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uncertainty estimation framework.uncertainty estimation framework.uncertainty estimation framework.uncertainty estimation framework.

IntroductionIntroductionIntroductionIntroduction
Deep learning (DL)-based reconstruction methods have shown great potential for efficient image reconstruction from undersampled k-space measurements .
However, a substantial risk in DL-based reconstruction is hallucination or elimination of important anatomical features from the image . To address this concern,
we seek uncertainty estimates which tell us when we can trust a reconstruction. While existing  methods have shown promising results in estimating uncertainty
maps, they do not come with statistical guarantees. Furthermore, they often require computational overhead (such as running multiple reconstructions) and/or
modifications to the reconstruction network (e.g. nonstandard training procedures) that may sabotage its accuracy. In this work, we propose a simple and rigorous
uncertainty estimation framework that works without modifying or retraining the reconstruction network (Figure 1). Our technique provides a rigorous finite-
sample statistical guarantee. Our key contribution is the development of a new form of Risk-Controlling Prediction Set (RCPS)  tailored to MRI reconstruction that
outputs image-valued confidence intervals containing at least  (e.g., 95%) of the ground truth pixel values. Our in-vivo knee and brain results probe the
quality of our uncertainty estimation model, which allows us to identify specific regions where the model performs poorly.

MethodsMethodsMethodsMethods
Our method trains an uncertainty estimation network, then calibrates that network to achieve a rigorous guarantee. We will now detail these two subroutines.
1. Training the uncertainty estimation network1. Training the uncertainty estimation network1. Training the uncertainty estimation network1. Training the uncertainty estimation network
Given a pre-trained reconstruction network, e.g., MoDL , the uncertainty estimation network predicts the absolute residual error for that network (Figure 2a). The
pre-trained network  takes the zero-filled reconstruction and maps it to , an estimate of the ground truth image . Our uncertainty estimation network  is

trained to output an estimate  of the magnitude of the residual error . In practice, the input to  is actually several concatenated features from each
iteration of . After training is complete, we can now map new, unseen under-sampled inputs to the reconstructed images and uncertainty estimates in one

forward pass. However, note that we have no guarantee that  does well at estimating the pixel-wise error, so we will need to calibrate it.
2. Calibration of the heuristic uncertainty estimates2. Calibration of the heuristic uncertainty estimates2. Calibration of the heuristic uncertainty estimates2. Calibration of the heuristic uncertainty estimates
Once the uncertainty estimation network is trained, we aim to calibrate its output using Risk-controlling Prediction Sets  (Figure 2b) to achieve a statistical

guarantee. We first select a subset of the validation set to form the calibration set  (typically ). Then, we calibrate a global

scalar  from the calibration set to ensure that, on average, at least (  ) of all pixels from the reference are within its confidence intervals

, for all pixel locations  in an image of size . For example, choosing  and  will result

in 95% of the pixels being contained in their intervals with 90% probability. The detailed calibration procedure is described as follows. For a given image , we first
define the loss

as the fraction of pixels not included in their respective intervals. We compute the empirical risk over the calibration dataset and use the Upper Confidence Bound
(UCB)  procedure from  with the WSR bound from  to choose the smallest  that gives a RCPS,

where  here is the desired violation rate (e.g., =0.1). In short, the method involves computing the UCB  using a pointwise concentration inequality, then

picking . Deploying this choice of  guarantees risk-control; we defer the proof of this fact to .

Datasets and experimental setupsDatasets and experimental setupsDatasets and experimental setupsDatasets and experimental setups
We evaluated the proposed framework on both 2D knee and brain fastMRI  datasets. First, MoDL was trained for both anatomies using 5120 different slices. Then,
we trained the uncertainty estimation network using the same training set, with a range of acceleration factors. Finally, we calibrated the heuristic uncertainty
estimates using a calibration set of 1000 slices, while the validation set contained 2000 slices. We compared the heuristic uncertainty estimation results with the
absolute residual errors. To evaluate the calibration procedure, we randomly split the validation set 2000 times. Each time, we calibrated a 

and evaluated the empirical risk  on the rest of the validation set (evaluation set). We presented the histogram of the empirical risks to evaluate the empirical

violation rate .

ResultsResultsResultsResults
Figure 3 shows the uncertainty estimation results for the knee and brain datasets. The results show strong agreement between the uncertainty estimates and the
blurred residual error.
Figure 4 visualizes the textures and the corresponding uncertainty estimates. Zoomed-in details indicate that higher uncertainty appears in the regions where the
reconstructed images did not successfully recover the fine textures and details.

Figure 5 shows the empirical risk distribution given different splits of calibration/evaluation sets. Histograms show that the empirical violation rate  hits nearly
exactly  for both , which demonstrates the tightness and validity of our calibration procedure.

ConclusionsConclusionsConclusionsConclusions
This work presented a rigorous uncertainty estimation framework, which can provide precise uncertainty estimates backed by a finite-sample guarantee. Without
any constraints on the reconstruction model, our framework acts as a plug-and-play module, and may significantly improve the accuracy of the diagnosis and
clinical interpretation of DL-based reconstructions.
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Figure 1. Overview of the proposed model-specific rigorous uncertainty estimation framework for general DL-based reconstruction models. After training , our
networks output the heuristic uncertainty estimates alongside the reconstructed image in one forward pass. By developing a new form of Risk-Controlling

Prediction Set to calibrate the uncertainty estimates, our calibrated uncertainty estimates provide guaranteed confidence intervals that contain at least 
(e.g., 95%) of the ground truth pixel values.

Figure 2. Detailed subroutines for the proposed framework. a) we first train an uncertainty estimation network  to predict the pixel-wise residual of a pre-trained
reconstruction model , where we name the output as heuristic uncertainty estimates. b) After training, we calibrate the uncertainty estimates to form finite-

sample confidence intervals, which ensures that on average, (1- ) of pixels are covered within the confidence interval with high probability regardless of the
distribution of the training data.

Figure 3. Representative uncertainty estimation comparisons of the uncertainty estimates and the absolute residual error for both knee (Sequence: Proton density)
and brain (Sequence: T1w post-contrast) reconstructions. Sampling masks are four times variable density masks and five times random masks for each dataset,

respectively. We overlaid the MoDL reconstructed images and the calibrated uncertainty estimates for better visualization. Colorbar along with the overlaid image
indicates the guaranteed confidence interval with respect to the maximum value of the image.

Figure 4. Visualization of textures and the corresponding uncertainty estimates from two representative images. As can be seen in the zoomed-in details, the
reconstructions of the green-outlined patches are highly similar to the ground truth ones, while those of the yellow-outlined patches are of lower quality, since

some of the high-frequency details are missing or blurred out. This is reflected by the overlaid calibrated uncertainty estimates, where the yellow-outlined patches
have much higher uncertainty levels than the green ones.

Figure 5. Empirical risk distribution under 2000 random split of calibration/evaluation sets for brain and knee datasets. Each split of the calibration set outputs an 

and the corresponding empirical risk , which roughly describes the number of pixels violating the desired risk/confidence level. Given a desired

violation rate, the empirical violation rate  indicates how frequently the desired risk/confidence levels are violated. Comparisons of two
desired risk/confidence levels  are presented.
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