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In A Dynamic World
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Abstract—Real world data often exhibits a long-tailed and open-ended (i.e. with unseen classes) distribution. A practical recognition
system must balance between majority (head) and minority (tail) classes, generalize across the distribution, and acknowledge novelty
upon the instances of unseen classes (open classes). We define Open Long-Tailed Recognition++ (OLTR++) as learning from such
naturally distributed data and optimizing for the classification accuracy over a balanced test set which includes both known and open
classes. OLTR++ handles imbalanced classification, few-shot learning, open-set recognition, and active learning in one integrated
algorithm, whereas existing classification approaches often focus only on one or two aspects and deliver poorly over the entire
spectrum. The key challenges are: 1) how to share visual knowledge between head and tail classes, 2) how to reduce confusion
between tail and open classes, and 3) how to actively explore open classes with learned knowledge. Our algorithm, OLTR++, maps
images to a feature space such that visual concepts can relate to each other through a memory association mechanism and a learned
metric (dynamic meta-embedding) that both respects the closed world classification of seen classes and acknowledges the novelty of
open classes. Additionally, we propose an active learning scheme based on visual memory, which learns to recognize open classes in
a data-efficient manner for future expansions. On three large-scale open long-tailed datasets we curated from ImageNet
(object-centric), Places (scene-centric), and MS1M (face-centric) data, as well as three standard benchmarks (CIFAR-10-LT,
CIFAR-100-LT, and iNaturalist-18), our approach, as a unified framework, consistently demonstrates competitive performance. Notably,
our approach also shows strong potential for the active exploration of open classes and the fairness analysis of minority groups.

Index Terms—Long-Tailed Recognition, Few-shot Learning, Active Learning.
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1 INTRODUCTION

O UR visual world is inherently long-tailed and open-ended [1],
with a few common visual categories (i.e., head classes) and

many more relatively rare categories (i.e., tail classes). At the same
time, new visual concepts constantly emerge as we navigate in an
open world (i.e., open classes).

Although natural data distributions contain head, tail, and
open classes, existing classification approaches focus mostly on
either the head [2], [3] or the tail [4], [5], and often in a closed
setting [6], [7] (Fig. 2). We thus formally study Open Long-Tailed
Recognition++ (OLTR++) arising from natural data settings. A
practical system should be able to work for a few head and many
tail categories, to generalize the concept of a single category from
only a few known instances, as well as to acknowledge and explore
novelty upon an instance of an unseen or open category. We define
OLTR++ as learning from long-tail and open-end distributed data
and evaluating the classification accuracy over a balanced test
set which includes head, tail, and open classes in a continuous
spectrum (Fig. 1).

The key challenges for OLTR++ are tail recognition robustness
and open-set sensitivity. As the number of training instances drops
from thousands in the head class to a few in the tail class,
we should prevent the performance from dropping drastically.
Meanwhile, for open classes, the recognition performance relies
on the sensitivity to distinguish unknown samples from known
classes, as well as to select informative samples for data-efficient
active exploration and future model updates.
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Fig. 1: OLTR++. Our task of open long-tailed recognition++
learns from long-tail distributed training data in an open world
and deals with imbalanced classification, few-shot learning, open-
set recognition, and active learning over the entire spectrum.

In our algorithm (OLTR++), there is a learned metric that
respects both the closed-world classification and acknowledge
the novelty of the open world. This metric maps images to
an embedding space (dynamic meta-embedding), where visual
concepts can relate to each other to improve both the tail
recognition robustness and open-set sensitivity.

Specifically, our dynamic meta-embedding is a combination
of two components: direct feature and induced feature. 1) Direct
feature is a standard embedding that gets updated from the training
data by stochastic gradient descent over the classification loss.
It is usually less generalized in tail classes, compared to head
classes, because of the lack of sufficient supervision. 2) Memory
feature, instead, is an induced feature through a visual memory
association mechanism, inspired by meta-learning methods [4],
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Fig. 2: Comparison between our proposed OLTR++ and related existing tasks. Our task, in a more realistic setting, is a combination
of the three existing tasks (imbalanced classification, few-shot learning, and open-set recognition) in addition to active exploration,
which constitutes a dynamic learning loop that can facilitate robust deployment of vision systems.

[8], [9], that augments the direct feature of each image for better
distinguishability. The association is learned to retrieve a summary
of memory activations from the direct features of each input and
then combined with the original direct features to be the meta-
embeddings. This memory feature augmentation is particularly
effective on tail classes for the lack of supervision to provide
generalized features.

We address open-class sensitivity by dynamically calibrating
the meta-embedding with respect to the visual memory. In other
words, the embedding is scaled inversely by its distance to the
nearest class centroid (i.e., class memory): the farther away it
is from the memory, the more likely it is an open set instance.
The distance between the embedding and the nearest centroid is
then transformed into “sample informativeness” using an energy-
based model [10], which is further employed to select informative
samples for active learning.

We also adopt modulated attention [11] to encourage the
head and tail classes to use different sets of spatial features. As
our meta-embedding relates head and tail classes, our modulated
attention maintains discrimination between them.

We make the following major contributions. 1) We formally
define the OLTR++ task, which learns from long-tail and open-
end distributed data and optimizes for the overall accuracy over
a balanced test set. It provides a comprehensive and unbiased
evaluation of visual recognition algorithms in practical settings.
2) We propose an integrated OLTR++ algorithm with dynamic
meta-embedding. It handles tail recognition robustness by relating
visual concepts among head and tail embeddings, and it handles
open-class sensitivity by dynamically calibrating the embedding
with respect to the visual memory. 3) We further incorporate an
energy-based model into our dynamic meta-embedding for data-
efficient active learning (with only sparse human annotations),
which is well suited for the constantly-changing visual world. 4)
We curated three large OLTR++ datasets according to a long-
tailed distribution from existing representative datasets: object-
centric ImageNet [2], scene-centric Places [12], and face-centric
MS1M datasets [13]. We also set up benchmarks for proper OLTR
performance evaluation. 5) Our extensive experimentation on
these OLTR++ datasets (as well as standardized benchmarks such

as CIFAR-LT 100/10 and iNaturalist-18 [14]) demonstrates that
our method consistently outperforms the state-of-the-art methods.

The aim of this work is to advocate a new learning paradigm
that can perceive and update in a dynamic world, i.e. simul-
taneously recognizing real-world long-tailed data while actively
exploring novel data with human in the loop. It is a crucial step
towards embodied intelligence as well as the robust deployment
of vision systems. Besides exhibiting competitive performance
on long-tailed recognition, our approach also demonstrates com-
pelling results on open class detection and active exploration with
a unified framework centered around visual memory.

Our code, datasets, and models are publicly available at https://
liuziwei7.github.io/projects/LongTail.html. Our work fills the void
in practical benchmarks for imbalanced classification, few-shot
learning, open-set recognition, and active learning, enabling future
research that is directly transferable to real-world applications.

2 RELATED WORKS

While OLTR++ has not been defined in the previous literature,
there are four closely related tasks which are often studied
in isolation: imbalanced classification, few-shot learning, open-
set recognition, and active learning. Fig. 2 summarizes their
connections and key differences.
Imbalanced & Long-Tailed Recognition. Imbalanced classifica-
tion is an extensively studied area [23], [24], [25], [26], [27], [28],
[29], [30], [31]. While classical methods include under-sampling
head classes, over-sampling tail classes, and data instance re-
weighting, some recent methods apply metric learning [32], [33],
hard negative mining [16], [34], and meta learning [6], [35]. For
example, lifted structure loss [33] introduces margins between
many training instances. The range loss [36] enforces data in the
same class to be close and those in different classes to be far apart.
Focal loss [16] induces an online version of hard negative mining.
And metaModelNet [6] learns a meta regression net from head
classes and uses it to construct the classifier for tail classes.

As a step forward from imbalanced classification, long-
tailed recognition (where the training datasets are more imbal-
anced) [17], [18], [19], [20], [37], [38] has attracted extensive

https://liuziwei7.github.io/projects/LongTail.html
https://liuziwei7.github.io/projects/LongTail.html
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Method Formulation Venue CIFAR-10 CIFAR-100 ImageNet-LT Places-LT

Vanilla FC [15] WT
i f(x) CVPR 16 70.4 38.3 20.9 27.2

Hard Example mining [16] r(y) = (1− py)γ ICCV 17 70.4 38.4 30.5 34.6
Re-Weighting [17] r(y) = (1− β)/(1− βny ) CVPR 19 74.6 36.0 29.7 38.9
Memory (ours) [18] WT

i f
memory(x) CVPR 19 76.3 41.2 39.6 39.3

Class-Aware Margin [19] WT
i f(x)− 1{i = y} · δi NeurIPS 19 77.0 42.0 36.2 35.7

Classifier Re-Scaling [20] si ·WT
i f(x) ICLR 20 - 43.2 41.4 36.7

Bilateral Branch [21] (W bilateral
i )T f(x) CVPR 20 79.8 42.6 - -

Multi Experts [22] (W expert
i )T f(x) ICLR 21 - 47.0 54.4 -

TABLE 1: A systematic overview of representative long-tailed recognition works (including those published after ours). Suppose there
are C classes in total with ni, i ∈ {1, 2, ..., C} samples for class i. We denote f(x) as the deep feature extracted from image x and
W = [W1, ...,WC ] as the classifier weight vectors. The accuracies are reproduced with their released code.

Problem Known Classes Unknown Classes
Active Learning X (informativeness)
Active Exploration X (informativeness) X (info. & openness)

TABLE 2: Key differences between active learning and active
exploration. “info.” stands for informativeness.

research interests recently. In Table 1, we provide a systematic
overview of representative long-tailed recognition works (includ-
ing those published after ours).

In our approach, we have a dynamic meta-embedding that
combines the strengths of both metric learning and meta learning.
On the one hand, our direct feature is updated to ensure centroids
of different classes are separated from each other; On the other
hand, our memory feature is generated on-the-fly in a meta
learning fashion to effectively transfer knowledge from head
classes to tail classes.
Few-Shot Learning. Few-shot learning is often addressed by
meta-learning techniques [39], [40], [41], [42], [43], [44]. For
example, matching Network [4] learns a transferable feature
matching metric to go beyond given classes. And Prototypical
Network [45] maintains a set of separable class templates.
Additionally, feature hallucination [46] and augmentation [47]
have also shown effectiveness. Since these methods focus on
fast learning from novel and unseen classes, they often suffer a
“catastrophic forgetting” for training classes . Few-shot learning
without forgetting [48] and incremental few-shot learning [49]
attempt to remedy this issue by leveraging the duality between
features and classifiers’ weights [50], [51]. However, these
methods rely on balanced training sets, while OLTR++ learns from
naturally long-tailed training sets instead.

Our approach is closely related to meta learning with associa-
tive memory [4], [8], [9], [52], [53], [54]. Compared to prior arts,
our memory feature has two advantages: 1) it transfers knowledge
to both head and tail classes adaptively via a learned concept
selector; 2) it is fully integrated into the network without episodic
training, thus suitable for large-scale applications.
Open-Set Recognition. Open-set recognition [55], [56], or out-
of-distribution detection [57], [58], [59], aims to re-calibrate the
sample confidence in the presence of open classes. One of the
representative techniques is OpenMax [56], which fits a Weibull
distribution to model logits. However, when there are both open
and tail classes, distribution-fitting based methods often confuse
the two because of the less generalized features of tail classes.
Instead of calibrating the output logits, our OLTR++ approach

incorporates a confidence estimation mechanism into feature
learning and dynamically re-scale the meta-embedding w.r.t. the
learned visual memory, such that samples from known classes are
expected to be closer to the memory compared to novel samples.
Open-World Recognition. Open-world recognition [60], [61],
[62] is a closely related field whose goal is to distinguish
“unknown unknown classes” from “known known classes”. [60]
also considers a dynamic setting where unknown classes are
continuously added and detected, and examines the influence of
unknown classes on the accuracy of known classes. [62] further
incrementally learns the new classes. Once they are detected as
unknown and an oracle provides labels for the objects of interest
among all the unknowns. Here we advocate this dynamic-world
endeavor: instead of just detecting the unknown classes, we aim
to recognize the semantic label of the unknown classes.
Zero-Shot Learning. Zero-shot learning (ZSL) [63], [64], [65]
is also a promising direction for recognizing novel classes. ZSL
aims to learn the association between base and novel class features
with the aid of certain shared semantic knowledge (e.g. attributes,
word2vec), which is not directly applicable here. In comparison,
our active exploration is more focused on the annotation-efficiency
of recognizing novel classes, i.e. using less human annotations to
achieve acceptable accuracies on novel classes.
Active Learning. Active learning aims to explore unlabeled data
with an oracle annotator that provides ground truth labels to a
few selected samples. The central issue here is the exploration
efficiency, i.e. obtaining higher performance with less oracle
queries. The representative works can be roughly categorized into
two realms: generation-based methods [66], [67] and selection-
based methods [68], [69].

However, existing active learning methods mainly work in
closed-world setting, where they focus on selecting informative
samples for the known categories to improve the performance.
Here we study a realistic yet more challenging problem, selecting
informative samples from a mixture of known and unknown
categories so as to recognize both of them, which we coined
as “active exploration”. Their key differences are listed in
Table 2. Our active exploration considers both informativeness
and openness during sample selection.
Incremental Learning. Incremental learning aims to continually
learn new tasks (e.g. novel classes) without catastrophic for-
getting. Extensive research has been performed from different
perspectives: neural architectures [70], [71], replay/rehearsal
mechanisms [72], [73], parameter regularization [74], [75] and
learning techniques [76], [77]. Here our dynamic learning loop
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Fig. 3: OLTR++ framework overview. There are two main modules: dynamic meta-embedding and modulated attention. The
embedding relates visual concepts between head and tail classes, while the attention discriminates between them. The reachability
separates known and open classes.

Problem Imbalanced Asp. Optimization Obj.
Fairness Analysis sensitive attributes attribute-wise criteria
Long-Tailed Recognition categories acc. on all categories

TABLE 3: Key differences between fairness analysis and open
long-tailed recognition. “asp.” stands for aspects while “obj.”
stands for objectives.

aims to achieve continual recognition of novel classes in a data-
efficient manner.
Fairness Learning/Analysis. The open long-tailed recognition
proposed in our work also has an intrinsic relationship to fairness
analysis [78], [79], [80], [81], [82]. Their key differences are
listed in Table 3. On the problem setting side, both open long-
tail recognition and fairness analysis aim to tackle the imbalance
existed in real-world data. Open long-tailed recognition focuses
on the longtail-ness in both known and unknown categories while
fairness analysis deals with the bias in sensitive attributes such as
male/female and white/black.

On the methodology side, both open long-tailed recognition
and fairness analysis aim to learn transferable representations.
Open long-tailed recognition optimizes for the overall accuracy
of all categories while fairness analysis optimizes for several
attribute-wise criteria. The preliminary results in Table 6 demon-
strates that our proposed dynamic meta-embedding is also a
promising solution to fairness analysis.

3 OUR OLTR++ MODEL

We propose to map an image to a feature space such that visual
concepts can relate to each other based on a learned metric that
respects the closed-world classification while acknowledging the
novelty of the open and dynamic world. Our model has three
major modules (Fig. 3): dynamic meta-embedding, modulated
attention, and active exploration. The first relates and transfers
knowledge between head and tail classes, and the last two maintain
discrimination between them with human-in-the-loop.

3.1 Intuitive Explanation of Our Approach
In this section, we give an intuitive explanation of our approach
that tackles the problem open long-tailed recognition. From the

Head Classes Tail Classes

bottom-up 
attention

top-down 
attention

familiarity

visual 
memory

Open Classes

Avoid Forgetting Knowledge Transfer

Sensitivity to 
Novelty

Fig. 4: Intuition explanation of our approach.

perspective of knowledge gained from observation (i.e. training
set), head classes, tail classes and open classes form a continuous
spectrum as illustrated in Fig. 4.

Firstly, in our approach, we obtain a visual memory by
aggregating the knowledge from both head and tail classes. Then
the visual concepts stored in the memory are infused back as
associated “fast feature” to enhance the original “slow feature”.
In other words, we use induced knowledge (i.e. “fast feature”)
to assist the direct observation (i.e. “slow feature”). We further
learn a concept selector to control the amount and type of infused
“fast feature”. Since head classes already have abundant direct
observation, only a small amount of “fast feature” is needed.
On the contrary, tail classes suffer from scarce observation, the
associated visual concepts in “fast feature” are more beneficial
to tail classes than to head classes. Finally, we calibrate the
confidence of open classes by calculating their reachabilities (i.e.
feature space distances) to the obtained visual memory (i.e., class
centroids). All together, we provide a comprehensive treatment to
the full spectrum of head, tail and open classes, improving the
performance on all categories.

3.2 Dynamic Meta-Embedding
Dynamic meta-embedding is a combination of a direct image
feature and an associated memory feature, where the feature norm
indicates the familiarity to known classes.

Consider a convolutional neural network (CNN) with a
softmax output layer for classification. The second-to-the-last
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(a) construct local graph by 
neighborhood sampling

(b) obtain centroids by 
affinity propagation

class 1 samples (head class)
class 2 samples (tail class)
class 3 samples

class 1 centroid
class 2 centroid
class 3 centroid

attracting edge
repelling edge

𝑣𝑠𝑙𝑜𝑤

𝑐𝑖

Fig. 5: The discriminative centroids constitute our visual mem-
ory, which are obtained with two iterative steps, neighborhood
sampling and affinity propagation.

layer is the feature and the last layer is the linear classifier (cf.
φ(·) in Fig. 3). The feature and the classifier are jointly trained
in an end-to-end fashion. Let vdirect denote the direct feature
extracted from an input image. The final classification accuracy
largely depends on the quality of this direct feature.

While a feed-forward CNN classifier works well with big
training data [2], [83], it lacks sufficient supervised updates from
small data in tail classes. We propose to enrich direct feature
vdirect with visual concepts in a memory module through a mem-
ory feature vmemory , which is derived from a memory bank that
captures visual concepts of each training classes. This mechanism
is similar to the memory components in meta learning [42], [54].
We denote the resulting feature meta embedding vmeta.

Learning Visual Memory M . To construct the memory bank,
we follow [84], [85] on class structure analysis and adopt
discriminative centroids as the basic building block. Let M denote
the visual memory of all the training data, M = {ci}Ki=1 where
K is the number of training classes. Compared to alternatives
[45], [86], this memory is appealing for our OLTR++ task: it is
almost effortlessly and jointly learned alongside the direct features
{vdirectn }, and it considers both intra-class compactness and inter-
class discriminativeness.

More concretely, as illustrated in Fig. 5, we compute class
centroids in two steps.

1) Neighborhood Sampling: We sample both intra-class and
inter-class examples to compose a mini-batch during training.
These examples are grouped by their class labels and the
centroid ci of each group is updated by the direct feature of
this mini-batch, which can be formulated as:

∆ci =

∑B
b=1 1(yb = i) · (ci − xb)
1 +

∑B
b=1 1(yb = i)

, (1)

where 1(·) is the indicator function, and B is the batch size.
2) Affinity Propagation: We alternatively update the direct

feature vdirect and the centroids to minimize the distance
between each direct feature and the corresponding class
centroids and maximize the distance to other centroids. Note
that the “repelling edges” in Fig. 5 are calculated through a
large margin loss LLM as described in Eqn. 13.

At the end of the training, we obtain a visual memory module M
containing important visual concepts within the dataset.

Composing Memory Feature vmemory . For an input image,
vmemory enhances its direct feature when training data are limited

(a) Embedding of Plain ResNet Model

(b) Embedding of Dynamic Meta-Embedding

Tail Class ‘African Grey’

Head Class ‘Buckeye’

Tail Class ‘African Grey’

Head Class ‘Buckeye’

Fig. 6: t-SNE feature visualization of (a) plain ResNet model
(b) our dynamic meta-embedding. Ours is more compact for both
head and tail classes.

(as in the tail class). The memory feature relates class centroids in
the memory to transfer knowledge to tail classes:

vmemory = oTM :=
K∑
i=1

oici, (2)

where o ∈ RK is the coefficients hallucinated from the direct
feature. We use a lightweight neural network to obtain the
coefficients from the direct feature, o = Thal(v

direct).
Obtaining Dynamic Meta-Embedding. vmeta combines the
direct feature and the memory feature, and is fed to the classifier
for the final class prediction (Fig. 6):

vmeta = (1/γ) · (vdirect + e⊗ vmemory), (3)

where ⊗ denotes element-wise multiplication and e is a concept
selector. γ > 0 is a seemingly redundant scalar for the closed-
world classification tasks. However, in the OLTR++ setting, it
serves an important role in differentiating the examples of the
training classes from those of the open-set. γ measures the
reachability [87] of an input’s direct feature vdirect to the memory
M — the minimum distance between the direct feature and the
discriminative centroids:

γ := reachability(vdirect,M) = min
i
‖vdirect − ci‖2. (4)

When γ is small, the input likely belongs to a training class
from which the centroids are derived, and a large reachability
weight 1/γ is assigned to the resulting meta-embedding vmeta.
Otherwise, the embedding is scaled down to an almost all-zero
vector at the extreme, which is useful to encode open classes.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

(a) Modulated Attention

+

Self-Attention 
Map

Modulated 
Attention

𝒇 𝒇𝒂𝒕𝒕𝑀𝐴(𝒇) 𝑆𝐴(𝒇)𝒇

(b.1) Input Image (b.2) Feature Map of 
Plain ResNet Model

(b.3) Feature Map 
of Our Model

(b.4) Modulate 
Attention

Tench

Hand
Fish

Fig. 7: Modulated attention is spatial attention applied on self-
attention maps (“attention on attention”). It encourages different
classes to use different contexts, which helps maintain the
discrimination between head and tail classes.

As the direct feature is often good enough for the data-rich
head classes, whereas the memory feature is more important for
the data-poor tail classes. We design a concept selector, e, to
adaptively select them in a soft manner. We learn a lightweight
network Tsel(·) with a tanh(·) activation function on vdirect:

e = tanh(Tsel(v
direct)). (5)

3.3 Modulated Attention
Since discriminative cues of head and tail classes tend to distribute
at different locations in the image, we find it beneficial to enhance
direct feature, vdirect, with spatial attention to separate head
and tail classes. Specifically, we propose modulated attention to
encourage samples of different classes to use different contexts.
Firstly, we compute a self-attention map SA(f) from the input
feature map by self-correlation [11]. It is used as contextual
information and added back (through skip connections) to the
original feature map. The modulated attention MA(f) is then
designed as conditional spatial attention applied to the self-
attention map: MA(f)⊗SA(f), which allows examples to select
different spatial contexts (Fig. 7). The final attention feature map
becomes:

fatt = f +MA(f)⊗ SA(f), (6)

where f is a feature map in CNN, SA(·) is the self-attention
operation, and MA(·) is a conditional attention function [88] with
a softmax normalization.

Sec. 4.1 shows empirically that our attention design achieves
superior performance than the common practice of applying
spatial attention to the input feature map. This modulated attention
(Fig. 7 (b)) could be plugged into any feature layer of a CNN.
Here, we modify the last feature map only.

3.4 Active Exploration of Open Classes
In the dynamic world, the model should not halt after training. We
assume a continuous training, inference, annotation, and model
update loop as our model actively explores the visual world

Algorithm 1 Active Exploration of Open Classes.

Input:
vdirect: the direct feature extracted from the open sample,
ci: the discriminative centroid of class i from visual memory,
K: the number of classes,
Tact: the temperature for trade-off in active exploration.
for each exploration step do

Sample mini-batch {vdirectn }.
Compute the minimum distance between the direct feature

and the discriminative centroid:
Uopen ← mini ‖vdirect − ci‖2.
Compute the ratio between the first two nearest distances:
Uinfo ← dsorted1 / dsorted2 .
Compute the free energy function of vdirect:
En ← −Tact · log

∑K
i eUopen·Uinfo/Tact .

Select high-energy samples for further human annotations.
Update the classifier φ(·) using newly added data.

end for

over time. Every time our model encounters certain sample of
open classes, our model will determine whether this sample is
informative enough for further human annotation. After obtaining
these human annotations in an efficient manner, our model will be
continually updated according to the newly added data.

The active exploration step has three major components: 1)
active sample selection based on two different types of uncertainty,
2) human-in-the-loop annotation, and 3) model update using
active data annotations, all three of which constitute a dynamic
recognition loop. The detailed algorithmic pipeline of our active
exploration is listed in Alg. 1.

3.4.1 Two Types of Uncertainty in Active Exploration
Unlike the standard active learning setting that work in closed-
world setting, there actually exist two types of uncertainty here
in active exploration: uncertainty in openness and uncertainty
in informativeness. Existing active learning algorithms are
not directly applicable here since their uncertainty estimation
mechanism only considers the informativeness among known
classes, which is not suitable for modeling the openness between
known classes and unknown classes.

In the following, we elaborate the modeling the two types of
uncertainty in the context of active exploration:
1) Uncertainty in Openness: We measure the openness Uopen

of a new sample using the distance between its embedding and
the nearest centroid, which can be formulated as:

Uopen = min
i
‖vdirect − ci‖2, (7)

where vdirect is the direct feature of the new sample and ci is
the centroid of the i-th class.

2) Uncertainty in Informativeness: Intuitively, the most in-
formative samples would be those that lie on the decision
boundaries between different classes. We first sort the distances
between the embedding of the new sample to all existing class
centroids in ascending order: dsortedn . Then the informativeness
of a new sample is defined as the ratio between the first two
nearest distances:

Uinfo = dsorted1 /dsorted2 . (8)

These two types of uncertainty regarding new sample and class
centroids are further illustrated in Fig. 8.
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Fig. 8: Active exploration illustration of (a) uncertainty in
informativeness, and (b) uncertainty in openness.

3.4.2 Active Sample Selection
At each time step when new data are encountered, the selection
of samples for active annotations is based on the combination of
both openness and informativeness uncertainty estimation using
the energy-based model [10]. Similar to [59], we can express the
free energy function E(·) of new sample vdirect as follows:

E(vdirect) = −Tact · log
K∑
i

eUopen·Uinfo/Tact , (9)

where Tact is the temperature for controlling the trade-off between
precision and recall in active selection.

3.4.3 Human-in-the-Loop Annotation
After selecting these “open” yet “informative” samples, we
obtain the semantic labels of these samples by querying human
annotators. In the real-world applications [89], it can be executed
through online crowdsourcing platform with quality control. Since
different human annotators have different preferences for naming
unknown categories, it is crucial to maintain consistency between
different samples of the same unknown category.

3.4.4 Model Update
Assume that we have an existing classifier φt(·) at time step t
with weight vectors {wi}Ki=1 for K known classes. And during
time step t to time step t + 1, we will encounter Z unknown
classes. Then at time step t+ 1, our new classifier φt+1(·) will be
a concatenation of both known class weights and unknown class
weights: {{wi}Ki=1, {wj}K+Z

j=K+1}. Both weights will be updated
by the obtained active human annotations.

Note that model update is not our main contribution; there
are several feasible instantiations. Since we adopt cosine classifer
described in Sec. 3.5, the weight of classifier and the embedding
of sample can be transformed interchangeably [48], [51]. Though
more sophisticated methods (e.g. learning another network to
generate the classifier weights for unknown classes) can be
applied, here the classifier weights for unknown classes are simply
hallucinated through a weighted average of the meta-embeddings
from the actively selected samples for that class, where the
weight is determined by E(vdirect). This classifier hallucination
approach is extremely suitable for off-the-shelf deployment.

3.4.5 Dynamic Recognition Loop
To accommodate for the dynamic nature of the visual world,
this procedure of active sample selection, human-in-the-loop
annotation, and model update repeats each time new batch of
open data are encountered. Our framework maximizes learning
and recognition efficiency by taking the best from both humans

and machines within a synergistic collaboration, taking care of
both the long-tailed and open-ended distribution existing in the
natural world.

In our implementation, the feature extractor is fixed for fast
adaptation, while the visual memory is updated to accommodate
for the continual stream of unknown classes during the dynamic
learning loop. We have further clarified in the revised paper.

3.5 Learning
Cosine Classifier. We adopt the cosine classifier [48], [51] to
produce the final classification results. Specifically, we normalize
the meta-embeddings {vmeta

n }, where n stands for the n-th input
as well as the weight vectors {wi}Ki=1 of the classifier φ(·) (no
bias term):

vmeta
n =

‖vmeta
n ‖2

1 + ‖vmeta
n ‖2

· vmeta
n

‖vmeta
n ‖

,

wk =
wk

‖wk‖
.

(10)

The normalization strategy for the meta-embedding is a non-
linear squashing function [90] which ensures that vectors of
small magnitude are shrunk to almost zeros while vectors of big
magnitude are normalized to the length slightly below 1. This
function helps amplify the effect of the reachability γ (cf. Eq. (3)).
Loss Function. Since all our modules are differentiable, our
model can be trained end-to-end by alternatively updating the
centroids {ci}Ki=1 and the dynamic meta-embedding vmeta

n . The
final loss function L is a combination of the cross-entropy
classification loss LCE and the large-margin loss between the
embeddings and the centroids LLM :

L =
N∑

n=1

LCE(vmeta
n , yn) + λ · LLM (vmeta

n , {ci}Ki=1), (11)

where λ is set to 0.1 in our experiments via observing the accuracy
curve on validation set.

Specifically, LCE is the cross-entropy loss between dynamic
meta-embedding vmeta

n and the ground truth category label yn:

LCE(vmeta
n , yn) = yn log(φ(vmeta

n ))

+ (1− yn) log(1− φ(vmeta
n )),

(12)

where φ(·) is the cosine classifier described in Eqn. 6 in the main
paper. Next we introduce the large margin loss LLM between the
embedding vmeta

n and the centroids {ci}Ki=1:

LLM (vmeta
n , {ci}Ki=1) = max(0,

∑
i=yn

‖vmeta
n − ci‖

−
∑
i 6=yn

‖vmeta
n − ci‖+m),

(13)

where m is the margin and we set it as 5.0 in our experiments.
With this formulation, we minimize the distance between each
embedding and the centroid of its group and meanwhile maximize
the distance between the embedding and the centroids it does not
belong to.

4 EXPERIMENTS

Datasets. We curated three open long-tailed benchmarks,
ImageNet-LT (object-centric), Places-LT (scene-centric), and
MS1M-LT (face-centric), respectively.
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Fig. 9: Results of ablation study. Dynamic meta-embedding contributes most on medium-shot and few-shot classes while modulated
attention helps maintain the discrimination of many-shot classes. The performance is reported with open-set top-1 classification accuracy
on ImageNet-LT.

1) ImageNet-LT: We constructed a long-tailed version of the
original ImageNet-2012 [2] by sampling a subset following
Pareto distribution with power value α=6. Overall, it has
115.8K images from 1000 categories, with maximally 1280
images per class and minimally 5 images per class. The
additional classes of images in ImageNet-2010 are tagged as
the open set.

2) Places-LT: It contains 184.5K images from 365 categories,
with the maximum of 4980 images per class and the minimum
of 5 images per class. The gap between the head and tail classes
are even larger than ImageNet-LT. The test images from Places-
Extra69 are tagged as the additional open-set.

3) MS1M-LT: To create a long-tailed version of the MS1M-
ArcFace dataset [13], [92], we sampled images for each
identity with a probability proportional to the image numbers
of each identity. It has 887.5K images and 74.5K identities,
with a long-tailed distribution. To inspect the generalization
ability of our approach, the performance is evaluated on the
MegaFace benchmark [93], which has no identity overlap with
MS1M-ArcFace.

Network Architectures. Following [46], [47], [48], we employed
a ResNet-10 [15] trained from scratch as our backbone network for
ImageNet-LT. To make a fair comparison with [6], the pre-trained
ResNet-152 [15] was used as the backbone network for Places-LT.
For MS1M-LT, we used the popular pre-trained ResNet-50 [15] as
the backbone network. To compare with the recent works, we also
adopted the two-headed ResNet-50 backbone following [22].
Evaluation Metrics. The evaluation is on the performance of
each method under both the closed-set (test set contains no
unknown classes) and open-set (test set contains unknown classes)
settings. Under each setting, besides the overall top-1 classification
accuracy [48] over all classes, we also calculated the accuracy of
three disjoint subsets: many-shot classes (classes each with over
training 100 samples), medium-shot classes (classes each with
20∼100 training samples) and few-shot classes (classes under
20 training samples). For the open-set setting, the F-measure
was also reported for a balanced treatment of precision and
recall following [56]. For determining open classes, the softmax
probability threshold was initially set as 0.1, while a more detailed
analysis is provided in Sec. 4.6.
Comparison Methods. We chose for comparison state-of-the-
art methods from different fields dealing with the open long-
tailed data, including: (1) metric learning: Lifted Loss [33], (2)

hard negative mining: Focal Loss [16], (3) feature regularization:
Range Loss [36], (4) few-shot learning: FSLwF [48], (5) long-
tailed modeling: MetaModelNet [6], and (6) open-set detection:
Open Max [56]. We applied these methods on the same backbone
networks as ours for a fair comparison. We also enabled them with
class-aware mini-batch sampling [95] for effective learning. Since
Model Regression [96] and MetaModelNet [6] are the most related
to our work, we recorded our results along with the numbers
reported in the original papers. We also included the recent
advances (e.g. CB Focal [17], LDAM [19], Decoupling [20],
BBN [21], and RIDE [22]) in long-tailed recognition for a
comprehensive evaluation.

4.1 Ablation Study

Effectiveness of the Dynamic Meta-Embedding. From Fig. 9
(b), we observe that the combination of the memory feature
and concept selector led to large improvements on all three
shots, because the obtained memory feature transferred useful
visual concepts among classes. Another observation is that the
confidence calibrator is the most effective on few-shot classes.
And the reachability estimation inside the confidence calibrator
helped distinguish tail classes from open classes.
Effectiveness of the Modulated Attention. We observe from
Fig. 9 (a) that, compared to medium-shot classes, the modulated
attention contributed more to the discrimination between many-
shot and few-shot classes in the experiments. Fig. 9 (c) further
validates that the modulated attention is more effective than
directly applying spatial attention on feature maps. It implies that
adaptive contexts selection is easier to learn than the conventional
feature selection.
Effectiveness of the Reachability Calibration. To further
demonstrate the merit of reachability calibration for open-world
setting, we conducted additional experiments following the stan-
dard settings in [58], [91] (CIFAR100 + TinyImageNet(resized)).
Our approach shows favorable performance over standard open-set
methods [58], [91], as listed in Table 5.

4.2 OLTR++ Benchmarking Results
In this section, we extensively evaluate the performance of various
representative methods on our OLTR++ benchmarks.
ImageNet-LT. Table 4 (a) shows the performance comparison of
different methods. We have the following observations. Firstly,
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Backbone Net closed-set setting open-set setting
ResNet-10 > 100 < 100 & > 20 6 20 > 100 < 100 & > 20 6 20
Methods Many-shot Medium-shot Few-shot Overall Many-shot Medium-shot Few-shot F-measure
Plain Model [15] 40.9 10.7 0.40 20.9 40.1 10.4 0.40 0.295
Lifted Loss [33] 35.8 30.4 17.9 30.8 34.8 29.3 17.4 0.374
Focal Loss [16] 36.4 29.9 16.0 30.5 35.7 29.3 15.6 0.371
Range Loss [36] 35.8 30.3 17.6 30.7 34.7 29.4 17.2 0.373

+ OpenMax [56] - - - - 35.8 30.3 17.6 0.368
FSLwF [48] 40.9 22.1 15.0 28.4 40.8 21.7 14.5 0.347
CB Focal [17] 35.0 27.9 21.4 29.7 34.3 27.4 21.1 0.361
LDAM [19] 47.1 31.7 20.9 36.2 46.8 31.4 20.6 0.424
Decoupling [20] - - - 41.4 - - - -
Ours 47.8 38.4 18.4 39.6 44.2 35.2 17.5 0.446
ResNet-50
Plain Model [15] 64.0 33.8 5.8 41.6 - - - -
Decoupling [20] 57.1 45.2 29.3 47.7 - - - -
RIDE [22] 65.8 51.0 34.6 54.4 - - - -
Ours† 65.5 51.8 35.2 55.0 - - - -

(a) Top-1 classification accuracy on ImageNet-LT.

Backbone Net closed-set setting open-set setting
ResNet-152 > 100 < 100 & > 20 6 20 > 100 < 100 & > 20 6 20
Methods Many-shot Medium-shot Few-shot Overall Many-shot Medium-shot Few-shot F-measure
Plain Model [15] 45.9 22.4 0.36 27.2 45.9 22.4 0.36 0.366
Lifted Loss [33] 41.1 35.4 24.0 35.2 41.0 35.2 23.8 0.459
Focal Loss [16] 41.1 34.8 22.4 34.6 41.0 34.8 22.3 0.453
Range Loss [36] 41.1 35.4 23.2 35.1 41.0 35.3 23.1 0.457

+ OpenMax [56] - - - - 41.1 35.4 23.2 0.458
FSLwF [48] 43.9 29.9 29.5 34.9 38.1 19.5 14.8 0.375
CB Focal [17] 43.4 39.1 30.5 38.9 42.3 37.7 28.8 0.490
LDAM [19] 45.6 37.8 23.9 35.7 45.6 37.7 23.5 0.485
Decoupling [20] 40.6 39.1 28.6 37.3 - - - -
Ours 44.0 40.6 28.5 39.3 43.7 40.2 28.0 0.500

(b) Top-1 classification accuracy on Places-LT.

TABLE 4: Benchmarking results on (a) ImageNet-LT and (b) Places-LT. Our approach provides a comprehensive treatment to all the
many/medium/few-shot classes as well as the open classes with substantial advantages on all aspects. † denotes using the two-headed
ResNet-50 backbone following [22].

Method FPR (95% TPR) Detection Error
Softmax Pred. [91] 82.2 43.6
Ours 51.5 29.9
ODIN [58]† 44.3 24.6
Energy OOD [59]† 40.7 21.1
Ours† 35.4 18.0

TABLE 5: Open class detection error (%) comparison. It
is performed on the standard open-set benchmark, CIFAR100
+ TinyImageNet (resized). “†” denotes the setting where open
samples are used to tune algorithmic parameters.

both Lifted Loss [33] and Focal Loss [16] greatly boosted the
performance of few-shot classes by enforcing feature regulariza-
tion. However, they also sacrificed the performance on many-
shot classes since there are no built-in mechanism of adaptively
handling samples of different shots. Secondly, OpenMax [56]
improved the results under the open-set setting. However, the
accuracy degraded when it was evaluated with F-measure, which
considers both precision and recall in open-set. This proves that
when the open classes are compounded with the tail classes, it
becomes challenging to perform the distribution fitting that [56]
requires. Lastly, although the few-shot learning without forgetting
approach [48] retained the many-shot class accuracy, it had
difficulty dealing with the imbalanced base classes which are
lacked in the current few-shot paradigm. Overall, as demonstrated
in Fig. 10, our approach provides a comprehensive treatment to

all the many/medium/few-shot classes as well as the open classes
with substantial improvements on all aspects.

Places-LT. Similar observations can be made on the Places-
LT benchmark as shown in Table 4 (b). With a much stronger
baseline (i.e. ImageNet pre-trained ResNet-152), our approach still
consistently outperformed other alternatives under both the closed-
set and open-set settings. The advantage is even more profound
under F-measure.

MS1M-LT. We trained on the MS1M-LT dataset and report
results on the MegaFace identification track, which is a standard
benchmark in the face recognition field. Since the face identities
in the training set and the test set are disjoint, we adopted an
indirect way to partition the testing set into subsets of different
shots. We approximated the pseudo shots of each test sample by
counting the number of training samples that are similar to it by at
least a threshold (feature similarity greater than 0.7). Apart from
many-shot, few-shot, one-shot subsets, we also obtained a zero-
shot subset, for which we could not find any sufficiently similar
samples in the training set. It can be observed that our approach
has the most advantage on one-shot identities (3.0% gains) and
zero-shot identities (1.8% gains) as shown in Table 6.

SUN-LT. To directly compare with [96] and [6], we also tested
out method on the SUN-LT benchmark they provided. The final
results are listed in Table 8. Instead of learning a series of classifier
transformations, our approach transfered visual knowledge among
features and achieved an 1.4% improvement over the prior best.
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Backbone Net MegaFace Identification Rate
ResNet-50 > 5 < 5 & > 2 < 2 & > 1 = 0 Gender Sub-Groups Ethnicity Sub-Groups
Methods Many Few One-shot Zero-shot Full Test Male Female Caucasian Asian Indian African
Plain Model [15] 80.64 71.98 84.60 77.72 73.88 78.30 78.70 85.83 75.67 76.42 79.28
Range Loss [36] 78.60 71.36 83.14 77.40 72.17 78.12 77.45 86.11 74.86 75.94 76.37
Fair Feature [79] - - - - - 78.23 77.61 86.34 74.97 76.25 77.62
Debiasing [94] - - - - - 78.73 78.85 86.36 75.89 76.90 79.77
Ours 80.82 72.44 87.60 79.50 74.51 79.04 79.08 86.59 76.22 77.05 80.37

TABLE 6: Benchmarking results on MegaFace. Our approach achieved the best performance on natural-world datasets when
compared to other state-of-the-art methods. Furthermore, our approach had across-board improvements on ‘male’ and ‘female’ gender
sub-groups as well as ‘Caucasian’,‘Asian’, ‘Indian’ and ‘African’ ethnicity sub-groups.

CIFAR-10-LT (im. ratio = 100) CIFAR-100-LT (im. ratio = 100) iNaturalist-18
Methods Many Medium Overall Many Medium Few Overall Many Medium Few Overall
Plain Model [15] - - 70.4 66.1 37.3 10.6 39.1 72.2 63.0 57.2 61.7
CB Focal [17] - - 74.6 - - - 36.0 - - - 61.1
LDAM [19] 80.5 67.0 77.0 61.5 41.7 20.2 42.0 - - - 64.6
Decoupling [20] - - - 65.7 43.6 17.3 43.2 65.0 66.3 65.5 65.9
BBN [21] - - 79.8 - - - 42.6 49.4 70.8 65.3 66.3
RIDE [22] - - - 67.9 48.4 21.8 47.0 70.2 71.3 71.7 71.4
Ours 79.7 62.0 76.3 61.8 41.4 17.6 41.2 62.4 66.7 65.9 65.3
Ours† 84.1 68.3 80.8 68.0 48.9 22.6 47.4 70.5 72.0 72.2 71.9

TABLE 7: Benchmarking results on CIFAR-10-LT, CIFAR-100-LT and iNaturalist-18. † denotes using the two-headed ResNet-50
backbone following [22].

Backbone Net closed-set setting
ResNet-152
Method Top-1 Accuracy Top-5 Accuracy
Plain Model [15] 48.0 77.8
Cost-Sensitive [32] 52.4 81.9
Model Reg. [96] 54.7 82.4
MetaModelNet [6] 57.3 83.6
Ours 58.7 84.2

TABLE 8: Benchmarking results on SUN-LT.

Note that our approach also incured much less computational cost
since MetaModelNet [6] requires a recursive training procedure.
CIFAR-10-LT & CIFAR-100-LT & iNaturalist-18. We also
compared OLTR++ with recent proposed methods for long-tailed
recognition (e.g. CB Focal [17], LDAM [19], Decoupling [20],
BBN [21], and RIDE [22]) on CIFAR-10-LT [17], CIFAR-100-
LT [17] and iNaturalist-18 [14]. When combining our framework
with the two-headed ResNet-50 [22], it achieved state-of-the-art
performance on all benchmarks, with consistent gains over many-,
medium-, and few-shot classes under various imbalance ratios.

4.3 Performance on Fairness Analysis

Results. On the sensitive attribute performance on MS1M-
LT, the last six columns in Table 6 show that our approach
achieved across-board improvements on both gender sub-groups
and ethnicity sub-groups, which has an encouraging implication
for effective fairness learning.
Indications. The goal of evaluating the performance on different
gender sub-groups and ethnicity sub-groups here is to draw con-
nection between long-tailed recognition and the larger community
of bias and fairness in artificial intelligence, which could possibly
motivate more future research at the intersection of these two.
To provide a comprehensive comparison on this interdisciplinary
sub-field, we further implement and include two representative
methods in fairness learning (i.e. fair feature [79] and latent
debiasing [94]) into the evaluation.

Stage
1 2

Known / Unknown Known / Unknown
Plain Model [15] 21.4 / 10.8 18.2 / 6.6
LwF [76] 26.5 / 17.2 24.1 / 11.3
ACL [77] 30.0 / 21.2 27.9 / 16.5
Ours 38.5 / 26.7 36.3 / 24.9

TABLE 9: Performance of dynamic recognition loop.

4.4 Performance on Active Exploration

4.4.1 Effectiveness of Active Sample Selection

Setting. The experiments were performed on ImageNet-LT (as
the initial labeled pool), with the additional classes of images in
ImageNet-2010 as the open/exploration set. This open/exploration
set was further mixed with images with known classes, which were
taken from the original ImageNet dataset excluding ImageNet-LT.
For fair comparisons, all the methods adopted the same backbone
network and were benchmarked under different percentages of
selected open samples for oracle annotations (from 10% to 30%).
The evaluation metric was the average recognition accuracy over
all the open classes.

Results. We evaluated the performance of OLTR++ to recognize
the open classes under the active exploration setting. We compared
our results with several representative methods in active learning,
including random sampling, Bayesian-uncertainty-based method
DBAL [68], core-set-based method CoreSet [97] and adversarial-
learning-based method VAAL [69]. As shown in Fig. 12 (a),
our OLTR++ validates its advantage over different percentages
of selected open samples for active annotation and demonstrates
dynamic-world learning efficiency.

Analysis. To further understand the active exploration ability of
OLTR++, we visualized the samples of selected and not selected
images by our active exploration approach in Fig. 12 (b). We
can observe that OLTR++ tends to select canonical images with
representative parts and appearance for unseen classes.
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Fig. 10: The absolute F1 score of our method over the plain model. Ours has across-the-board performance gains w.r.t.
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Fig. 11: The influence of (a) dataset longtail-ness, (b) open-set probability threshold, and (c) the number of open classes. As the
dataset became more imbalanced, our approach only underwent a moderate performance drop. Our approach also demonstrates great
robustness to the contamination of open classes.

Fig. 12: (a) Performance of active exploration on open classes.
Our OLTR++ validates its advantage over different percentages
of selected open samples for active annotation. (b) Samples of
selected images by our active exploration approach.

4.4.2 Effectiveness of Dynamic Recognition Loop

Setting. The experiments were performed in a similar setting
to active exploration, except that the open/exploration set was
divided into two subsets to mimic the two stages in incremen-
tal/continual learning scenario. Specifically, both Stage 1 and

Stage 2 have splits from the additional classes of images in
ImageNet-2010 as the open/exploration set. For a fair comparison,
the base data is not used for model update in the incremental
step. To mimic the real-world applications, the accuracies of
“known/unknown” is calculated by classifying test samples to a
combination of known and unknown labels.

Results. We compared our results with several representative
methods in incremental/continual learning, including Learning
without Forgetting (LwF) [76], and Adversarial Continual Learn-
ing (ACL) [77]. LwF [76] is a seminal work in the field
of incremental learning, which serves as a strong and must-
have baseline by employing a soft multi-task learning paradigm.
ACL [77] is a recent adversarial-learning-based method of state-
of-the-art performance without using external data or models. It is
also equipped with open-sourced code and evaluation scripts for
fair comparisons. As listed in Table 9, our OLTR++ maintains the
learning and recognition effectiveness during the dynamic loop.

4.5 Influence of Tailness and Openness

Influence of Dataset Longtail-ness. The longtail-ness of the
dataset (e.g. the degree of imbalance of the class distribution)
can have a negative impact on the model performance. For faster
investigating, the weights of the backbone network were frozen
during training. From Fig. 11 (a), we observe that as the dataset
became more imbalanced (i.e. power value α decreases), our
approach only underwent a moderate performance drop. In other
words, dynamic meta-embedding enables effective knowledge
transfer among data-abundant and data-scarce classes.
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Fig. 13: Examples of the top-3 infused visual concepts from memory feature. Except for the bottom right failure case (marked
in red), all the other three input images were misclassified by the plain model and correctly classified by our model. For example, to
classify the top left image which belongs to a tail class ‘cock’, our approach learned to transfer visual concepts that represents “bird
head”, “round shape” and “dotted texture” respectively.
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Fig. 14: Examples of the infused visual concepts from “memory feature” in Places-LT.

Method Top-1 Accuracy Top-5 Accuracy
Random 57.9 63.2
ImageNet Pre-Train [2] 71.3 80.6
Ours 77.4 85.8

TABLE 10: Performance comparison of unsupervised attribute
discovery. It is evaluated on the CelebA dataset [26].

Influence of Open-Set Probabilistic Threshold. The perfor-
mance change w.r.t. the open-set probability threshold is demon-
strated in Fig. 11 (b). Compared to the plain model [15] and
range loss [36], the performance of our approach changed steadily
as the open-set threshold rose. The reachability estimator in our
framework helped calibrate the sample confidence, thus enhanced
robustness to open classes.
Influence of the Number of Open Classes. Finally we investigate
performance change w.r.t. the number of open classes. Fig. 11 (c)
indicates that our approach demonstrates great robustness to the
contamination of open classes.

4.6 Further Analysis
In this section, we visualize and interpret memory feature in our
framework, as well as present the relation of OLTR++ to fairness
analysis and typical failure cases.
Infused Memory Feature. In Fig. 13, we inspect the visual
concepts that memory feature has infused by visualizing its top
activating neurons. Specifically, for each input image, we extracted
its top-3 transferred neurons in memory feature. And each neuron
is visualized by a collection of highest activated patches [98]
over the whole training set. For example, to classify the top
left image which belongs to a tail class ‘cock’, our approach

learned to transfer visual concepts that represents “bird head”,
“round shape” and “dotted texture” respectively. After feature
infusion, the dynamic meta-embedding became more informative
and discriminative.

We visualize the “memory feature” in Places-LT similarly
to ImageNet-LT. Examples of the infused visual concepts from
“memory feature” in Places-LT are presented in Fig. 14. We
observe that “memory feature” indeed encodes discriminative
visual traits for the underlying scene.

Following [26], we visualize the “memory feature” in MS1M-
LT by contrasting the least activated average image and the most
activated average image of the top firing neuron. From Fig. 15,
we observe that “memory feature” in MS1M-LT infused several
identity-related attributes (e.g. “high cheekbones”, “dark skin
color” and “narrow eyes”) for precise recognition.

Unsupervised Attribute Discovery. We also quantitatively eval-
uate the “memory feature” in MS1M-LT by performing unsuper-
vised attribute discovery experiment. The performance is reported
on the CelebA dataset [26] via linear probing, as listed in Table 10.
Our approach outperforms randomly initialized and ImageNet pre-
trained features on both top-1 and top-5 average accuracy.

Failure Cases. Since our approach encourages the feature infusion
among classes, it slightly sacrifices the fine-grained discrimination
for the promotion of under-representative classes. One typical
failure case of our approach is the confusion between many-shot
and medium-shot classes. For example, the bottom right image
in Fig. 13 was misclassified into ‘airplane’ because some cross-
category traits like “nose shape” and “eye shape” were infused.
Feature disentanglement [99] and strong contrastive learning [100]
are potential alleviations to this trade-off issue.
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Fig. 15: Examples of the infused visual concepts from “memory feature” in MS1M-LT.

5 CONCLUSIONS

We introduce the OLTR++ task that learns from natural long-tail
open-end distributed data and optimizes the overall accuracy over
a balanced test set. We propose an integrated OLTR++ algorithm,
dynamic meta-embedding, in order to share visual knowledge
between head and tail classes and to reduce confusion between tail
and open classes. We validated our method on three curated large-
scale OLTR++ benchmarks (ImageNet-LT, Places-LT and MS1M-
LT) as well as active exploration. Our work can enable future
researches that are directly transferable to real-world applications.
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