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Abstract

Pseudo-labels are confident predictions made on unla-
beled target data by a classifier trained on labeled source
data. They are widely used for adapting a model to unlabeled
data, e.g., in a semi-supervised learning setting.

Our key insight is that pseudo-labels are naturally imbal-
anced due to intrinsic data similarity, even when a model is
trained on balanced source data and evaluated on balanced
target data. If we address this previously unknown imbal-
anced classification problem arising from pseudo-labels in-
stead of ground-truth training labels, we could remove model
biases towards false majorities created by pseudo-labels.

We propose a novel and effective debiased learning
method with pseudo-labels, based on counterfactual rea-
soning and adaptive margins: The former removes the clas-
sifier response bias, whereas the latter adjusts the margin
of each class according to the imbalance of pseudo-labels.
Validated by extensive experimentation, our simple debiased
learning delivers significant accuracy gains over the state-of-
the-art on ImageNet-1K: 26% for semi-supervised learning
with 0.2% annotations and 9% for zero-shot learning. Our
code is available at: https://github.com/frank-
xwang/debiased-pseudo-labeling.

1. Introduction
Real-world observations, as well as non-curated datasets,

are naturally long-tail distributed [19, 61]. Imbalanced clas-
sification [10, 25, 64] tackles such data biases to prevent
models from being dominated by head-class instances. De-
veloping visual recognition systems capable of counteracting
biases also has significant social impacts [37].

While existing methods focus on debiasing from imbal-
anced ground-truth labels collected by human annotators, we
discover that pseudo-labels produced by machine learning
models are naturally imbalanced, creating another source for
widespread biased learning!

Pseudo-labels are highly confident predictions made by
an existing (teacher) model on unlabeled data, which then
become part of the training data for supervising the (student)
model adaptation to unlabeled data (Fig. 1a). When the stu-
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(c) CLIP on ImageNet ZSL

Figure 1. We study the pseudo-labeling-based Semi-Supervised
Learning (SSL) and transductive Zero-Shot Learning (ZSL), where
both tasks require transferring semantic information learned from
labeled source data to unlabeled target data via pseudo-labeling.
Surprisingly, we find that pseudo-labels of target data produced by
typical SSL and ZSL methods (i.e., FixMatch [57] and CLIP [49])
are highly biased, even when both source and target data are class-
balanced or even sampled from the same domain.

dent model is the teacher model itself, the learning process is
also known as self-training [4,5,30,57,70]. Pseudo-labeling
is widely used in semi-supervised learning (SSL) [33, 57],
domain adaptation [26, 40], and transfer learning [1].

We examine pseudo-label distributions in two common
tasks. 1) In zero-shot transfer learning (ZSL) where the
source and target domains are different, a pretrained CLIP
model [49] produces highly imbalanced predictions on the
curated and balanced ImageNet-1K dataset, although the
training set of CLIP is approximately balanced (Fig. 1c).
More than 3500 instances are predicted as class 0, 3 times the
actual number of samples in class 0. 2) In semi-supervised
learning where the source and target domains are the same,
FixMatch [57] trained on labeled CIFAR10 images generates
highly biased pseudo-labels on unlabeled images, although
both the labeled and unlabeled sets are balanced (Fig. 1b).

That is, pseudo-labels created by machines are naturally
imbalanced, just like ground-truth labels created by humans.
If we address this previously unknown imbalanced classifi-
cation problem arising from pseudo-labels instead of ground-
truth training labels, we could improve model learning based
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on pseudo-labels and remove the model bias towards false
majorities created by pseudo-labels.

We propose a novel and effective debiased learning
method with pseudo-labels, without any knowledge about
the distribution of actual classification margins that are
readily available to debiased learning with ground-truth la-
bels [23, 34, 62]. It consists of an adaptive debiasing module
and an adaptive marginal loss. The former dynamically re-
moves the classifier response bias through counterfactual
reasoning, whereas the latter dynamically adjusts the margin
of each class according to the imbalance of pseudo-labels.

Validated by our extensive experiments, our simple de-
biased learning not only improves the state-of-the-art on
ImageNet-1K by 26% for SSL with 0.2% annotations and
9% for ZSL, but is also a universal add-on to various pseudo-
labeling methods with more robustness to domain shift. The
imbalanced pseudo-labeling issue is even more severe when
the unlabeled raw data is naturally imbalanced, and the
model tends to mislabel tail-class samples as head-class. By
applying debiased learning, we improve SSL performance
under long-tailed settings by a large margin.

Our work makes four major contributions. 1) We sys-
tematically investigate and discover that pseudo-labels are
naturally imbalanced and create biased learning. 2) We pro-
pose a simple debiased learning method with pseudo-labeled
instances, requiring no knowledge of their actual classifica-
tion margins. 3) We improve the ZSL/SSL state-of-the-art
by a large margin and demonstrate that our debiasing is a
universal add-on to various pseudo-labeling models. 4) We
establish a new effective ZSL/SSL pipeline for applying
vision-and-language pre-trained models such as CLIP.

2. Related Work
Semi-Supervised Learning integrates unlabeled data into
training a model given limited labeled data. There are
four lines of approaches. 1) Consistency-based regulariza-
tion methods impose classification invariance loss on unla-
beled data upon perturbations [39, 55, 60, 69]. 2) Pseudo-
labeling expands model training data from labeled data to
additional unlabeled but confidently pseudo-labeled data
[4, 5, 30, 32, 57, 70]. 3) Transfer learning trains the model
first on large unlabeled data through self-supervised represen-
tation learning, e.g., contrastive learning, and then on small
labeled data through supervised classifier learning [2, 13].
4) Data-centric SSL assumes that labeled data are not given
but can be optimally selected among unlabeled data for la-
beling [65]. Focusing on this practical issue of labeled data
selection turns out to bring substantial gains for SSL.

CReST [67] improves existing SSL methods on class-
imbalanced data by leveraging a class-rebalanced sampler,
which samples more frequently for the minority class accord-
ing to the labeled data distribution. CReST does not work
when the labeled data is balanced. In contrast, our approach

does not assume any prior distribution for the labeled set.
Although previous literature has achieved tremendous

success in SSL, the implicitly biased pseudo-labeling issue
in SSL is previously unknown and has not been thoroughly
analyzed, which, however, has a great impact on the learning
efficiency. The focus of this work is on proposing a simple
yet effective debiasing module to eliminate this critical issue.
Zero-shot Classification refers to the problem setting where
a zero-shot model classifies images from novel classes into
correct categories that the model has not seen during train-
ing [48, 51, 63]. Several strategies have been considered
from various sets of viewpoints: 1) hand-engineered at-
tributes [16, 28]; 2) pretrained embeddings that incorpo-
rate prior knowledge in form of semantic descriptions of
classes [17, 56]; 3) modeling relations between seen and
unseen classes with knowledge graphs [24, 41]; 4) learning
generic visual concepts with vision-language models, allow-
ing zero-shot transfer of the model to a variety of down-
stream classification tasks [8, 49].
Long-Tailed Recognition (LTR) aims to learn accurate
“few-shot” models for classes with a few instances, with-
out sacrificing the performance on “many-shot” classes,
for which many instances are available. 1) re-balancing/re-
weighting method τ -norm [25] tackles LTR problem by giv-
ing more importance to tail classes; 2) margin-based method
LDAM [10] proposes a label-distribution-aware margin loss
to improve the generalization of minority classes by encour-
aging larger margins for tail classes; 3) post-hoc adjustment
approach modifies a trained model’s predictions according
to the prior knowledge of class distribution, such as LA [38],
or pursues the direct causal effect by removing the paradox-
ical effects of the momentum, such as Causal Norm [59];
4) ensemble-based approach RIDE [64] optimizes multiple
diversified experts and a dynamic expert routing module to
reduce model bias and variance on long-tailed data.

In stark contrast to previous works on LTR which either
requires the prior knowledge of class distribution or are
applied post-hoc to a trained model, the proposed debias
module does not require any prior knowledge and focuses on
the biased pseudo-labels issue which is previously unknown.

3. Pseudo-Labels are Naturally Imbalanced
In contrast to previous work that concentrated on bi-

ases caused by trained on imbalanced data, our focus is
on pseudo-label biases, even when trained on balanced data.
In this section, we provide an analysis of this previously
unknown issue hidden behind the tremendous success of
FixMatch [57] on SSL and CLIP [49] on ZSL, both of which
require the use of “pseudo-labeling” to transfer knowledge
learned in source data to target data.

We first describe the backgrounds for pseudo-labeling
approaches and then analyze their bias issue. We attribute
the cause of bias to the inter-class correlation problem.
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Figure 2. FixMatch’s pseudo-labels are highly imbalanced across
different training stages, even though the unlabeled and labeled data
it trains on is class-balanced. In contrast, DebiasPL produces nearly
balanced pseudo-labels at late stages. The probability distributions
of FixMatch and DebiasPL are averaged over all unlabeled data.
The class indices are sorted by average probability. We conduct
experiments on CIFAR10 with 4 labeled instances per class.

3.1. Background

FixMatch for semi-supervised learning. The core tech-
nique of FixMatch [57] is pseudo-labeling [30]. It selects
unlabeled samples with high confidence as training targets.

Suppose we have a labeled dataset XL = {(xi, yi)}Li=1

with L labeled instances, and an unlabeled dataset XU =
{(xi)}L+U

i=L+1 with U instances. xi is the input instance and
yi = [y1

i , ..., y
C
i ] ⊆ {0, 1}C is a discrete annotated target

with C classes. XU and XL share the same semantic labels.
The optimization objective consists of two terms: L = Ls +
λuLu, i.e., the supervised loss Ls applied to labeled data and
an unsupervised loss Lu applied to unlabeled data, and λu
is a scalar hyperparameter.

The supervised loss Ls is the cross-entropy between
the model predictions and the ground truth: Ls =
1
B

∑B
i=1 H(yi, p(α(xi))), where α is the weak augmenta-

tion, and B is the batch size. The pseudo-labels ŷi for unla-
beled instances are generated from the weakly-augmented
unlabeled samples, which are used to supervise the model
prediction of the strongly-augmented samples. Instances
whose largest probability fall under a confidence threshold τ
are regarded as unreliable samples and discarded. Formally,
the unsupervised loss Lu can be formulated as:

Lu =
1

µB

µB∑
i=1

1[max(p(α(xi))) ≥ τ ]·H(ŷi, p(β(xi))) (1)

where β is a strong augmentation [15], and µ determines the
ratio of labeled and unlabeled samples in the minibatch.
CLIP for zero-shot learning. CLIP [49] is an efficient and
scalable way to learn image representations from scratch
on a dataset of 400M image-text pairs, which is manually
curated to be approximately query-balanced. At pre-training
time, an image encoder and a text encoder are optimized
by maximizing (minimizing) the similarity between paired
(unpaired) captions and visual images.

For producing pseudo-labels of unlabeled data, natural
language prompting is used to enable zero-shot transfer to
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Figure 3. Per-class precision and recall of pseudo-label predictions
on 1.3M ImageNet instances with a pre-trained CLIP. The majority
classes with high recall often have less precise pseudo-labels.
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(f) EuroSAT

Figure 4. CLIP’s zero-shot predictions are highly biased for various
datasets and benchmarks.

target datasets: CLIP uses the names or descriptions of the
target dataset’s classes as the set of potential text pairings
(e.g. “a photo of a dog”) and predicts the most probable
class according to the cosine similarity of image-text pairs.
Specifically, the feature embedding of the image and the
feature embedding of the set of possible texts are first com-
puted by their respective encoders. The cosine similarity of
these embeddings is then evaluated, and normalized into a
probability distribution via a softmax function.

3.2. Biases in Semi-supervised Learning

Fig. 2 visualizes the FixMatch probability distributions
averaged on all unlabeled data at various training epochs.
Surprisingly, even when labeled and unlabeled data are both
curated (class-balanced), the pseudo-labels are still highly
class-imbalanced, most notably at the early training stage.
As the training progresses, this situation persists.

A student model will inherit the implicitly imbalanced
pseudo-labels and, in turn, reinforces the teacher model’s
biases. Once confusing samples are wrongly pseudo-labeled,
the mistake is almost impossible to be self-corrected. On the
contrary, it may even mislead the model and further amplify
existing bias to produce more wrong predictions. Without
intervention, the model will get trapped in irreparable biases.

On the contrary, as in Fig. 2, although DebiasPL is also
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Figure 5. The low-frequency classes of ImageNet, with the least-10 number of CLIP predictions per class, usually have strong inter-class
correlations, while the high-frequency classes are the opposite. We compare the cosine similarity between each class’s image embedding
centroid and embedding centroids of its nine closest “negative” classes. (better view zoomed in)
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Figure 6. The cause for pseudo-label biases can be partially at-
tributed to inter-class confounding. For example, FixMatch of-
ten misclassifies “ship” as “plane”. The confusion matrix of Fix-
Match’s and our DebiasPL’s pseudo-labels are visualized.

troubled by the imbalanced pseudo-labels at the beginning,
this situation can be significantly alleviated, and, eventu-
ally, we can obtain an almost balanced distribution through
dynamically debiasing the model.

3.3. Biases in Zero-Shot Learning

CLIP actually generates highly biased predictions on Im-
ageNet, which is hidden behind CLIP’s tremendous success
in terms of overall zero-shot prediction accuracy.

Except for the imbalance problem, the precision and re-
call of many high-frequency classes are much lower than
many medium-/few-shot classes, as illustrated in Fig. 3.
Thresholding the CLIP predictions based on the confidence
score may help. However, simply setting a higher confi-
dence score threshold could lead to even more imbalanced
distributions (more details in appendix). There is a trade-off
between imbalance ratio and precision/recall.

Highly biased zero-shot predictions are not unique to
ImageNet. They are widely present on many benchmarks,
such as EuroSAT [21], MNIST [29], CIFAR10 [27], CI-
FAR100 [27], and Food101 [7], as shown in Fig. 4.

3.4. Inter-Class Correlations

To delve into the causes of biased pseudo-labels, we pro-
vide an analysis of inter-class correlations. For CLIP, we first
compute one image centroid per class by taking the mean of
the normalized image features, extracted by the image en-
coder of a pre-trained CLIP model, that belong to this class.

The cosine similarity between the image centroid of classes
with top-10/least-10 prediction frequency and their closest
“confusing” classes are visualized. The prediction confusions
indicate image similarities at the class level. Fig. 5 shows
that the low-frequency classes of ImageNet, with the least-10
number of CLIP predictions per class, usually have strong
inter-class confusions.

Fig. 6a shows the confusion matrix of FixMatch’s pseudo-
labels. It is observed that many instances in some categories
tend to be misclassified into one or two specific negative
classes; for instance, “ship” is often misclassified as “plane”.

Based on our analysis of the inter-class correlations, we
believe that the blame for the pseudo-label bias can be largely
attributed to inter-class confounding, which the proposed
DebiasPL can successfully address as in Fig. 6b. DebiasPL
will be introduced in the next section.

4. Debiased Pseudo-Labeling
This section introduces Debiased Pseudo-Labeling (Debi-

asPL) and methods to integrate it into ZSL and SSL tasks.
It is worth noting that the proposed simple yet effective
approach is universally applicable to various networks and
benchmarks, not limited to the ones introduced here.

4.1. Adaptive Debiasing

Our DebiasPL approach aims at dynamically alleviating
biased pseudo labels’ influence on a student model without
leveraging any prior knowledge on marginal class distribu-
tion, even when exposed to source and target data that follow
different distributions. An adaptive debiasing module with
counterfactual reasoning and an adaptive marginal loss is
proposed to fulfill this goal, described next.
Adaptive Debias w/ Counterfactual Reasoning. Causal
Inference is the undertaking of deriving counterfactual con-
clusions using only factual premises, in which causal graphi-
cal models represent the interventions among the variables
[18, 44, 46, 52, 53]. It has been widely studied and applied in
various tasks to remove selection bias which is pervasive in
almost all empirical studies [3], eliminating the confound-
ing effect using causal intervention [72], disentangling the
desired direct effects with counterfactual reasoning [6], etc.
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Figure 8. Causal graph of debiasing with counterfactual reasoning.

Motivated by this, to dynamically mitigate impacts of
unwanted bias (counterfactual), we incorporate causality
of producing debiased predictions through counterfactual
reasoning [22, 44–47].

Given the proposed causal graph in Fig. 8, we can de-
lineate our goal for generating debiased predictions: the
pursuit of the direct causal effect along Ai → Y , defined as
Controlled Direct Effect (CDE) [18, 46, 47, 50, 59]:

CDE(Yi) = [Yi|do(Ai), do(D)]− [Yi|do(Â), do(D)] (2)

i.e. the contrast between the counterfactual outcome if the
individual were exposed at A = Ai (with do(Ai) notation)
and the counterfactual outcome if the same individual were
exposed at A = Â = {A1, ..., An}, with the mediator set to
a fixed level D. CDE [18, 46] disentangles the model bias in
a counterfactual world, where the model bias is considered
as the Y ’s indirect effect when A = Â but D retains the
value when A = Ai.

However, measuring the counterfactual outcome via vis-
iting all training samples is significantly computational ex-
pensive. We use Approximated Controlled Direct Effect
(ACDE) instead. ACDE assumes that the model bias is
not drastically changed, therefore, the momentum-updated
counterfactual outcomes (Eqn. 4) can be served as an ap-
proximation to the actual [Yi|do(Â), do(D)]. The debiased
logits with counterfactual reasoning, which is later used to
perform pseudo-labeling (i.e., replace p(α(xi)) in Eqn. 1),
can be formulated:

f̃i = f(α(xi))− λ log p̂ (3)

p̂← mp̂+ (1−m)
1

µB

µB∑
k=1

pk (4)

m ∈ [0, 1) is a momentum coefficient, f(α(·)) refers to
logits of weakly-augmented unlabeled instance, pk is the
probability distribution for instance α(xk) obtained via a
softmax function. λ denotes the debias factor, which controls
the strength of the indirect effect. If the debias factor is too
strong, it is hard for a model to fit on the data, while too
small a factor can barely eliminate the biases and, ultimately,
impairs the generalization ability. Since the scale of logits
is unstable, most notably at the early training stage, we use
the probability distribution pk rather than directly using the
logit vector in the second term of Eqn. 3. A log function is
applied to rescale p̂ to match the magnitude of logit.

Eqn. 3 can be associated with re-weighting and logits
adjustment methods in long-tailed recognition, whereas ours
is dynamically adaptive.
Adaptive Marginal Loss. As aforementioned in Sec. 3, the
biases in pseudo-labels may be partially caused by inter-class
confusion. Motivated by this, we apply adaptive margin loss
to demand a larger margin between hardly biased and highly
biased classes, so that scores for dominant classes, towards
which the model highly biased, do not overwhelm the other
categories. In addition, by enforcing a dynamic class-specific
margin, inter-class confusion can be greatly counteracted,
which is further empirically evidenced in Fig. 6. LAML can
be formulated as:

LAML = −log
e(zŷi−∆ŷi

)

e(zŷi−∆ŷi
) +

∑C
k 6=ŷi e

(zk−∆k)
(5)

where ∆j = λ log( 1
p̂j

) for j ∈ {1, ..., C}, z = f(β(xi)).
We use LAML to replaced H(ŷi, f(β(xi)) in Eqn. 1. We
then get the final unsupervised loss by updating Eqn. 1 with
Eqn. 3 and Eqn. 5.
(Optional) All unlabeled instances with low probabilities do
not contribute to the final loss. We find it beneficial to apply
cross-level instance-group discrimination loss CLD [66] to
unlabeled instances to leverage their information fully.

4.2. Distinctions and Connections with Alternatives

Please refer to Sec. 2 for an introduction to LA, LDAM,
and Causal Norm. Another often adopted method in SSL
distribution alignment (DA) [4] is also compared. It aims
to encourage the actual marginal distribution of the model’s
predictions to match the actual marginal class distribution.

Please refer to Tab. 1 to check the distinctions and connec-
tions with these alternatives handling distribution mismatch
and long-tailed recognition in key properties, and Tab. 2 and
Tab. 3 to compare experimental results.

The use of a momentum updated p̂ for debiasing pseudo-
labels with counterfactual reasoning and applying adaptive
marginal loss is crucial to the success of DebiasPL, which
also enables our training objective does not necessarily need
to use the true marginal class distribution as prior knowl-
edge. Furthermore, since more training samples per class



Desired Properties
LA or
LDAM

Causal
Norm

DA Ours

Improve representation
learning at training time

3 7 3 3

No prior knowledge on
true marginal class distribution

7 3 7 3

Adaptive as the
training progresses

7 7 3 3

Applicable to both
imbalanced and balanced data

7 7 3 3

Source and target data can
come from varying distributions

7 7 7 3

Table 1. Our method is the only one with all these desired proper-
ties. Comparisons with previous works concentrating on resolving
training data distribution issues, including LA [38], LDAM [10],
DA [4], Causal Norm [59] and our DebiasPL, in key properties.
Desired (undesired) properties are in green (red).

do not necessarily lead to a higher model bias against it,
dynamically adjusting the margin rather than measuring mar-
gins based on the number of samples per class as in LA and
LDAM could better respect the degree of bias against each
class. The number of samples alone can not determine the
degree of bias. Also, unlike previous works, e.g., LA/LDAM
and Causal Norm, that use fixed margins or adjustments, we
argue that the degree of bias of each class should never be
a fixed value, but is in a process of dynamic change. The
cause of bias cannot be attributed to the data alone, but the
cause of the interaction between model and data.

For DA, the biggest issue is that it is limited to scenarios
where either true marginal class distribution is available, or
source and target data are collected from the same distribu-
tion, which is too ideal in the real world.

Experiments on several benchmarks are made to show
the validity and feasibility of DebiasPL. For imbalanced
data, Tab. 1 shows that integrating LA [38] into FixMatch
lags far behind FixMatch w/ DebiasPL. For balanced data,
since the adjustment or re-weighting vector is calculated
based on the true class distribution, most existing long-tailed
methods that rely on true marginal class distribution are no
longer applicable without major changes (balanced class
distribution leads to identical treatment for all classes).

4.3. DebiasPL for T-ZSL and SSL

For semi-supervised learning, the proposed DebiasPL can
be integrated into FixMatch, as in Fig. 7, by adopting the
adaptive debiasing module and adaptive marginal loss. To
further boost the performance of SSL and exploit the power
of the vision-language pre-trained model, during the training
time, we can also integrate CLIP into FixMatch/DebiasPL by
pseudo-labeling the discarded unlabeled instances with CLIP.
Because the instances CLIP are not confident on may be
noisy, only these unlabeled instances with a CLIP confidence

score greater than τclip are pseudo-labeled by CLIP. We could
get CLIP’s predictions on all training data and store it in a
dictionary without re-predicting per iteration. Therefore,
the computational overheads introduced by using the CLIP
model are negligible. We only leverage CLIP in large-scale
datasets since using CLIP on low-resolution datasets like
CIFAR10 can only observe marginal gains, partly due to the
lack of scale-based data augmentation in CLIP [49].
For transductive zero-shot learning, to better exploit
knowledge learned from the vision-language pre-trained
model and alleviate the domain shift problem when transfer-
ring the knowledge to downstream ZSL tasks, a new frame-
work to conduct transductive zero-shot learning (T-ZSL)
based on FixMatch and CLIP is developed.

Specifically, we again make use of the pseudo-labeling
idea by leveraging the one-hot labels (i.e., the arg max of the
model’s output) and retaining pseudo labels whose largest
class probability fall above a confidence threshold τclip (=
0.95 by default). These instances, along with their pseudo
labels, are considered “labeled data” in SSL.

After this, we could follow the original FixMatch pipeline
to optimize “labeled” and “unlabeled” data jointly. To make
a fair comparison with previous works and simplify the over-
all system, all other training recipes and settings are consis-
tent with the original FixMatch+EMAN settings, including
the model initialization part. The diagram is in the appendix.

Because CLIP is highly biased, the vanilla FixMatch +
CLIP framework under-performs the original CLIP zero-
shot learning, confirming our earlier hypothesis that learning
from a biased model may further amplify existing bias and
produce more wrong predictions. Therefore, we update the
unsupervised loss Lu with our Adaptive Marginal Loss for
alleviating the inter-class confusion and Adaptive Debias for
producing debiased pseudo-labels as in Sec. 4.1.

5. Experiment
In this section, we conduct empirical experiments to

show that DebiasPL: 1) delivers state-of-the-art results on
both semi-supervised and zero-shot learning benchmarks;
2) works as a universal add-on and brings consistent per-
formance gains to various methods; 3) exhibits stronger
robustness to domain shifts; 4) is capable of improving per-
formance on long-tailed, balanced and even hybrid data.

5.1. Semi-supervised Learning

Dataset. We perform comprehensive evaluations of Debi-
asPL on multiple SSL benchmarks, including CIFAR10 [27],
long-tailed CIFAR10 (CIFAR10-LT) [27], and ImageNet-
1K [54], with varying amounts of labeled data. For the bal-
anced benchmarks, the performance almost saturates when
using more than 2% labeled data. We put our focus on
the extremely low-shot settings, i.e., 0.08%/0.16%/2% on
CIFAR10 and 1%/0.2% on ImageNet-1K. For imbalanced



Method
CIFAR10-LT: # of labels (percentage) CIFAR10: # of labels (percentage)
γ=100 γ=200 40 (0.08%) 80 (0.16%) 250 (2%)1244 (10%) 3726 (30%) 1125 (10%) 3365 (30%)

UDA [68] § - - - - 71.0 ±6.0 - 91.2 ±1.1
MixMatch [5] § 60.4 ±2.2 - 54.5 ±1.9 - 51.9 ±11.8 80.8 ±1.3 89.0 ±0.9
CReST w/ DA [67] 75.9 ±0.6 77.6 ±0.9 64.1 ±0.22 67.7 ±0.8 - - -
CReST+ w/ DA [67] 78.1 ±0.8 79.2 ±0.2 67.7 ±1.4 70.5 ±0.6 - - -
CoMatch w/ SimCLR [12, 32] - - - - 92.6 ±1.0 94.0 ±0.3 95.1 ±0.3
FixMatch [57] § 67.3 ±1.2 73.1 ±0.6 59.7 ±0.6 67.7 ±0.8 86.1 ±3.5 92.1 ±0.9 94.9 ±0.7
FixMatch w/ DA w/ LA [4, 38, 57, 67] § 70.4 ±2.9 - 62.4 ±1.2 - - - -
FixMatch w/ DA w/ SimCLR [4, 12, 57] § - - - - 89.7 ±4.6 93.3 ±0.5 94.9 ±0.7
DebiasPL (w/ FixMatch) 79.2 ±1.0 80.6 ±0.5 71.4 ±2.0 74.1 ±0.6 94.6 ±1.3 95.2 ±0.1 95.4 ±0.1
gains over the best FixMatch variant +8.8 +7.5 +9.0 +6.4 +4.9 +1.9 +0.5

Table 2. Without any prior knowledge of the marginal class distribution of unlabeled/labeled data, the performance of DebiasPL on both
CIFAR and CIFAR-LT SSL benchmarks surpasses previous SOTAs, which are either designed for balanced data or meticulously tuned
for long-tailed data. DibasMatch is experimented with the same set of hyper-parameters across all benchmarks. § states the best-reported
results of counterpart methods, copied from [32], [57] or [67]. γ: imbalance ratio. We report results averaged on 5 different folds.

Method B.S. #epochs Pre-train 1% 0.2%
top-1 top-5 top-1 top-5

FixMatch w/ DA [4, 57] 4096 400 7 53.4 74.4 - -
FixMatch w/ DA [4, 57] 4096 400 3 59.9 79.8 - -
FixMatch w/ EMAN [9, 57] 384 50 3 60.9 82.5 43.6∗ 64.6∗

DebiasPL w/ FixMatch 384 50 3 63.1 (+2.2) 83.6 (+1.1) 47.9 (+3.7) 69.6 (+5.0)
DebiasPL (multi-views) 768 50 3 65.3 (+4.4) 85.2 (+2.7) 51.6 (+8.0) 73.3 (+8.7)
DebiasPL (multi-views) 768 200 3 66.5 (+5.6) 85.6 (+3.1) 52.3 (+8.7) 73.5 (+8.9)
DebiasPL (multi-views) 1536 300 3 67.1 (+6.2) 85.8 (+3.3) - -
DebiasPL w/ CLIP [49] 384 50 3 69.1 (+8.2) 89.1 (+6.6) 68.2 (+24.6) 88.2 (+23.6)
DebiasPL w/ CLIP (multi-views) [49] 768 50 3 70.9 (+10.0) 89.3 (+6.8) 69.6 (+26.0) 88.4 (+23.8)
CLIP (few-shot) [49, 73] 256 50 3 53.4 - 40.0 -
SwAV [11] 4096 50 3 53.9 78.5 - -
SimCLRv2 (+ Self-distillation) [13] 4096 400 3 60.0 79.8 - -
PAWS (multi-crops) † [2] 4096 50 3 66.5 - - -
CoMatch (multi-views) [32] 1440 400 3 67.1 87.1 - -

Table 3. DebiasPL delivers state-of-the-arts results on ImageNet-1K semi-supervised learning with various fractions of labeling samples,
especially for extremely low-shot settings. All results are produced with a backbone of ResNet-50. †: unsupervised pre-trained for 800
epochs, except for PAWS [2], which is pre-trained for 300 epochs with pseudo-labels generated non-parametrically. ∗: reproduced.

benchmarks, we follow the settings in [67] and test Debi-
asPL on CIFAR10-LT under various pre-defined imbalance
ratios γ, where γ ∈ [100, 200], and percentage of labeled
data, including 10% and 30%. More details about datasets
are included in the appendix.
Setup. For all experiments on both long-tailed CIFAR10
and CIFAR10 datasets, we follow previous works [57, 67] to
use the network architecture WRN-28-2 [20, 71]. We also
follow the same set of hyper-parameters in FixMatch, except
we reduce the total optimization iterations by half.

For experiments on ImageNet-1K, we use ResNet50 as
the backbone network and follow the training recipes intro-
duced in FixMatch w/ EMAN [9], which is also the default
baseline of all experiments on ImageNet-1K. The model
is initialized with MoCo v2 + EMAN as in [9]. For the
setting with multiple views, we perform two strong aug-
mentations and two weak augmentations on each unlabeled
sample. Each strongly-augmented instance is paired with

one weakly-augmented instance, and we jointly optimize the
two pairs via pseudo-labeling as in the original setting of
Fig. 7. Multi-views could increase the convergence speed
and stabilize the training process.
DebiasPL is simple yet effective. Tab. 2 and Tab. 3 show
that DebiasPL delivers state-of-the-art performance on all ex-
perimented benchmarks, outperforming current approaches
by a large margin. Without using CLIP, DebiasPL can out-
perform CoMatch on CIFAR, and is comparable to CoMatch
on ImageNet-1K. DebiasPL wins on its merit of simplicity.
Leveraging the power of CLIP could significantly improve
the performance of DebiasPL, surpassing CoMatch by about
4% on ImageNet-1K SSL.
DebiasPL is agnostic to source/target data distribution.
Tab. 2 shows that, for both CIFAR and long-tailed CIFAR
SSL benchmarks, using a unified framework and the same set
of hyper-parameters, DebiasPL can surpass previous state-
of-the-art methods, which are either designed for balanced



Method Labeled: LT; 10% labeled, γ = 200
Unlabeled: LT Unlabeled: Balanced

FixMatch [57] 62.3 ±1.6 72.1 ±2.3
DebiasPL 71.4 ±2.0 (+9.1) 83.5 ±2.4 (+11.4)

Table 4. DebiasPL consistently improves the performance of SSL
when the unlabeled data is either the sames as labeled data, i.e.,
long-tailed distributed, or different with labeled data, i.e., balanced
distributed across semantics. We report results averaged on 5 folds.

FixMatch MixMatch UDA
Baseline 89.7 ± 4.6 47.5 ± 11.5 29.1 ± 5.9
+ DebiasPL 94.6 ± 1.3 61.7 ± 6.1 43.2 ± 5.2

Table 5. DebiasPL is a universal add-on. Top-1 accuracies of var-
ious SSL methods on CIFAR10, averaged on 5 folds, are compared.
4 instances per class are labeled.

Method #param Accuracy (%)
top-1 top-5

ConSE [43] - 1.3 3.8
DGP [24] - 3.0 9.3
ZSL-KG [41] - 3.0 9.9
Visual N-Grams [31] - 11.5 -
CLIP (prompt ensemble) [49] 26M 59.6 -
(ours) CLIP + FixMatch 26M 55.7 80.6
(ours) CLIP + DebiasPL 26M 68.3 (+8.7) 88.9 (+8.3)
CLIP (few-shot) [49, 73] † 26M 53.4 -
CLIP + CoOp (few-shot) [73] † 26M 60.9 -
CLIP (ViT-B/32) [49] 398M 63.2 -
CLIP (ResNet50x4) [49] 375M 65.8 -

Table 6. DebiasPL delivers state-of-the-art results of zero-shot
learning on ImageNet-1K, outperforming CLIP with bigger mod-
els or fine-tuned with labels. †: CoOp and CLIP (few-shot) are
fine-tuned with about 1.5% annotated data.

data or meticulously tuned for long-tailed data. Furthermore,
Tab. 4 shows that when tested in scenarios where labeled
and unlabeled data follow different distributions, DebiasPL
produces an even greater gain (11.4%) to the baseline.
The fewer labeled data, the more significant gains can be
observed in Tab. 2 and Tab. 3, almost eliminating the gap
between fully-supervised and semi-supervised learning.
DebiasPL is also a universal add-on as illustrated in Tab. 5.
Incorporating DebiasPL into various SSL methods can
achieve consistent performance improvements.

5.2. Tranductive Zero-Shot Learning

Dataset. We evaluate the efficiency of DebiasPL in T-ZSL
on ImageNet-1K [54]. EuroSAT [21], MNIST [29], CI-
FAR10 [27], CIFAR100 [27], and Food101 [7] are also used
as evaluation datasets to show the robustness to domain shift.
Setup. T-ZSL assumes that the list of possible class candi-
dates is known for the target data. Following this setting, we
do not use any semantic labels for target data. We apply De-
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Figure 9. DebiasPL exhibits stronger robustness to domain shift
when conducting zero-shot learning on various datasets. We
experiment with ResNet-50 as a backbone network. CLIP results
are reproduced with official codes.

biasPL on CLIP in a similar way as we apply DebiasPL on
FixMatch, except that the labeled data is “labeled” by CLIP
rather than a human annotator. Specifically, all unlabeled
instances whose CLIP confidence score greater than τclip are
pseudo-labeled by CLIP and considered as “labeled” data.
A backbone of ResNet50 and a threshold τclip of 0.95 are
used for all datasets. The same default hyper-parameters and
training recipes as in FixMatch + EMAN are utilized for fair
comparisons. More details are in the appendix.
DebiasPL delivers SOTA results on zero-shot learning,
even surpassing CLIP [49] and CoOP [73] that are fine-
tuned on partial human-labeled data. Moreover, DebiasPL
with a backbone of ResNet50 can significantly outperform
CLIP with 15× larger backbones, as shown in Tab. 6. The
time cost of zero-shot training DebiasPL w/ CLIP (without
using any human annotations) for 100 epochs is less than
0.01% of CLIP’s overall training time.
DebiasPL exhibits stronger robustness to domain shift
than zero-shot CLIP without accessing any semantic labels,
as depicted in Fig. 9. Also, DebiasPL can observe greater
gains (more than 20%) on datasets with larger domain shifts,
e.g., an astonishing 25.7% gains can be obtained on the
satellite image dataset EuroSAT [21].

6. Summary
In this paper, we conduct research on the previously un-

known biased pseudo-labeling issue. A simple yet effective
method DebiasPL is proposed to dynamically alleviate bi-
ased pseudo-labels’ influence on a student model, without
leveraging any prior knowledge of true data distribution. As
a universal add-on, DebiasPL delivers significantly better
performance than previous state-of-the-arts on both semi-
supervised learning and transductive zero-shot learning tasks
and exhibits stronger robustness to domain shifts.
Acknowledgements. This work was supported, in part, by
US Government fund through Etegent Technologies on Low-
Shot Detection and Semi-supervised Detection.



Algorithm 1: PyTorch-style pseudocode for semi-supervised learning with DebiasPL
# initialize p hat with 1/C, C is the number of classes

p hat = torch.ones([1, C]) / C
# load a batch with unlabeled and labeled samples

# x: labeled samples ; target: labels for x ; u: unlabeled samples

for (x, target), u in loader:
# augment x with weak augmentation and get two versions of u with strong and weak augmentations

x, u s, u w = weak(x), strong(u), weak(u)
# model forward

l x, l us, l uw = model(x, u s, u w)

# get debiased pseudo-labels

p uw = F.softmax(l uw - tau * torch.log(p hat), dim=1)
max probs, pseudo label = torch.max(p uw, dim=-1)

# get mask for filtering instances with low confidence score

mask = max probs.ge(thresh).float()
# update p hat

p hat = momentum * p hat + (1 - momentum) * p uw.detach().mean(dim=0)

# calculate loss x for labeled instances

loss x = F.cross entropy(l x, target)
# calculate marginal loss loss u for unlabeled instances

l us = l us + lambda * torch.log(p hat)
loss u = (F.cross entropy(l us, pseudo label, reduction=’none’) * mask).mean()
# total loss

loss = loss x + lambda u * loss u

# optimization step

loss.backward()
optimizer.step()

# update the ema model

model.momentum update ema()

7. Appendix

7.1. Details on Datasets and Implementations

The PyTorch-style pseudocode for semi-supervised learn-
ing with DebiasPL is available at Algo. 1.

We conduct experiments on several benchmarks to prove
the effectiveness and universality of DebiasPL. Here we
provide more details on datasets and implementations for
each benchmark:

CIFAR10 [27]: The original version of CIFAR10 con-
tains 50,000 images on the training set and 10,000 images
on the validation set with 10 categories for CIFAR10. For
semi-supervised learning on CIFAR10, we conduct the ex-
periments with a varying number of labeled examples from
40 to 250, following standard practice in previous works
[4, 5, 32, 57]. The reported results of each previous method
in the paper are directly copied from the best-reported re-
sults in MixMatch [5], ReMixMatch [4], FixMatch [57],
CoMatch [32], etc.

We keep all hyper-parameters the same as FixMatch, ex-
cept for the number of training steps. We use WideResNet-
28-2 [20, 71] with 1.5M parameters as a backbone network
for CIFAR10. The SGD optimizer with a Nesterov momen-
tum of 0.9 is used for optimization. The learning rate is
initialized as 0.03 and decayed with a cosine learning rate

scheduler [36], which sets the learning rate at training step k
as cos( 7πk

16K ) times the initial learning rate, where K = 219

is the total number of training steps, i.e., about 512 epochs,
and is 2 times fewer than the original number of FixMatch
training steps. The model is trained with a mini-batch size
of 512, which contains 64 labeled samples and 448 unla-
beled samples, on one V100 GPU. As in previous works,
an exponential moving average of model parameters is used
to produce the final performance. The weight decay is set
as 0.0005 for CIFAR10. Unless otherwise stated, the only
independent hyperparameter of DebiasPL λ is fixed and set
to 0.5 in all experiments. Each method is tested under 5
different folds, and we report the mean and the standard
deviation of accuracy on the test set.

CIFAR10-LT [27, 35, 67]: The long-tailed version of CI-
FAR10 follows an exponential decay in sample sizes across
different categories. CIFAR10-LT is constructed by sam-
pling a subset of CIFAR10 following the Pareto distribution
with the power value γ ∈ [100, 200]. Then, we select 10%
or 30% of all CIFAR10-LT instances to construct the SSL
benchmark labeled dataset, and the others are regarded as
the unlabeled datasets. Each algorithm is tested under 5 dif-
ferent folds of labeled data, and we report the mean and the
standard deviation of accuracy on the test set. As in previous
works, an exponential moving average of model parameters



is used to produce the final performance.
To demonstrate the universality of the proposed method

DebiasPL and its insensitivity to data distribution, we follow
the same hyperparameters and training formulas in CIFAR10.
We do not specifically adjust any hyperparameters when
conducting experiments in the long-tail SSL benchmarks.

ImageNet-1K [54]: ImageNet-1K is a curated dataset
with approximately class-balanced data distribution, con-
taining about 1.3M images for training and 50K images for
validation.

For semi-supervised learning, ImageNet-1K with varying
amounts of labeled data is experimented with, i.e., 0.2% and
1%. The FixMatch model is trained with a batch size of 64
(320) for labeled (unlabeled) images with an initial learning
rate of 0.03. Following [9], we replace batch normalization
(BN) layers with exponential moving average normalization
(EMAN) layers in the teacher model. EMAN updates its
statistics by exponential moving average from the BN statis-
tics of the student model. ResNet-50 is used as the default
network and the default hyperparameters in the correspond-
ing papers [9, 57] are applied. The model is initialized with
MoCo v2 + EMAN pre-trained model as in [9]. To make fair
comparisons, we report results of FixMatch with EMAN as
the baseline model, and all hyper-parameters of FixMatch
with EMAN are untouched unless noted otherwise.

For zero-shot learning, no manual annotation is leveraged
in the training process. We train CLIP + DebiasPL and CLIP
+ FixMatch following the same hyperparameters and training
recipes as FixMatch with EMAN, except that the labeled
data is “labeled” by CLIP rather than a human annotator.
Specifically, all unlabeled instances whose CLIP confidence
score greater than τclip are pseudo-labeled by CLIP (with a
backbone of ResNet50) and considered as “labeled” data. A
backbone of ResNet50 and a threshold τclip of 0.95 are used.
The same default hyper-parameters and training recipes as
in FixMatch + EMAN are utilized for fair comparisons. The
framework of transductive zero-shot learning with DebiasPL
is illustrated in Fig. 10.

For experiments on other benchmarks of ZSL, including
EuroSAT [21], MNIST [29], DTD [14], GTSRB [58] and
Flowers102 [42], we follow the training recipe of ImageNet-
1K.

7.2. Ablation Study

In this section, we conduct additional ablation studies on
the influence of the two components of DebiasPL (Table. 7)
for SSL, DebiasPL’s unique hyperparameter λ (Table. 8) for
SSL, and CLIP’s confidence score threshold τclip (Table. 9)
for T-ZSL.

As shown in Table. 7, the two components of Debi-
asPL lead to significant improvements to both CIFAR10
and CIFAR10-LT SSL benchmarks. Compared with the bal-
anced benchmark, the performance improvement obtained

Debiasing Magirnal Loss CIFAR10 CIFAR10-LT
86.1 73.5

3 93.3 79.6
3 3 94.6 80.6

Table 7. Ablation study on the contribution of each component
of DebiasPL. Experimented on CIFAR10 and CIFAR10-LT (γ=
100) SSL, in which 4 out of 5,000 samples are labeled per class for
CIFAR10 and 30% instances are labeled for CIFAR10-LT. Results
averaged over 5 different folds are reported.

by introducing the marginal loss is relatively smaller than
the unbalanced benchmark.

λ 0.0 0.25 0.5 0.75 1.0 2.0
DebiasPL 73.5 79.5 80.6 80.5 80.5 77.7

Table 8. Ablation study on CIFAR10-LT (γ = 100) semi-
supervised learning with DebiasPL under various weight λ of
debiasing module and marginal loss. 30% samples are labeled.
The model is identical to FixMatch when λ = 0. Results averaged
over 5 different folds are reported.

Table. 8 illustrates the influence of debias factor λ. When
the value of λ is set to 0, DebiasPL is identical to FixMatch.
Adding a debiasing module and marginal loss can improve
the performance on CIFAR10-LT by more than 7% when
selecting the optimal choice of λ 0.5, which is marginally
better than the default value of 1.0. However, there is a trade-
off. Suppose the debias factor λ is too strong. In that case,
it is hard for a model to fit on the data, while a too-small
factor can barely eliminate the biases, ultimately impairs the
generalization ability.

τclip 0.2 0.4 0.6 0.8 0.9 0.95
DebiasPL + CLIP 55.9 63.2 66.2 67.1 67.7 67.7

Table 9. Ablation study on ImageNet-1K zero-shot Learning with
DebiasPL + CLIP [49] under various threshold τclip.

As illustrated in the main paper, the CLIP predictions are
class-imbalanced. Therefore, the natural question is whether
we can obtain a more balanced prediction by filtering in-
stances with a threshold τclip? Unfortunately, no, on the
contrary, when filtering predictions with a larger threshold,
a higher imbalance rate is observed, as in Fig. 11. Further-
more, when filtering instances with a threshold of 0.95, more
than 60 categories get zero predictions.

The dilemma is that using a smaller threshold τclip can
obtain a smaller imbalanced ratio, which is the desired prop-
erty. However, it also leads to a lower precision, introducing
many outliers and misclassified samples. Therefore, a mod-
ule to eliminate biases captured by the CLIP model when
CLIP is pre-trained on source data is needed to yield a good
performance on target data.
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0 200 400 600 800 1000
Ranked Class Index

0

500

1000

1500

2000

2500

3000

# 
Pr

ed
ict

io
ns

 P
er

 C
la

ss

Frequency

0 200 400 600 800 1000
Ranked Class Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 P
er

 C
la

ss

Precision

0 200 400 600 800 1000
Ranked Class Index

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll 
Pe

r C
la

ss

Recall

(b) τ ≥ 0.4

0 200 400 600 800 1000
Ranked Class Index

0

200

400

600

800

1000

1200

# 
Pr

ed
ict

io
ns

 P
er

 C
la

ss

Frequency

0 200 400 600 800 1000
Ranked Class Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 P
er

 C
la

ss

Precision

0 200 400 600 800 1000
Ranked Class Index

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll 
Pe

r C
la

ss

Recall

(c) τ ≥ 0.95

Figure 11. A higher imbalanced ratio is obtained when filtering
CLIP’s zero-shot predictions with a larger threshold, analyzed
on CLIP’s zero-shot predictions on 1.3M almost class-balanced
ImageNet training samples. Per class number of predictions (row
1), precision (row 2), and recall (row 3) of samples passing various
confidence score thresholds τ are visualized. Zero-shot predictions
are produced with an ensemble of 80 prompts and a backbone of
ResNet50, using official codes.

Table. 9 shows that using a threshold of 0.95 can get the
optimal performance on the ImageNet zero-shot learning
task, which indicates that the high precision of the labeled
data, realized by using a high threshold, is essential for
better performance on target data. At the same time, our
proposed DebiasPL can greatly alleviate the trouble of a
higher imbalance ratio caused by using a larger threshold,
eventually obtaining more than 10% performance gains.
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