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New South Wales Floods, November 2022

NSW floods become most expensive natural
disaster on record with $5.5b in claims

By Melinda Hayter, Holly Tregenza, and Indiana Hansen

Posted Mon 21 Nov 2022 at 2:07pm, updated Tue 22 Nov 2022 at 1:15am




Satellite Image (RGB

Source: planet.com



Satellite Image (RGB + Infrared, false color)

water absorbs IR, so appears dark blue
vegetation reflects IR, so appears red

Source: planet.com



Satellite Image (RGB + Infrared, false color)

Extra EM bands (e.g. infrared) can reveal changes invisible in RGB

Source: planet.com



Multi-Band Imaging

Source: https://seos-project.eu/classification/classification-c01-p05.html
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Multi-Band Imaging for HADR

Disaster Assessment
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Common Strategy for Dealing with New Datasets

e Large dataset — supervised learning from scratch
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How to Handle a Multi-band Dataset?

e Supervised training from scratch?
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How to Handle a Multi-band Dataset?

S (s od training.§ ch?

Relatively limited labels

o Transferlearning from-alarge RGB-dataset?

Not 3 channel, encourages reduction to RGB

o Convert back to RGB?
Loses the original benefits of multi-band data



How to Handle a Multi-band Dataset?

This Work: Complex-valued Deep Learning
as an alternative
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Results: Simpler and Better Ultra-lean Models
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Results: Simpler and Better Ultra-lean Models
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Baseline: ResNet18 with ImageNet pre-training and data augmentation



Results: Simpler and Better Ultra-lean Models
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Results: Simpler and Better Ultra-lean Models
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Higher accuracy, 194x smaller, no augmentation/pre-training, no RGB conversion



Accuracy

Imbalanced Classification Results
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Methods: Co-domain Symmetric Models (CDS)!!

[1]: Co-domain Symmetry for Complex-Valued Deep Learning, U. Singhal, Y. Xing, S.X. Yu, CVPR 2022



An Image is a Function from Domain to Co-Domain

Domain: Pixel Locations Co-Domain: Pixel Values
36



An Image is a Function from Domain to Co-Domain




Domain Transformations Act on the Pixel Coordinates
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Domain Transformations Act on the Pixel Coordinates

Wbt
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Domain Transformation

translation scaling rotation
CNN [1] Scale-Invariant E(2)-Steerable

CNN [2] CNN [3]

[1]: LeCun et al., Backpropagation Applied to Handwritten Zip Code Recognition [2]: Xu et al., Scale-Invariance Convolutional Neural Network  [3]: Weiler et al., General E(2)-Equivariant Steerable CNNs



Co-Domain Transformations Act on the Pixel Values
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Co-Domain Transformations Act on the Pixel Values
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Co-Domain Encapsulates Diversity of Image Types
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We Can Represent All These Data Types in Complex Values!

Thermal RGB Multi-Band SAR

NASA/IPAC

Complex
valued

encodings




Complex-Valued Encoding for MSI Data
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e Adjacent channels are paired into the real/imaginary parts of a complex number.
e Ratio of adjacent channels is represented by the phase.

e Imparts an ordering to the input channels



Robustness to Co-Domain Transformations

complex scaling non-invariant invariant
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Robustness to Co-Domain Transformations

complex scaling
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Complex-Scale Equi-/In-variant Layers

Equivariant Invariant
Equivariant Convolution Conjugate Layer
Equivariant Batch-Norm Division Layer

Equivariant Non-Linearity Prototype-Distance Invariant Layer

Equivariant Pooling



Two Architecture Styles
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Summary

Multi-Band imaging is invaluable for HADR applications.

Traditional transfer learning approaches are not readily applicable.

We propose using co-domain symmetric models trained from scratch.

We propose a complex-valued encoding and use complex-scale invariant models.

The resulting models have higher accuracy, significantly fewer parameters, no
augmentation, no pre-training, and no RGB conversion



Thank you!



