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Butterfly Architecture and FFT

https://www.nti-audio.com/en/support/know-how/fast-fourier-transform-fft  
https://towardsdatascience.com/fast-fourier-transform-937926e591cb

Discrete Fourier Transform
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[1]: Cipra et. al, SIAM: https://archive.siam.org/pdf/news/637.pdf
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Butterfly Architecture and FFT

● Efficient Architecture: Recursive and Sparse

● Multiscale: Extracts correlations at multiple 
scales in a single pass

● Among the most important algorithms of 
20th century[1]

[1]: Cipra et. al, SIAM: https://archive.siam.org/pdf/news/637.pdf
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[1] Vahid et al, Butterfly Transform: An Efficient FFT Based Neural Architecture Design, 2019
[2] Dao et al, Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations, 2020
[3] Dao et al, Monarch: Expressive Structured Matrices for Efficient and Accurate Training, 2022
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Butterfly Architectures in Machine Learning

FFT Butterfly Transform [1] Monarch [2,3] Ours

Learnable weights?

Complex-valued?

Correlated Input data?

[1] Vahid et al, Butterfly Transform: An Efficient FFT Based Neural Architecture Design, 2019
[2] Dao et al, Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations, 2020
[3] Dao et al, Monarch: Expressive Structured Matrices for Efficient and Accurate Training, 2022
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Hyperspectral Imaging is Invaluable for Remote Sensing Applications

Agriculture Environmental Monitoring

Urban Planning Mineral Exploration
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Proposed Method: Learnable Complex-Valued Butterfly

+ O(N log(N)) parameters
+ Extracts features at multiple scales
+ Utilizes redundant structure in input signal
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Complex-Valued Butterfly: Recursive Definition
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Proposed Method: Learned Complex-Valued Butterfly

Recursive Matrix Definition

Efficient Block-wise Computation



Proposed Method: Generalized Spatial-Spectral Complex-Valued Butterfly

Generalization: Spatial + Spectral Butterfly

Aggregating over local pixel context

output

input



Proposed Method: Complex-Valued Spatial & Spectral Attention 
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Experiments: HSI Pixel-wise Classification
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Results: HSI Classification

7x fewer parameters with higher/similar accuracy!

Model Indian Pines Dataset Pavia University Dataset Salinas Dataset

OA (%) AA (%) Kappa OA (%) AA (%) Kappa OA (%) AA (%) Kappa

SVM 75.3 71.1 0.717 86.5 73.5 0.819 90.9 96.2 0.899

U-Net 93.2 92.1 0.922 96.1 93.5 0.948 - - -

SSDGL 99.6 99.8 0.996 99.9 99.9 0.999 100 100 1.0

Ours 99.9 99.9 0.998 99.9 99.9 0.999 99.9 100 99.9



Summary

● We propose a class of Complex-Valued Learned Butterfly Transforms

● We discuss the challenges of applying butterfly transforms in neural networks

● We propose using HSI data as a source of input with redundant correlated 
channels

● On popular HSI classification datasets, our method shows similar accuracy 
while using 7x fewer parameters than the baseline.


