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Purpose: To improve reconstruction fidelity of fine structures and textures in
deep learning- (DL) based reconstructions.

Methods: A novel patch-based Unsupervised Feature Loss (UFLoss) is pro-
posed and incorporated into the training of DL-based reconstruction frame-
works in order to preserve perceptual similarity and high-order statistics. The
UFLoss provides instance-level discrimination by mapping similar instances to
similar low-dimensional feature vectors and is trained without any human anno-
tation. By adding an additional loss function on the low-dimensional feature
space during training, the reconstruction frameworks from under-sampled or
corrupted data can reproduce more realistic images that are closer to the origi-
nal with finer textures, sharper edges, and improved overall image quality. The
performance of the proposed UFLoss is demonstrated on unrolled networks for
accelerated two- (2D) and three-dimensional (3D) knee MRI reconstruction with
retrospective under-sampling. Quantitative metrics including normalized root
mean squared error (NRMSE), structural similarity index (SSIM), and our pro-
posed UFLoss were used to evaluate the performance of the proposed method
and compare it with others.

Results: In vivo experiments indicate that adding the UFLoss encour-
ages sharper edges and more faithful contrasts compared to traditional and
learning-based methods with pure ¢, loss. More detailed textures can be seen
in both 2D and 3D knee MR images. Quantitative results indicate that recon-
struction with UFLoss can provide comparable NRMSE and a higher SSIM while
achieving a much lower UFLoss value.

Conclusion: We present UFLoss, a patch-based unsupervised learned feature
loss, which allows the training of DL-based reconstruction to obtain more
detailed texture, finer features, and sharper edges with higher overall image
quality under DL-based reconstruction frameworks. (Code available at: https://
github.com/mikgroup/UFLoss)
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1 | INTRODUCTION

MRI offers tremendous benefits to both science and
medicine, but unfortunately, MRI data acquisition is
inherently time-consuming. As a result, there is great
interest in reconstructing diagnostic quality images from
limited measurements to shorten scan times. Over the past
decades, numerous computational approaches have been
proposed to address this problem, including parallel imag-
ing (PI)!3 and compressed sensing (CS).* P1 leverages mul-
tiple receiver coils to acquire multiple-view images simul-
taneously for efficient image reconstruction. CS incorpo-
rates prior information about the system and signal to
constrain the image reconstruction. Both PI and CS have
successfully enabled a broad range of clinical applications,
and all major MRI vendors have implemented products
based on them.

Nonetheless, there remain several challenges with PI
and CS. (1) The regularization functions used in CS are
hand-crafted (e.g., sparse transformation) or rely on sim-
ple learned features (e.g., dictionary learning®), which
are known to be suboptimal at modeling the underlying
data distribution. (2) CS reconstruction is sensitive to the
tuning parameters. (3) The reconstruction time of CS is
relatively long due to iterative optimization.

To overcome these limitations, end-to-end deep learn-
ing (DL)-based reconstruction methods®!? have been
proposed to learn the regularization terms directly from
a large training dataset. Two representative approaches
include the Variational Network® and Model-based
Deep Learning (MoDL).!! Both methods consist of
unrolling a conventional iterative CS reconstruction
and replacing the regularization step with learnable
activation functions or Convolutional Neural Networks
(CNNs). End-to-end training is performed in a super-
vised learning manner. These unrolled learning-based
methods have shown great potential at further accel-
erating reconstruction from under-sampled k-space
measurements, well beyond the capabilities of combined
PI and CS (PICS).

It is well-known that the performance of DL-based
methods is dependent on the loss function used for train-
ing. The most commonly used loss functions for training
are pixel-wise #1, ¢, and the patch-wise structural simi-
larity index (SSIM)'3 losses.®”1! However, these loss func-
tions are usually hand-crafted or based on local statistics,
which do not necessarily capture the perceptual infor-
mation of fine structures, which results in images with
degraded perceptual quality and blurring when compared
to unaccelerated scans.314

To address these issues, Generative Adversarial Net-
works (GANs)P17 with adversarial losses have been
proposed to exploit the implicit feature information

by incorporating discriminators into the reconstruction
pipeline.®1418 Unfortunately, GANs are notoriously hard
to train, easily fall into mode collapse, and are sensitive
to hyperparameter selections. Additionally, the adversar-
ial loss is a less-constrained instance-to-set loss function,
where improper training parameters may result in unex-
pected instabilities during the training and artifacts in the
reconstructions.!%?

Aside from the adversarial loss, recent works in com-
puter vision have shown that CNN-based perceptual
losses can be used to learn high-level image feature
representations.?!?> These perceptual loss functions are
based on feature layers of classification networks (such
as the VGG Net?). They are typically designed to work
for natural images with a fixed channel number (RGB)
and are usually trained in a supervised manner with
human-annotated labels, for example, from ImageNet.*
Therefore, simply using perceptual VGG losses may not
be ideal for MRI reconstruction tasks. For MR datasets,
the dimensionality of the data can vary from application
to application (e.g., two- and three-dimensional [2D/3D]
complex-valued data, 2D/3D dynamic data), while at the
same time, human-annotated labels for MR images are
much harder to obtain. More importantly, it is also unclear
what kind of human annotations would be best for com-
paring the image quality for MR images.

In this work, we propose a novel unsupervised
learned feature loss (Figure 1) to capture the perceptual
and high-order statistical difference within MR images,
which we call Unsupervised Feature Loss (UFLoss). The
UFLoss is a large-patch-wise loss function that provides
instance-level discrimination by mapping similar patches
to similar low-dimensional feature vectors using a pre-
trained mapping network (which we refer to as UFLoss
feature mapping network or UFLoss network).2° The ratio-
nale of using features from large-patches (typically 40 x 40
pixels for a 300 x 300 pixels image) is that we want our
UFLoss to capture mid-level structural and semantic fea-
tures instead of using small patches (typically around 10 x
10 pixels), which only contain local edge information. On
the other hand, we avoid using global features due to the
fact that our training set (typically around 5000 slices) is
usually not large enough to capture common and general
features at a large-image scale.

Different from adversarial loss, UFLoss is a
more-constrained instance-to-instance loss function,
which leads to more stable training with clear and straight-
forward stop criterion. Meanwhile, unlike the VGG
perceptual loss, pretraining the UFLoss network requires
no supervision, and thus is able to capture high-level
structural information specifically for MR images without
any human annotations. Similar to the VGG perceptual
loss, UFLoss can also be easily incorporated into the



WANG ET AL.

. . .. 3
Magnetic Resonance in MedlcmeJ—

(A) Step 1: Train the UFLoss feature mapping network: Unsupervised
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Overview of training the deep learning (DL)-based reconstruction with Unsupervised Feature Loss (UFLoss). We split the

pipeline into two steps. (A) Step 1: We pretrain the UFLoss feature mapping network on fully sampled image patches without human

annotations, where the aim of the training is to maximally separate out all the patches in the feature space. (B) Step 2: For the training of the

DL-based reconstruction, G, g represents a reconstruction network with learnable parameters w, and given system encoding operator E. The
inputs of G,, g are under-sampled k-space y, and zero-filled reconstruction E®y. We feed-forward E®y through G, g to obtain the output
reconstruction results. We adopt the pretrained UFLoss network from (A) to compute the UFLoss in the feature space. Then, end-to-end
training is performed with respect to the combination of UFLoss and per-pixel loss. Note that the training of DL-based reconstruction with

UFLoss is still supervised

training of DL-based reconstruction networks without
modifying the network architecture. Figure 1 shows the
overall pipeline for using our UFLoss to train a DL-based
reconstruction. We first pretrain the UFLoss network
on fully sampled image patches without accompanying
annotated labels (Figure 1A). This step maps patches to a
lower-dimensional space while attempting to maximally
separate them in the feature space. The outcome is that
similar patches end up being close together in the feature
space while dissimilar ones end up further apart. This
pretrained feature mapping network is then adopted to
compute the UFLoss during the training of the DL-based
reconstruction (Figure 1B), which corresponds to the ¢,
distance in the feature space summed across all images
patches. End-to-end training is performed with respect
to a combination of UFLoss and per-pixel #;1/¢, or SSIM
losses.

To demonstrate the power of UFLoss, we focus
on a representative unrolled DL-based reconstruction

framework: MoDL.}! We conduct experiments to show
that UFLoss is a valid loss function sensitive to increas-
ing low-level intensity deformation. Our results for patch
retrieval and patch correlation in MR images demonstrate
that visually similar patches are indeed close in the feature
space.

In terms of computation costs, our UFLoss is added
during training as an additional loss function without
modifying the reconstruction network architecture. This
imposes about 50% increase in training time and mem-
ory requirements during training. However, in inference
time, the UFLoss has no impact at all on the reconstruction
time as well as the memory requirements. Our experi-
ments on 2D and 3D in vivo data show that the addition
of the UFLoss encourages more realistic reconstructions
with more subtle details and improved overall image qual-
ity compared to conventional and learning-based methods
with other losses (pure ¢, loss and #,+VGG perceptual
loss).
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2 | THEORY
2.1 | Unrolled reconstruction
for under-sampled MRI

In conventional under-sampled MRI, the PICS inverse
problem can be formulated as:*

& = argmin= [ Ex - vl + AQ(x) )
X

where x is the image to be reconstructed, and y is the mea-
sured data in k-space. E describes the system encoding
matrix, which can be further expanded to: E = UFS, where
F is the Fourier transform operator, S represents the mul-
tiple sensitivity maps, and U corresponds to the k-space
sampling operator. For the Cartesian case, U is a diagonal
matrix with 1s corresponding to collected k-space and Os
to unacquired k-space. For non-Cartesian, U is a k-space
resampling operator from a Cartesian grid to the acquired
non-Cartesian trajectory. The goal of this problem is to
reconstruct the image which has the lowest error com-
pared to the measured k-space data in the least-squares
sense. However, when the sampling rate is below the
Nyquist rate, Equation (1) becomes ill-posed. Therefore,
a regularization term Q(x) with a weighting parameter 4,
which incorporates prior knowledge about the image, is
added to constrain the optimization problem. For conven-
tional CS MRI, Q(x) is often chosen to promote sparsity in a
certain transform domain such as wavelets or finite spatial
differences.

A number of first-order iterative methods have
been developed for efficiently solving the minimiza-
tion problem in Equation (1) for the case where Q(x) is
convex.?%2” To further develop fast and high-fidelity recon-
structions, recent methods have attempted to directly
learn the proximal function Q and the corresponding
parameters from a large set of fully sampled training data
in an unrolled fashion.512

A widely used unrolled reconstruction framework is
MoDL, where the reconstruction is formulated as:

% = argmin||Ex - y|I3 + Allx — Du®)|l5. (2)

In this formulation, D,, is a learned CNN denoiser/artifact
removal network and w are the learned weighting param-
eters. The CNN-based prior ||x — Dw(x)||§ results in high
values when x is corrupted by noise and aliasing. Sim-
ilar to the alternating direction method of multipliers,?’
we can solve the optimization problem in the following
half-quadratic splitting steps:

z¢ = D,,(x"). (3)

2
x**V = arg min||Ex — y||? + ﬂ“x - zk“2
X

= (EYE + ADY(EMy + 1Z5). @)

Equation (4) can be solved using the Conjugate Gra-
dient (CG) Method while Equation (3) is viewed as a
CNN-based forward-pass step. MoDL is formulated as an
unrolled network, where in each iteration, a CG layer
is followed by a CNN-based proximal step. The unrolled
reconstruction can be denoted as X = G,,(y, E), where vy,
E, and wcorrespond to the under-sampled k-space mea-
surements, the encoding matrix, and the learnable weights
of the reconstruction network, respectively. Training the
unrolled model becomes supervised learning with a prede-
fined loss function:

min )" £(Guw(y:, B, X)), (5)

where x; is the ith fully sampled ground truth image, and
y; is the retrospectively under-sampled k-space computed
by applying the encoding matrix E; to generate y;, = E;x;.
The loss function £(-) can be combinations of #1, £, SSIM,
and other losses. Once trained, a new under-sampled scan
denoted by y with the encoding operator E is reconstructed
as:

X = Gu(y, E). (6)

2.2 | UFLoss feature mapping network
As shown in Figure 2A, a patch-wise mapping network
(UFLoss feature mapping network) is trained to map
patches from image-space to a low-dimensional unit-norm
feature space, aiming to capture high-level structural dif-
ferences. The UFLoss network can then be used for train-
ing a DL-based reconstruction. In contrast to conventional
supervised computer vision tasks, the UFLoss network is
trained from fully sampled image patches in an unsuper-
vised fashion. In other words, the training does not use any
human annotation, which has been challenging to obtain
in large-scale MRI datasets. The training is motivated by
contrastive learning,?® where a feature mapping function
fo is learned such that each patch is maximally separated
from other patches in a lower-dimensional hypersphere
feature space.

Mathematically, we formulate our unsupervised fea-
ture mapping using the softmax criterion. Suppose we
have N patches {p,, p,, ..., Py } cropped from the fully sam-
pled images from the training set, with their corresponding
unit-norm features {vy,v,,...,vy} with v; = fy(p,) € R%
For a certain patch p with feature v = fy(p), the probability
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FIGURE 2

(A) Training pipeline for the Unsupervised Feature Loss (UFLoss) feature mapping network. Patches cropped from the fully

sampled images are separately passed through a ResNet 18% backbone followed by an #, normalization layer to map the patches to features

on a low-dimensional unit sphere (128-dimension unit-norm features in this work). A memory bank is used to store the features from all the

training patches to save computation when computing the softmax loss function (Equation 9). Then, end-to-end training is performed such

that each patch is maximally separated from other patches in the 128D unit-norm feature space. Similar patches will naturally cluster in the

low-dimensional space. (B) Detailed formulation of the proposed UFLoss during the training of the deep learning-based reconstruction.

Operator R extracts a total of M patches from an image. These patches are extracted on a grid with a sliding window. Each patch from the

reconstructed output and the fully sampled reference will go through a pretrained network f, and mapped to a low-dimensional feature

space. The UFLoss corresponds to the sum of the £, distance between the feature vectors from the output and the fully sampled reference

of it being identified as the ith patch under a linear classi-

fier is: r
exp(w; v
P(ilv) = NLI?F (7)
2 =1 €Xp(W; V)

where w; is the weight vector of class j (or patch j), and
WJTV shows how well the feature vector v matches the
jth patch. However, the above formulation Equation (7)
requires a class prototype win addition to the patch feature
itself, making direct comparison between patches infeasi-
ble. To address this problem, we follow the approach in
Reference 28 to turn the instance-wise classification into
a metric learning problem, where WJTV in Equation (7) is
replaced with v;.rv. That is, the jth patch feature is its class
prototype itself. The probability then becomes:

exp(viv)/z
= (®)

P(i|v)
2o eXpViV)/7

where 7 is a temperature parameter that controls the extent
of separation/concentration of the distribution in the fea-
ture space. The learning objective is set to maximize the
joint probability ITY Py(ilfp(x;)), which is equivalent to
minimizing the negative log-likelihood over the training
set:

N
J(©) = = log P(ilfy(x1).

i=1

©)

Note that in order to compute the probability P(i|v)
in Equation (8), features {v;} from all the patches are
required. Instead of exhaustively computing all the fea-
tures every time, a memory bank V= {vy, ... ,vy} is
constructed to store all the feature vectors. During each
training iteration, while the network parameters 6 are opti-
mized over the ith patch, the ith entry of the memory bank
v; isreplaced by the output of the feature mapping network

fy(p) — vi.



6 . . . .
J—Magnetlc Resonance in Medicine

‘WANG ET AL.

Once trained, the UFLoss network can be used as a per-
ceptual loss term in other supervised reconstruction tasks,
as described next.

2.3 | DL-based reconstruction
with UFLoss

The UFLoss network is designed to maximally separate
patches in the low-dimensional unit-sphere feature space.
Perceptually similar patches are mapped to similar fea-
tures.

Consider the under-sampled reconstruction using an
unrolled network in Equation (5). Suppose we have the
ground truth fully sampled image x;, and the output of
the unrolled network X; = G,,(y;, E;). Since the inputs of
the UFLoss network are image patches (Figure 2B), we
first extract M overlapping image patches from both x;
and %;, obtaining two patch groups: {p,p?,....pM} and
{p;.P;....p!"}. The patches are extracted on a grid with
N; pixel strides horizontally and vertically.

During each training step, random shifts between 0 to
N; pixels are applied with equal shifts to both x; and &;. This
choice has the effect of averaging out the blocking artifacts
and achieves the same performance as extracting all the
patches.*30

Since we use inner products to measure the distance in
the hyperspherical feature space, the UFLoss can be for-
mulated as the average of the negative inner products over
all the patches. On top of that, we add a constant 1 in front
of our loss function:

Lurtoss(®,%) = 2 Y1 = (fo®D.fo®)),  (10)
J

where (-,-) is the inner product operation between
two unit-norm vectors and fy is the pretrained UFLoss
mapping network. As both fg(p{ ) and fg(f’{ ) have unit
norms, the above loss function can be also written as a
mean-squared-error (MSE) in the feature space, or:

Lurross(Xi, X;) = Z\i/lzl — (fo@)). fo(B)))
J
= o3 || - 200D fod))
J
e

= 23 hwh -h@)| - (11)
2M > 2

Following the per-pixel ¢, loss and UFLoss mentioned
above, the full objective loss function for the DL-based
reconstruction can be written as:

Lygecon = Lvse-an + 24 LuFLoss—all

= ZLMSE(Xi, X;) +2u ZLUFLOSS(XL" X;)
: 7

= Z”Gw(yz'v E) - xi;
DY) ARLY R

where yu is the weighting factor on the contribution of the
UFLoss. End-to-end training is then performed on this
total loss to optimize the reconstruction network G,,,.

3 | METHODS

3.1 | Imaging datasets

We trained and evaluated our proposed UFLoss on both
2D and 3D fully sampled knee datasets with retrospective
under-sampling. We used the fastMRI3! high-resolution
knee dataset for our 2D experiments. A total of 5700 fully
sampled slices from 380 cases were split into 320 cases
(6080 slices) for training, 40 cases (640 slices) for vali-
dation, and 20 cases (320 slices) for testing. Image nor-
malization was performed such that the 95% percentile
of the intensity values was scaled to 1 for each subject.
The training dataset includes data from two different con-
trasts: proton-density with (PDFS) and without (PD) fat
suppression. Relevant imaging parameters are described in
the fastMRI3! paper. For the unrolled reconstruction task,
retrospective under-sampling was performed by apply-
ing a one-dimensional five times accelerated random
under-sampling mask (20% sampling rate) with an 8%
fully sampled k-space center. Sensitivity maps were com-
puted using ESPIRIT*? using Berkeley Advanced Recon-
struction Toolbox (BART)*® with a 24 x 24 calibration
region.

We conducted our 3D experiments on 20 fully sampled
3D knee scans (available at mridata.org)3* with retrospec-
tive under-sampling. The k-space data was acquired on a
3T GE Discovery MR 750, with an 8-channel HD knee coil.
Scan parameters include a matrix size of 320 x 320 x 256,
and TE/TR of 25ms/1550 ms. A total of 5120 slices from
16 cases were used for training, 640 slices from two cases
were used for validation, and 640 slices from the remain-
ing two cases were used for testing. We normalized each
3D volume with respect to the 95% percentile of the inten-
sity values for the entire volume. Each 3D volume was
under-sampled with a different 8x Poisson-disk sampling
mask (12.5% sampling rate) with a 24 x 24 calibration
region. Sensitivity maps were computed using ESPIRIT*?
with a 24x 24 calibration region using BART.?* Note that
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(A) Architecture of UFLoss feature mapping network (ResNet 18 backbone)
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we train both the UFLoss network and the DL-based
reconstructions on the entire training set and use fully
sampled coil-combined images as ground truth.

3.2 | Implementation of UFLoss feature
mapping network

In all our networks, the input coil-combined
complex-valued MR images/patches x € CN are converted
into a two-channel representation x € R?N, where the real
and imaginary components are treated as two individual
channels. As illustrated in Figure 3A, we implemented the
UFLoss network using a ResNet 18 backbone followed
by a ¢, normalization layer to map the input patches to
128 dimension unit-norm features. Based on the field of
view and resolution difference, the input patch sizes of
the 2D fastMRI knee dataset and 3D knee dataset were
set to 60 x 60 and 40 x 40 pixels, respectively. The UFLoss
networks for the 2D fastMRI and 3D knee datasets were
trained separately due to the differences in image content.
Eighty patches were extracted from each slice at random
locations, resulting in 409600 patches used to train the
UFLoss network. Other hyperparameters include temper-
ature 7 of 1 (Equation 8), batch size 16, the number of
epochs of 100, and the learning rate of 1e —4 with Adam?
optimizer.

3.3 | Implementation of DL-based
reconstruction with UFLoss

For the unrolled reconstruction network architecture,
we used the structure from the MoDL paper,!! where a
CG block was inserted after a CNN-based denoiser, and
unrolled with a fixed number of iterations. In this work, we

3x3 Conv, 64

3x%3 Conv, 64
3x3 Conv, 128
3x3 Conv, 128
3x3 Conv, 128
3x3 Cony, 128
3%3 Conv, 256
3x3 Conv, 256
3x3 Conv, 256
3%3 Conv, 256
3x3 Conv, 512
3x3 Conv, 512
3x3 Conv, 512
3%3 Conv, 512

Avgpool, /2 {2 norm

(B) Architecture for MoDL reconstruction network

used five unrolls and six CG steps. As shown in Figure 3B,
a U-Net3® architecture was adopted for the CNN-based
denoiser D,,,.

The training of MoDL was performed by minimizing
the proposed loss function Lgecon (Equation 12) over the
training set for 50 epochs, with an empirical weighting
parameter y = 1.5, and Adam?3 optimizer with a learning
rate of le—4.

To compute the UFLoss, patches are extracted on a grid
across the image with five-pixel strides in both vertical and
horizontal directions. At each training step, both output
and reference images are randomly shifted from 0 to 5 pix-
els in the vertical and horizontal directions to eliminate
blocking artifacts. In this work, we chose the weighting
parameter to balance the values of Lysg—an and Lugross—all
so that they are on par after the training converges. During
inference, a zero-filled reconstruction is passed through
the MoDL reconstruction network. Note that training with
UFLoss does not change the network architecture, so the
inference time remains the same as MoDL with pure ¢,
loss.

All the proposed algorithms were implemented using
Pytorch 1.2,37 and were run on 12 GB Nvidia Titan Xp
graphics processing units (GPUs).

3.4 | Evaluation of the proposed UFLoss

3.4.1 | UFLoss as valid loss function

To evaluate whether UFLoss is also a valid loss function for
comparing two images at the intensity level, we study how
the UFLoss changes with different sizes of perturbations
in two representative types:

1. Additive white Gaussian noise.
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A perturbed image X, is generated from the original
image X, by adding different levels of additive Gaussian
noise ng:

xXp = (1 = )Xo + fng, (13)

where f is the noise level parameter in the range of 0 —
10%, and noise ng follows normal distribution: ng ~
N(0,1). We study how Lypross(Xo,Xp) changes as f
increases.

2. Image blurring.

A perturbed low-resolution image x, is generated
by cropping and zero-padding the k-space of the origi-
nal image x,. The k-space cropping rate R ranges from
1-4. R = 4 indicates that only 25% of k-space samples
in both horizontal and vertical dimensions are kept. A
higher R corresponds to more blurring and a coarser
resolution. We study how Lyriess(Xo, Xp) varies with dif-
ferent R’s.

In addition, we evaluate whether, by minimizing the
objective UFLoss between the original and perturbed
images Lurioss(Xo, Xp), We are able to guide the perturbed
version toward the original version without falling into
local minima. The starting perturbed image x,_ is gen-
erated by image blurring where R = 4. We update it per
gradient descent with respect to Lyrioss(Xo, Xp-k) in an
iterative fashion:

OLuFLoss(Xo, Xp—k)
()Xp_k

Xp-k+1 = Xp-k — & P (14)

where x,_y is the perturbed image after k steps of gradient
descent.

3.42 | Perceptual similarity

In order to better interpret and understand the percep-
tual features learned for the UFLoss, we performed a patch
retrieval experiment to evaluate and show patch pairs with
high and low UFLoss feature similarities. First, we con-
structed a feature database (memory bank) by running
all training patches through the pretrained UFLoss net-
work. Then, given an input patch from the testing set,
we passed it through the network and queried its neigh-
bors from the training patches based on their distances
(inner products) in the feature space. We picked and visu-
alized patches of the highest feature inner products with
the input patch and also counter-examples with relatively
low inner products.

To further evaluate the UFLoss sensitivity and per-
ceptual similarity for different anatomies and contrasts,
we constructed correlation maps by computing the
feature correlation (inner product) between a source patch

and all patches in different images and visualized them
as heatmaps. This experiment helps us better understand
how anatomy and structure similarities relate to UFLoss
feature similarities.

Specifically, we first extracted a source patch from a
source image. Then, we computed the feature correlations
between the source patch and all patches on a grid from
(1) the same source image; (2) the target image with the
same contrast but from a different subject; and (3) the tar-
get image with different contrast and also from a different
subject. Patches closer to the source patch in the feature
space correspond to higher inner products. We evaluated
this experiment on both PDFS and PD scans. For com-
parisons, we also conducted the same experiments for the
SSIM feature, where we computed the SSIM score between
the source patch and all patches from different images.

3.4.3 | Unrolled reconstructions
with UFLoss

To quantitatively evaluate our proposed UFLoss on
under-sampled MRI reconstruction, we implemented both
PICS* and MoDL.!! In the unrolled reconstruction exper-
iments, MoDL with our proposed UFLoss was compared
with PICS and with MoDL using only per-pixel #; loss. The
PICS method was implemented using the BART Toolbox>3
with wavelets as the sparse transform. In order to fur-
ther demonstrate the performance of our UFLoss, MoDL
with #, + perceptual VGG loss?! was also included in our
comparisons. To compute the perceptual VGG loss, both
the real and imaginary parts are scaled from 0 to 255 and
duplicated three times to serve as the inputs of the pre-
trained VGG network. The VGG network is pretrained on
ImageNet classification. VGG loss corresponds to the ¢,
distance between the relu_22 features from the output and
the ground truth image.

For all the experiments, reconstruction performance
was evaluated using different quantitative metrics, which
reflect different aspects of image quality. The normalized
root mean squared error (NRMSE) was used to measure
the overall pixel-wise errors. SSIM '3 was used to assess the
local image similarity with respect to the fully sampled ref-
erence. At the same time, we also computed our proposed
UFLoss between the reconstructed images and the fully
sampled references.

4 | RESULTS

4.1 | UFLoss as a valid loss function

Figure 4 indicates that our proposed UFLoss could be used
as a valid loss function by itself. As shown in Figure 4A,
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Unsupervised Feature Loss (UFLoss) can be used as a valid loss function. (A) Evaluation of UFLoss with different levels of

perturbations. Upper: additional Gaussian noise, Lower: image blurring through k-space cropping. UFLoss evolution curves indicate that

UFLoss increases in a convex way with respect to more Gaussian noise and increases in a near-convex way with respect to more blurring. (B)
Evaluation of UFLoss in guiding a blurred image x;,_ to the target high resolution image. Gradient descent is performed on x;,_y to reduce
the UFLoss with respect to the target image in an iterative way. Intermediate images show that UFLoss is able to gradually guide the blurred

image to the target without falling into any local minimum

UFLoss between the perturbed and original clean images
increases in a convex way with respect to more Gaussian
noise and increases in a near-convex way with respect to
more blurring. Even though the UFLoss feature mapping
network is not specifically trained for any such perturba-
tions, it learns low-level perceptual similarities between
images, where a larger intensity perturbation corresponds
to a larger UFLoss. On the other hand, Figure 4B indicates
that by minimizing the UFLoss between the perturbed
and target images, we are able to successfully restore
the blurred image toward the clean one without falling
into any local minimum. Intermediate deblurred image
samples are shown in the figure along with the UFLoss
evolution curve.

4.2 | Perceptual similarity
Figure 5A shows the feature similarity results using the
UFLoss feature. The feature space inner products between
the input patch and the retrieved patches are shown as dif-
ferent colors of the borders. As seen in the figure, patches
with similar perceptual structures (e.g., edges, bone struc-
tures) are mapped closer to each other in the feature space.
Figure 5B (PDFS) and Supporting Information Figure
S1 (PD) show the feature correlation maps (UFLoss and
SSIM) between different patches. Two source patches,
indicated with green and blue edges, were chosen from
each source image in the left column. The heatmaps under
to each image, with corresponding green and blue edges,

show the corresponding maps for each source patch from
the source image. For the UFLoss results, we only show the
positive inner products for visualization purposes, while
in principle, the inner products range from —1 to 1. As
shown in the UFLoss feature correlation maps, patches
containing meniscus from both the same contrast and dif-
ferent contrast show high correlations with the input patch
of the meniscus (blue border) while, on the other hand,
patches from other anatomy show low correlation with it.
These UFLoss feature correlation maps indicate that our
unsupervised feature mapping is able to capture the per-
ceptual structure similarities across different subjects and
across different contrasts. In contrast, SSIM feature corre-
lation maps do not successfully capture perceptual similar-
ities across anatomies and contrasts (e.g., meniscus). More
specifically, as shown in Supporting Information Figure
S2, patch with the highest UFLoss feature correlation (top)
shows very similar anatomical textures of the meniscus
compared to the source patch. At the same time, because
SSIM focuses more on the local signal statistics instead of
high-level perceptual similarity, the patch with the high-
est SSIM (bottom) has totally different textures from a
different anatomical region.

4.3 | TUnrolled reconstructions
with UFLoss

Figure 6 shows reconstruction comparisons between
different methods (PICS, MoDL, MoDL with VGG,
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(B) Feature correlation maps (UFLoss and SSIM)

Target images
(Different contrast)

Target images
(Same contrast)

UFLoss is able to capture perceptual similarities across anatomies and contrasts. (A) Feature clustering results using

UFLoss feature mapping where, given an input patch, neighbor patches from the training set can be queried based on their feature space
distance. The top four patches are the closest neighbors with the input patch and have the highest inner products. At the same time, we also

show four counterexamples with relatively low inner products with the input patch. The feature space inner products between the input
patch and the retrieved patches are shown as different colors of the borders. The color bar on the right indicates that a brighter border
corresponds to a higher correlation while a darker border corresponds to a lower correlation. (B) Feature correlations between different

patches. The heat maps under a certain image show the feature correlations (feature space inner products for Unsupervised Feature Loss
[UFLoss]) between all the patches from the image and the reference patches from the source image (first column). The heat maps with
green/blue borders correspond to different source patches whose borders have the same colors. The correlation results for proton density

with fat suppression contrast using UFLoss and structural similarity index features are shown in the top and bottom rows, respectively

MoDL with UFLoss) for a representative 3D knee scan
with under-sampling rate of R = 8. Quantitative metrics
(NRMSE, SSIM) are shown under the images. As indicated
in the zoomed images and error maps, MoDL with UFLoss
shows finer structural details, sharper edges, and higher
perceptual agreement with the fully sampled reference
images compared to the other reconstruction methods.
Without our UFLoss, pure ¢, loss at this under-sampling
rate leads to blurring and perceptual quality degradation.
MoDL with the VGG perceptual loss?! shows higher per-
ceptual quality compared with MoDL, but generates unin-
tended checkerboard structured artifacts, which is con-
sistent with findings in References 38,39. In terms of the
training time and GPU memory cost for 3D reconstruction

experiments, under the same setup, MoDL with UFLoss
takes 92 min for a single epoch using 8.1 GB GPU memory,
while MoDL with ¢, loss takes 58 minutes using 5.5 GB
and MoDL with perceptual VGG loss takes 61 min using
5.7 GB. In inference time, it takes around 25 ms and 0.9 GB
for all methods.

Figure 7 shows the comparison of different reconstruc-
tion methods for a representative 2D PD slice from the
fastMRI dataset.3! The retrospective 2D under-sampling
rate is 5, where around 20% of the k-space data is sam-
pled. At this acceleration rate, PICS failed to effectively
recover the fine bone structures, and MoDL with #, loss
alone also suffers blurring artifacts. In contrast, MoDL
with UFLoss demonstrates more realistic reconstruction



WANG ET AL.

FIGURE 6
three-dimensional knee reconstruction

Representative

results from different methods. A fully
sampled scan is retrospectively
under-sampled with a Poisson
under-sampling mask by a factor of 8. From
left to right are reconstructions by:
combined PI and CS (PICS), model-based
Deep Learning (MoDL) with £, loss, MoDL
with #,+perceptual VGG loss, and MoDL
with #,+our proposed unsupervised Feature
Loss (UFLoss). Normalized root mean
squared error, structural similarity index,
and UFLoss for each method are computed
with respect to the fully sampled reference
and shown under the image for reference.
As shown in the zoomed images and error
maps, our proposed MoDL with UFLoss
showed sharper edges and more detailed
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MoDL-UFLoss
(Proposed)

MoDL-VGG Reference

8x Poisson Disk

. . T UFLoss (x107%) 0.4128 03156
structures with high perceptual similarity NRMSE 0.1247 01120 0.1433 0.1199
compared to the reference image SSIM 0.8797 0.8865 0.8441 0.9003
FIGURE 7 Representative examples MoDL-UFLoss
PICS MoDL (Proposed) Reference

of two-dimensional proton-density knee
reconstruction results using different
methods. A fully sampled slice is
retrospectively randomly under-sampled by
a factor of 5. From left to right are
reconstructions by combined PI and CS,
MoDL with ¢, loss, model-based Deep
Learning (MoDL) with perceptual VGG loss,
and MoDL with our proposed unsupervised
Feature Loss (UFLoss). Normalized root
mean squared error, structural similarity
index, and UFLoss for each method are
shown below the figure for references. As
shown in the zoom-in views and error maps,
our proposed MoDL with UFLoss can
provide more realistic and natural-looking
textures, while MoDL with ¢, loss alone
tends to blur out some high-frequency
textures

UFLoss (x1073) 1.0242
NRMSE 0.1621
SSIM 0.8272

performance with more detailed texture everywhere,
including the bone.

Figure 8 shows the reconstruction comparisons for a
representative 2D PDFS slice from the fastMRI dataset.?!
Quantitative comparisons are shown at the bottom of
the figure. Due to the suppression of the fat signal, the
signal-to-noise-ratio of the data is relatively low, where

MoDL-VGG

5% Random Mask

0.2238 0.1683 0.0501
0.1142 0.1246 0.1192
0.8998 0.8940 0.9106

high-frequency features can be mixed up with the noise.
The zoomed-in views and the corresponding error maps
indicate that PICS results in a high level of artifacts.
Meanwhile, MoDL with #, loss alone misses fine detailed
structures. Similar to the analysis above, MoDL with the
VGG feature loss is capable of recovering subtle structures
but generates unintended structured artifacts. In contrast,
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FIGURE 8
of two-dimensional proton density with fat

Representative examples
Reference
suppression (PDFS) knee reconstruction
results using different methods at
under-sampling rate R = 5. Normalized root
mean squared error, structural similarity
index (SSIM), and unsupervised Feature
Loss (UFLoss) for each method are shown in
the figure. Quantitative metrics indicate that
model-based Deep Learning (MoDL) with
UFLoss has the highest SSIM and the lowest
UFLoss, as well as the highest perceptual
quality of the reconstructed image.
Meanwhile, as shown in the zoom-in images
and error maps, our proposed MoDL with
UFLoss reconstruction looks more natural
with a more faithful contrast than other

methods
UFLoss (x10-%) 0.6763 0.4354 02110 0.0800
NRMSE 02573 0.1931 02142 0.2077
SSIM 0.6846 0.779 07752 0.7953
MoDL with UFLoss can effectively recover the detailedtex- 5 | DISCUSSION

ture and have the most realistic reconstructions. In terms
of the training time and GPU memory cost for 2D fastMRI
experiments, under the same setup, MoDL with UFLoss
takes 143 min for a single epoch using 11.9 GB GPU mem-
ory, while MoDL with £, loss takes 104 min using 7.3 GB
and MoDL with perceptual VGG loss takes 108 min using
7.5 GB. In inference time, it takes around 40 ms and 1.4 GB
for all methods.

So far, for all of our experiments, we used a fixed
UFLoss weighting factor (4 = 1.5) for Equation (12). Sup-
porting Information Figure S3 shows two representative
reconstruction results with different UFLoss weighting
factors during the training. We can clearly see that neither
pure £, loss nor pure UFLoss achieves the best image qual-
ity. By combining these two terms, our model is able to take
advantage of both the per-pixel intensity information and
patch-level perceptual similarities.

Figure 9 shows the quantitative metric (NRMSE, SSIM,
UFLoss) comparisons for the 2D unrolled reconstruction
experiments. For both (a) PD and (b) PDFS experiments,
10 representative testing scans with 15 slices each are used
to calculate the quantitative metrics. As indicated in the
figure, for both contrasts, MoDL with UFLoss outperforms
both PICS and MoDL with #, loss in terms of SSIM and
UFLoss and can achieve comparable performance in terms
of NRMSE.

In this work, we presented a novel patch-based percep-
tual loss function, which we call UFLoss. UFLoss corre-
sponds to the #, distance in a low-dimensional feature
space. Feature vectors are mapped from image patches
through a pretrained mapping network. The mapping net-
work aims to maximally separate all the patches in the
feature space, where similar patches become closer to each
other, capturing high-level perceptual similarities. As indi-
cated in Figure 5, unlike #, distance, which focuses on the
pixel-wise values, our proposed UFLoss agrees better with
human visual judgment, where similar-looking patches
have lower UFLoss in the feature space. By incorporat-
ing UFLoss into the training of DL-based reconstructions,
we are able to recover finer textures, smaller features, and
sharper edges with higher overall image quality compared
to conventional per-pixel losses. By leveraging a memory
bank to store all the features, the training of our mapping
network becomes feasible for a large dataset: The UFLoss
network training required less than 500 MB GPU memory
and was easily trained within 2 hours. In terms of com-
putation costs, our UFLoss imposes about 50% increase in
training time and memory requirements during training.
However, in inference time, the UFLoss has no penalty
at all on the reconstruction time as well as the memory
requirements.
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Model-based Deep Learning (MoDL) with Unsupervised Feature Loss (UFLoss) shows competitive results in the metric

comparisons for both (A) proton density (PD) and (B) PD with fat suppression (PDFS) experiments. Two representative fully sampled scans

(10 PD and 10 PDFS) with 15 slices each are randomly under-sampled by a factor of 5 and reconstructed using combined PI and CS, MoDL,
MoDL with perceptual VGG loss, and MoDL with UFLoss. normalized root mean squared error (NRMSE), structural similarity index (SSIM),
and UFLoss are calculated with respect to fully sampled reference images and shown in the plot. We use zoomed-in plots to show more clear

comparisons for some sub-plots. For both contrasts, MoDL with UFLoss outperforms both PICS and MoDL with #, loss in terms of SSIM and

UFLoss and can achieve comparable performance in terms of NRMSE

As we mentioned before, another important class of
feature losses for DL-based reconstruction is adversarial
loss or GAN loss.!> Adversarial losses have shown great
success in capturing perceptual properties of ground-truth
images and could be used to improve the reconstruction
quality. However, due to the min-max loss function, the
convergence of GANs is generally underdetermined, and
it is difficult to determine the stop criterion for GANSs’
training.** In contrast, the convergence and stop crite-
rion of training with UFLoss is clear and straightforward,
simply when the loss function (pixel loss + UFLoss) con-
verges. Another important distinction is that GAN loss
is an instance-to-set loss, which means that so long as
the reconstruction is similar to any of those ground-truth
training images, the loss would be small, which is undesir-
able for reconstruction.!®?**:42 In comparison, UFLoss is
an instance-wise discriminative loss, comparing the recon-
struction to the specific ground truth image in the feature
space, which provides clear guidance and is more con-
straining during the training.

In this study, UFLoss can be viewed as a separate mod-
ule and be easily incorporated into other learning frame-
works. The performance of UFLoss was demonstrated
for accelerating 2D and 3D knee imaging by comparing
the reconstruction results with respect to fully sampled
references. The in vivo results show that the addition
of UFLoss during the network’s training allows realis-
tic texture recovery and improves overall image quality
compared to a reconstruction network trained without
UFLoss. Our UFLoss network trained on specific anatomy

and contrast may yield suboptimal results when applied to
a different contrast/anatomy. Therefore, in the ideal case,
one may want to use different networks for different types
of images. Fortunately, the UFLoss can be trained on the
same ground truth images that are used to train recon-
struction networks, therefore it does not require additional
datasets to do so. Finally, the training of a UFLoss net-
work takes less than 2 h to train, so the overhead is
negligible.

Another interesting finding of the UFLoss comes from
how the training losses evolve, as shown in Figure 10.
The total loss consists of two different components, the
per-pixel £, MSELoss and our proposed UFLoss, which are
shown in the top subfigure as red and blue curves, respec-
tively. The bottom subfigure shows the testing reconstruc-
tion results at different epochs. As indicated from the
curve, the MSELoss remains almost constant after ten
epochs, while our proposed UFLoss still decreases con-
tinuously. Inspecting the reconstructed images at differ-
ent training epochs, we can see that the image quality
continues to improve with the further reduction of the
UFLoss. At the same time, the quantitative metrics indi-
cate that those reconstructed images have very similar
NRMSE compared with the fully sampled reference but a
much more significant difference in their UFLoss values.
A low UFLoss value corresponds to better image quality.
These results indicate that using the £, MSE loss alone
is not optimal. Therefore, the UFLoss can be potentially
used as a better perceptual comparison criterion and help
further improve the reconstruction quality.
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FIGURE 10 Training loss curves for the I,
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mean squared error (MSE) loss and our proposed
unsupervised Feature Loss (UFLoss). A
two-dimensional fully sampled slice is randomly
under-sampled by a factor of 5 and reconstructed
at different training epochs. Normalized root
mean squared error and UFLoss are shown as
quantitative metrics under each reconstructed
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NRMSE 0.2160 0.2069 0.2012
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Limitations of this study include: (1) The training of
DL-based reconstructions with UFLoss is time-consuming
(around 1.5x) and memory-inefficient (around 1.5%)
due to the extraction and feed-forwarding of a large
number of patches within a single step. This can
be potentially improved by using fully convolutional
image-scale networks, GPU parallel computing, and effi-
cient memory-time trade-off.** (2) In this work, we have
not thoroughly investigated the sensitivity of different
hyperparameters (e.g., patch size, temperature parameter,
UFLoss network depth) to the training and final recon-
structions. Supporting Information Figure S3 demon-
strates how UFLoss weighting parameter contributes to
the reconstruction results. A more thorough parameter
search and analysis will be explored in the future. (3) Even
though empirical evidence for both 2D and 3D knee results
has demonstrated that UFLoss can effectively encourage
finer texture and sharper edges, we have not investi-
gated the theoretical performance guarantee of UFLoss
on enhancing the texture sharpness and image quality in
this paper; however, our observation is supported by other
perceptual loss methods in the literature.?-22

6 | CONCLUSION

In summary, a novel patch-based feature loss, UFLoss,
is proposed, and it can be easily incorporated into the
training of any existing DL-based reconstruction frame-
works without any modification to the model architec-
ture. UFLoss is based on an unsupervised pretrained fea-
ture mapping network without any external supervision.

50 reconstructions. UFLoss continues improving
the reconstructed image quality after I, MSE loss
converged

With the addition of our proposed UFLoss, we are able to
reconstruct high fidelity images with sharper edges, more
faithful contrasts, and better image quality overall.
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Figure S1. UFLoss is able to capture perceptual simi-
larities across anatomies and contrasts. The heat maps
under a certain image show the feature correlations
between all the patches from the image and the source
patches from the source image (first column). The heat
maps with green/blue borders correspond to different
source patches whose borders have the same colors. The
correlation results for PD contrasts using UFLoss and
SSIM features are shown in the top and bottom rows,
respectively

Figure S2. UFLoss retrieves patches with closer structural
similarity compared to SSIM across different contrasts.
The heat maps alongside the PD image show the fea-
ture correlation values between all the patches from the
PD image and the source patch from the PDFS image
(first column). The correlation results using UFLoss and
SSIM features are shown on the right. Patches with the
highest UFLoss and SSIM feature correlations in the PD
image are visualized as zoomed-in patches with light blue
borders. Feature correlation value are shown under each
patch

Figure S3. Representative examples of 2D PD and 2D
PDFS knee reconstruction with different UFLoss weight-
ing factors during the training. Fully-sampled slices are
retrospectively randomly under-sampled by a factor of
5, and reconstructed using MoDL with different weights
of UFLoss. Pure ¢, loss, combined #, and UFLoss with
u = 0.5,1.5,4, and pure UFLoss are included for eval-
uations. Zoomed-in details are shown along with each
image
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