0.019 10.7 ± 1.02 96.01

L𝓁1
+ 𝜆advLadv 3.68 ± 0.93 28.1 ± 1.71 0.869 ± 0.021 9.62 ± 1.08 78.71

L𝓁1
+ 𝜆vggLvgg + 𝜆advLadv 3.64 ± 0.65 29.0 ± 1.75 0.883 ± 0.018 8.63 ± 0.839 63.17

Notes: The model trained with pure L𝓁1
optimizes the per-pixel distances, producing the lowest nRMSE and highest PSNR. The model trained with our full

objective outperforms other loss function designs in perceptual metrics SSIM, LPIPS, and FID. Bold corresponds to the best results. ↑ indicates that higher is
better, ↓ indicates that lower is better.
Abbreviations: FID, Fréchet inception distance; FLAIR, fluid-attenuated inversion recovery; LPIPS, learned perceptual image patch similarity; nRMSE,
normalized root mean square error; peak signal-to-noise ratio (PSNR), structural similarity (SSIM).

mitigates the off-resonance artifacts within the MRF
time series caused by B0 inhomogeneity and the long
readout time of spiral acquisitions. Previous studies have
demonstrated the feasibility and potential of deep learning

in off-resonance corrections.49,50 As shown in Figures 4
and 5, parameter-based synthesis and PixelNet present
blurry scalp fat signals in boundary regions of the brain,
because of the MRF off-resonance effects (seen in T1w).
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2126 WANG et al.

F I G U R E 7 Representative N-DCSNet results in mitigating
off-resonance artifacts near the nasal region. Magnetic Resonance
Fingerprinting (MRF) time-averaged images display spiral
off-resonance artifacts near the nasal region (as seen in zoomed-in
images) due to the lengthy readout time. PixelNet also struggles to
restore the structures and exhibits significant noise and distortions.
N-DCSNet successfully mitigates the artifacts and produces
contrast-weighted images with few residual artifacts. True
acquisitions are displayed as references. Red arrows point to regions
with residual artifacts.

In comparison, benefiting from spatial convolutions,
N-DCSNet reconstructs a clean and sharp scalp fat signal,
overcomes the off-resonance artifacts, and agrees well with
the ground truth.

Figure 7 shows a representative example in which
the MRF time-averaged image and PixelNet exhibit
off-resonance signal loss artifacts and geometric distortion
near the nasal region (indicated by the zoomed-in details).
Most brain structures are blurred out or distorted, primar-
ily because of the considerable B0 homogeneity and the
long readout time for the spiral acquisition. As visualized
in the figure, N-DCSNet accurately recovers most of the
delicate brain structures near the nasal region. The red
arrows indicate the residual artifacts.

Figure S2 presents another example in which the
MRF time-averaged image and PixelNet exhibit several
off-resonance signal loss artifacts in the regions close to
the skull. N-DCSNet significantly reduces the artifacts and
recovers the correct contrasts and structures. Some resid-
ual artifacts can be observed, as indicated by the red
arrows.

4 DISCUSSION

In this work, we present a novel high-fidelity DCS frame-
work, N-DCSNet, for synthesizing multicontrast images
from a single MRF scan. N-DCSNet directly learns a map-
ping between the MRF time series and the desired contrast
weighted images (i.e., T1w, T2w, and FLAIR) and thus
bypasses the mapping and simulation steps required for
contrast synthesis from parameter maps.

As briefly introduced in Section 1, the sources of
error contrast synthesis via parameter maps are attributed
mainly to (1) factors that are not included in the dictio-
nary simulation (e.g., B0/B1 homogeneity, slice profile,
and flow effects), (2) approximation and error propagation
in the contrast synthesis simulation (EPG algorithm),16

and (3) artifacts (noise and aliasing) from highly under-
sampled MRF scans (example shown in Figure 1). As indi-
cated by the visual comparison results (Figures 4 and 5),
the parameter-based contrast synthesis method does not
deliver the correct contrast and produces noisier outputs
(particularly for T2w and FLAIR results). One possible way
to improve the results is modeling more parameters during
the dictionary simulation procedure, such as B1 inho-
mogeneity,51 flow,48 and partial volume.52 Unfortunately,
including more simulation parameters forces the dictio-
nary to grow in size, thereby prolonging the dictionary
matching time (Table 2), or severely sacrificing parameter
resolution and range.

DCS leverages paired training data to learn a map-
ping from MRF signals to contrast-weighted images
without explicitly modeling the aforementioned condi-
tions. The previous DCS method PixelNet17 proposed a
one-dimensional temporal CNN that maps the MRF time
series at each pixel to the contrast weightings for that
pixel and improves synthesized image quality and infer-
ence time (Table 2). However, because PixelNet treats each
pixel independently, it does not leverage the unique spa-
tial structural information within the MRF data. In-vivo
results (Figures 4 and 5) indicate that PixelNet exhibits
severe noise artifacts and diminished fine textures, partic-
ularly in FLAIR scans.

Our N-DCSNet shows significant improvements by
introducing a conditional GAN-based framework with a
spatial convolution network as the generator. N-DCSNet
produces more faithful contrasts and is able to recover
finer structures with overall better image quality than
the other methods examined (Figures 4 and 5). More-
over, as described in section Section 3.3 and shown
in Figures 7 and S2, we demonstrate cases in which
N-DCSNet effectively mitigates spiral off-resonance arti-
facts.

In our approach, we directly input the MRF time series
to the network without performing pre-reconstruction
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WANG et al. 2127

on the MRF data. With the current MRF undersampling
factor of 20, our method generates high-fidelity synthe-
sized contrast-weighted images. For even higher under-
sampling factors (or for improved quality), incorporat-
ing pre-reconstruction techniques (e.g., subspace recon-
struction53) could be a promising direction as it may
yield less-aliased inputs. However, depending on the con-
straints, it could also result in the removal of some infor-
mation and substantially lengthen the inference time.

Despite significant improvements over previous
approaches, we observe that there remains some residual
oversmoothing in our results compared to the ground
truth (Figures 4 and 5). This could be attributed to the
following reasons:

(1) Limited training data constrains the GAN training
potential, diminishes robustness against data outliers,
and may potentially lead to oversmoothing.

(2) MRF and ground truth contrast-weighted scans were
obtained at different times. Despite careful experi-
mental design and in-plane registration, small-scale
through-plane motion and misalignment can cause
oversmoothing. Improving the experimental setup
(e.g., hardware setups) to manage motion could miti-
gate this issue.

(3) The MRF input images are relatively noisy due to
the high undersampling rate and high resolution.
The network is trained to reduce noise. However,
this process (training on noisy inputs) can result in
oversmoothing. We believe that some of these limita-
tions can be mitigated through improved experimen-
tal design and a larger training dataset.

Another limitation of this work is that the DCS
frameworks (PixelNet and N-DCSNet) can generate only
contrast-weighted images with fixed sequence parame-
ters (e.g., TE or TR) and are therefore less flexible than
simulation-based contrast synthesis from parameter maps.
Separate networks must be trained for different MRF
parameters or contrast acquisitions. Additionally, our
N-DCSNet requires paired data; however, our approach
allows each decoder branch to be trained independently,
potentially relaxing this constraint, although further inves-
tigation is required. In this work, we trained N-DCSNet
on a limited number of healthy volunteer data (21 exam-
inations, 203 slices). To facilitate future clinical adoption,
larger and more diverse clinical training data (e.g., with
pathology) are necessary.

In the future, we plan to extend our framework to more
diverse contrast synthesis, including but not limited to
gradient echo imaging, diffusion-weighted imaging, and
susceptibility-weighted imaging.

5 CONCLUSION

In this work, we propose N-DCSNet to directly syn-
thesize multicontrast MR images from a single MRF
acquisition. This method significantly reduces examina-
tion time. By directly training a network to generate
contrast-weighted images from MRF, our method does not
require any model-based simulation and therefore avoids
reconstruction errors due to simulation. In vivo experi-
ments demonstrate that N-DCSNet produces high-fidelity
contrast-weighted images with sharper contrast and min-
imal artifacts (in-flow and spiral off-resonance artifacts),
and significantly outperforms simulation-based contrast
synthesis and PixelNet, both visually and according to met-
rics. Additionally, our proposed method can inherently
mitigate some off-resonance artifacts within MRF data,
thereby producing high-quality contrast-weighted images
with minimal residual artifacts.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.
Figure S1. Gallery of N-DCSNet synthesized
contrast-weighted images alongside parameter maps.
N-DCSNet synthesizes high-fidelity contrast-weighted
images (right three columns) from MRF data. Con-
currently, the parameter maps (i.e., PD, T1, T2) can
be obtained through dictionary matching (left three
columns). Our approach showcases the feasibility
of generating complementary parameter maps and
contrast-weighted images from a single scan. Figure
S2. Representative N-DCSNet results in mitigating spiral
off-resonance artifacts in an MRF time series near the
skull region. The MRF time-averaged image and PixelNet
results exhibit spiral off-resonance artifacts near the skull
region (zoomed-in images) because of B0 inhomogene-
ity and the long readout time. N-DCSNet recovers the
structure and produces contrast-weighted images with
few residual artifacts. True acquisitions are displayed as
references. Red arrows point to the regions with residual
artifacts.
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