Multi-Spectral Image Classification with Ultra-Lean Complex-Valued Models

Utkarsh Singhal Stella X. Yu Zackery Steck Scott Kangas Aaron A. Reite

New South Wales Floods, November 2022

NSW floods become most expensive natural disaster on record with \$5.5b in claims

By Melinda Hayter, Holly Tregenza, and Indiana Hansen

Posted Mon 21 Nov 2022 at 2:07pm, updated Tue 22 Nov 2022 at 1:15am

Satellite Image (RGB)

Satellite Image (RGB + Infrared, false color)

water absorbs IR, so appears dark blue vegetation reflects IR, so appears red

Source: planet.com

Satellite Image (RGB + Infrared, false color)

Extra EM bands (e.g. infrared) can reveal changes invisible in RGB

Source: planet.com

Disaster Assessment

Disaster Assessment

Environmental Impact Monitoring

Disaster Assessment

Agricultural Health Measurement

Environmental Impact Monitoring

Disaster Assessment

Agricultural Health Measurement

Environmental Impact Monitoring

Urban Planning

● Large dataset → supervised learning from scratch

● Large dataset → supervised learning from scratch

Extremely successful for datasets like ImageNet

● Large dataset → supervised learning from scratch

Extremely successful for datasets like ImageNet

• Small dataset \rightarrow transfer learning

● Large dataset → supervised learning from scratch

Extremely successful for datasets like ImageNet

- Small dataset → transfer learning
 - □ Neural Net pre-trained on, e.g, ImageNet
 - □ Fine-tune on the smaller dataset
 - □ Extensive data augmentations

• Supervised training from scratch?

Supervised training from scratch? Relatively limited labels

Supervised training from scratch?
Relatively limited labels

• Transfer learning from a large RGB dataset?

Supervised training from scratch?
Relatively limited labels

• Transfer learning from a large RGB dataset? Not 3 channel, encourages reduction to RGB

Supervised training from scratch?
Relatively limited labels

• Transfer learning from a large RGB dataset? Not 3 channel, encourages reduction to RGB

• Convert back to RGB?

Supervised training from scratch?
Relatively limited labels

• Transfer learning from a large RGB dataset? Not 3 channel, encourages reduction to RGB

Convert back to RGB?
Loses the original benefits of multi-band data

Supervised training from scratch?
Relatively limited labels

This Work: Complex-valued Deep Learning as an alternative

Convert back to RGB?
Loses the original benefits of multi-band data

xView Multi-Band Image Dataset

Baseline: ResNet18 trained from scratch

Baseline: ResNet18 with ImageNet pre-training and data augmentation

Baseline: Reduce down to RGB + ImageNet pre-training + data augmentation

Higher accuracy, 194x smaller, no augmentation/pre-training, no RGB conversion

Imbalanced Classification Results

Higher Accuracy for 8 out of 10 classes

Methods: Co-domain Symmetric Models (CDS)^[1]

[1]: Co-domain Symmetry for Complex-Valued Deep Learning, U. Singhal, Y. Xing, S.X. Yu, CVPR 2022

An Image is a Function from Domain to Co-Domain

Domain: Pixel Locations

Co-Domain: Pixel Values

An Image is a Function from Domain to Co-Domain

Domain Transformations Act on the Pixel **Coordinates**

Domain Transformation

Domain Transformations Act on the Pixel Coordinates

Domain Transformation

[1]: LeCun et al., Backpropagation Applied to Handwritten Zip Code Recognition

Co-Domain Transformations Act on the Pixel Values

Co-Domain Transformations Act on the Pixel Values

Co-Domain Encapsulates Diversity of Image Types

We Can Represent All These Data Types in Complex Values!

Complex-Valued Encoding for MSI Data

- Adjacent channels are paired into the real/imaginary parts of a complex number.
- Ratio of adjacent channels is represented by the phase.
- Imparts an ordering to the input channels

Robustness to Co-Domain Transformations

Robustness to Co-Domain Transformations

Previously on CIFAR 10:

better generalization

lower bias/variance

Complex-Scale Equi-/In-variant Layers

Equivariant

Equivariant Convolution

Equivariant Batch-Norm

Equivariant Non-Linearity

Equivariant Pooling

Invariant

Conjugate Layer

Division Layer

Prototype-Distance Invariant Layer

Two Architecture Styles

Summary

- Multi-Band imaging is invaluable for HADR applications.
- Traditional transfer learning approaches are not readily applicable.
- We propose using co-domain symmetric models trained from scratch.
- We propose a complex-valued encoding and use complex-scale invariant models.
- The resulting models have higher accuracy, significantly fewer parameters, no augmentation, no pre-training, and no RGB conversion

Thank you!