

Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers

Yunhui Guo

Xudong Wang

Yubei Chen

Stella X. Yu

Why Hyperbolic (Non-Euclidean) Space?

Hyperbolic space can embed tree metric with low distortion, unlike Euclidean space.

Hyperbolic Neural Network (HNN)

They are made of Euclidean feature extractor + hyperbolic classifier **Exponential Map** C - L+ .-- - - . . $\operatorname{Exp}_{\mathbf{0}}^{c}(\mathbf{v}) = \tanh(\sqrt{c} \|\mathbf{v}\|) \frac{\mathbf{v}}{\sqrt{c} \|\mathbf{v}\|}$

$$p(y=k|\mathbf{x}) \propto \exp(\langle -\mathbf{p}_k \oplus_c \mathbf{x}, \mathbf{a}_k
angle) \sqrt{\mathfrak{g}^c_{\mathbf{p}_{\mathbf{k}}}(\mathbf{a}_k, \mathbf{a}_k) d_c(\mathbf{x}, ilde{H}^c_{\mathbf{a}_k, \mathbf{p}})}$$

Rattar on higrarchiancel Celevian cetter - Hydrateolis neuroldetworks, Neurophysical Sarning

HNN Better than ENN on Hierarchical Tasks Only

Known to outperform standard Euclidean neural net (ENN) **only** for hierarchical categorization tasks, greatly limiting its applicability.

HNN > ENN

HNN Better than ENN on Hierarchical Tasks Only

Known to outperform standard Euclidean neural net (ENN) **only** for hierarchical categorization tasks, greatly limiting its applicability.

Hyperbolic Distance in Poincaré Ball Increases Exponentially

Stereographic Projection

Hyperbolic Distance in Poincaré Ball Increases Exponentially

Stereographic Projection

Non-trivial Optimization Challenges of HNNs

Non-trivial Optimization Challenges of HNNs

Optimizing HNNs end-to-end with backpropagation

$$\frac{\partial \ell}{\partial \mathbf{w}^E} = \left(\frac{\partial \mathbf{x}^H}{\partial \mathbf{w}^E}\right)^T \frac{(1 - \|\mathbf{x}^H\|^2)^2}{4} \nabla \ell(\mathbf{x}^H)$$

Gradients w.r.t hyperbolic embedding

Non-trivial Optimization Challenges of HNNs

Optimizing HNNs end-to-end with backpropagation

Hyperbolic embedding close to the boundary -> Gradients vanish

Consequence: Gradients Vanish for Larger Features

The trajectories of six sampled points during training

Training loss increases at the end of training

Our Solution: Feature Clipping

Avoid the ill-conditioned region while well preserving the hyperbolic property

Clipped HNNs Are Super HNNs!

$\textbf{Clipped HNNs} \rightarrow \textbf{ENN on Flat Categorization}$

Super HNNs on Few-shot Learning

Khrulkov, Valentin, et al. "Hyperbolic image embeddings." CVPR 2020.

Super HNNs on Few-shot Learning

Khrulkov, Valentin, et al. "Hyperbolic image embeddings." CVPR 2020.

Generalize to Out-of-Distribution Detection

In-distribution data: CIFAR10 and CIFAR100 Out-of-distribution data: ISUN, Place365, Texture, SVHN, LSUN-Crop and LSUN-Resize

Generalize to Out-of-Distribution Detection

In-distribution data: CIFAR10 and CIFAR100 Out-of-distribution data: ISUN, Place365, Texture, SVHN, LSUN-Crop and LSUN-Resize

Impact on the Learned Hyperbolic Feature

HNNs

Clipped HNNs

Poincaré Hyperplane

A Clipped Hyperbolic Space Is Still Hyperbolic

Learning Hyperbolic Word Embeddings

WordNet Reconstruction

Hyperbolic embeddings

$$\mathcal{L}(\Theta) = \sum_{(oldsymbol{u},oldsymbol{v}) \in \mathcal{D}} \log rac{e^{-d(oldsymbol{u},oldsymbol{v})}}{\sum_{oldsymbol{v}' \in \mathcal{N}(u)} e^{-d(oldsymbol{u},oldsymbol{v}')}},$$

Nickel, Maximillian, et al. "Poincaré embeddings for learning hierarchical representations." NeurIPS 2017.

Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers

Yunhui Guo Xudong Wang Yubei Chen Stella X. Yu

Hyperbolic Space

- · Non-Euclidean space with constant negative curvature
- Can embed tree-like data continuously with low distortion

HNNs Underperform ENNs on Standard Benchmarks

Contributions

Feature Clipping: Clip the Euclidean embedding before the exponential map

$$ext{CLIP}(\mathbf{x}^E;r) = \min\{1, rac{r}{||\mathbf{x}^E||}\} \cdot \mathbf{x}^E$$

Training Dynamics of HNNs

Hyperbolic Feature Space

discriminative feature space

Standard Benchmarks and Few-shot Learning

Clipped HNNs show better results compared with baseline HNNs

Adversarial Robustness

HNNs show stronger adversarial robustness

OOD Detection

CIFAR10				CIFAR100			
OOD Dataset	$\mathbf{FPR95}\downarrow$	AUROC †	AUPR †	OOD Dataset	FPR95 ↓	AUROC ↑	AUPR ↑
ISUN	46.30±0.78 45.28±0.65	91.50±0.16 91.61±0.21	98.16±0.05 98.09±0.06	ISUN	74.07±0.87 68.37±0.90	82.51±0.39 81.31±0.43	95.83±0.11 94.96±0.20
Place365	51.09±0.92 54.77±0.76	87.56±0.37 86.82±0.41	96.76±0.15 96.17±0.20	Place365	81.01±1.07 79.66±0.69	76.90±0.45 76.94±0.28	94.02±0.15 93.91±0.18
Texture	65.04±0.91 47.12±0.62	82.80±0.35 89.91±0.20	94.59±0.20 97.39±0.09	Texture	83.67±0.68 64.91±0.80	77.52±0.32 83.26±0.25	94.47±0.10 95.77±0.08
SVHN	71.66±0.84 49.89±1.03	86.58±0.21 91.34±0.22	97.06±0.06 98.13± 0.06	SVHN	84.56±0.78 53.11±1.04	84.32±0.22 89.53±0.26	96.69±0.0
LSUN-Crop	22.22±0.78 23.87±0.73	96.05±0.10 95.65±0.22	99.16±0.03 98.98±0.07	LSUN-Crop	43.46±0.79 51.08±1.17	93.09±0.23 87.21±0.39	98.58±0.05 96.83±0.13
LSUN-Resize	41.06±1.07 41.49±1.24	92.67±0.16 92.97±0.24	98.42±0.04 98.46 ±0.07	LSUN-Resize	71.50±0.73 63.86±1.10	82.12±0.40 82.36±0.42	95.69±0.13 95.16±0.13
Mean	49.56 43.74	89.53 91.38	97.36 97.87	Mean	73.05 63.50	82.74 83.43	95.88 95.72

HNNs show stronger OOD detection ability than ENNs

Impact of Dimensionality

Impact of Clip Value

