Co-Domain Symmetry for Complex-Valued Deep Learning

Utkarsh Singhal Yifei Xing Stella X. Yu

An Image is a Function from Domain to Co-Domain

Domain: Pixel Locations

Co-Domain: Pixel Values

An Image is a Function from Domain to Co-Domain

Domain Transformations Act on the Pixel **Coordinates**

Domain Transformation

Domain Transformations Act on the Pixel Coordinates

Domain Transformation

[1]: LeCun et al., Backpropagation Applied to Handwritten Zip Code Recognition

Co-Domain Transformations Act on the Pixel Values

Co-Domain Transformations Act on the Pixel Values

Co-Domain Encapsulates Diversity of Image Types

We Focus on Complex-Valued Data

We Can Represent All These Data Types in Complex Values!

Property 1: Equivalence Under Complex-Valued Scaling

Property 2: Rich Set of Algebraic Operations

multiplication

$$(a+ib)(c+id) = (ac-bd) + i(ad+bc)$$

division

$$\frac{(a+bi)}{(c+di)} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ac}{c^2+d^2}$$

Method	Complex-scaling?	Complex-valued algebra?				

Method	Complex-scaling?	Complex-valued algebra?
Real-valued CNN	×	×

Method	Complex-scaling?	Complex-valued algebra?			
Real-valued CNN	×	×			
Deep Complex Nets	×	\checkmark			

 $\mathbf{W} \ast \mathbf{h} = \ (\mathbf{A} \ast \mathbf{x} - \mathbf{B} \ast \mathbf{y}) + i \left(\mathbf{B} \ast \mathbf{x} + \mathbf{A} \ast \mathbf{y} \right)$

Method	Complex-scaling?	Complex-valued algebra?
Real-valued CNN	×	×
Deep Complex Nets	×	✓
SurReal	✓	×

Method	Complex-scaling?	Complex-valued algebra?			
Real-valued CNN	×	×			
Deep Complex Nets	×	✓			
SurReal	✓	×			
Ours	\checkmark				

Benefits: Complex-Scaling Invariance

Our model makes predictions invariant to complex-valued scaling

Benefits: Higher Accuracy with Leaner Models

MSTAR: Synthetic Aperture Radar Imaging

Benefits: Higher Accuracy with Leaner Models

MSTAR: Synthetic Aperture Radar Imaging

Model	# Params	Relative Params	Training dataset size (%)				
			5%	10%	100%		
Complex CNN	863,587	1.00	49.8	47	89.1		
Ours	29,536	0.03	69.5	78.3	96.1		

Higher accuracy with much leaner models

Benefits: Higher Accuracy with Leaner Models

MSTAR: Synthetic Aperture Radar Imaging

Model	# Params	Relative Params	Training dataset size (%)			0.8	
			5%	10%	100%	r rate (e)	
Complex CNN	863,587	1.00	49.8	47	89.1	ELLO ELLO	Real-valued: $-0.13 \log(r) - 1.12$ DCN : $-0.57 \log(r) - 2.07$
Ours	29,536	0.03	69.5	78.3	96.1	0.05	$ \begin{array}{c c} & & & \\ $

Higher accuracy with much leaner models

Consistently lower error rate

Benefits: Diverse Filters, Lower Bias/Variance

Variance Bias 0.60.60.40.40.2 0.2^{-1} 0.0 DCN Real Surreal Ours 0.0 DCN Real Surreal Ours Lower Bias and Variance

CIFAR 10

Benefits: Diverse Filters, Lower Bias/Variance

CIFAR 10

Benefits: Robustness Against Some Types of Color Distortion

Encoding color with complex numbers

Benefits: Robustness Against Some Types of Color Distortion

Benefits: Robustness Against Some Types of Color Distortion

Methods: Complex-Scale Equi-/In-variant Layers

Equivariant

Equivariant Convolution

Equivariant Batch-Norm

Equivariant Non-Linearity

Equivariant Pooling

Invariant

Conjugate Layer

Division Layer

Prototype-Distance Invariant Layer

Methods: Two Architecture Styles

Methods: Our Proposed Complex-Valued Encodings

Hyperspectral

Sliding channel encoding

$$\begin{bmatrix} x_1, x_2, x_3, x_4, \dots \end{bmatrix} \\ \downarrow \\ [x_1 + ix_2, x_2 + ix_3, x_3 + ix_4, \dots]$$

Color

LAB encoding

Thank you!

Poster 68a, June 21st, 10AM-12:30PM

github.com/sutkarsh/cds

Co-domain Symmetry for Complex-Valued Deep Learning

Utkarsh Singhal

Yifei Xing Stella X. Yu

Contributions

1. New complex-valued learning method based on co-domain symmetry with respect to complex-valued scaling 2. New leaner classifiers with higher accuracy, better generalization, more robustness, lower model bias/variance 3. New complex-valued encodings of various types of images 4. Achieve color jitter robustness without any augmentation

Co-Domain Image Transformations

Complex-Valued Data Properties

Complex \mathbb{C} -scale Algebra Invariance X х 1 х Surreal х 1

Layer runctions h	or oo-bomain Symmetry
Equivariant	Invariant
$f(s \!\cdot\! \mathbf{z}) = s \!\cdot\! f(\mathbf{z})$	$f(s \cdot \mathbf{z}) = f(\mathbf{z})$
$\mathbf{f}_{BN}=BN(\mathbf{f})\odotrac{\mathbf{f}}{ \mathbf{f} }$	$\operatorname{Div}(\mathbf{z_1}, \mathbf{z_2}) = \frac{ \mathbf{z_1} }{ \mathbf{z_2} + \epsilon} \exp\{i(\measuredangle \mathbf{z_1} - \measuredangle \mathbf{z_2})\}$
$Econv(\mathbf{z}; \mathbf{W}) = \mathbf{W} * \mathbf{z} = (\mathbf{X} + \mathbf{z})$	$(\mathbf{i}\mathbf{Y}) * (\mathbf{a} + i\mathbf{b})$ $\operatorname{Conj}(\mathbf{z_1}, \mathbf{z_2}) = \mathbf{z_1}\mathbf{z_2^*}$
\mathbf{f} $\overset{\widehat{m} \to \widehat{m}^*}{\longrightarrow} \overset{\text{Non-Linearity}}{\longrightarrow} \mathcal{N}(f \circ \widehat{m}^*) \to \otimes \to$	$(z_1, z_2) = \sqrt{\left(\ln z_1 - \ln z_2 \right)^2 + \operatorname{arc}(\measuredangle z_1, \measuredangle z_2)^2}$ \mathbf{f}_{out}

Lover Eurotions for Co-Domain Symmetry

Model Architectures: Early or Late Invariance

better generalization

less redundant filters

invariance

Leaner, Better, More Robust Models

MSTAR	Params	5%	10%	50%	100%	xView	Params	Ratio	Acc (%)
Real	33k	47.4	46.6	60.6	66.9	Real	36k	1.00	59.9
DCN	863k	49.8	47.0	81.9	89.1	DCN	69k	1.89	56.7
SurReal	63k	61.1	68.0	90.3	94.9	SurReal	36k	0.99	58.7
Ours	29k	69.5	78.3	91.3	96.1	Ours	27k	0.75	67.7

higher accuracy with fewer model parameters

color robustness

lower bias/variance

invariant representation