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Butterfly Architecture and FFT

/7 frequency Discrete Fourier Transform

https://www.nti-audio.com/en/support/know-how/fast-fourier-transform-fft
https://towardsdatascience.com/fast-fourier-transform-937926e591cb



I, SIAM: https://arch

Butterfly Architecture and FFT

ive.siam.org/pdf/news/637.pdf
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e Efficient Architecture: Recursive and Sparse ‘\

I, SIAM: https://arch
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Butterfly Architecture and FFT

e Efficient Architecture: Recursive and Sparse

e Multiscale: Extracts correlations at multiple
scales in a single pass

[1]: Cipra et. al, SIAM: https://archive.siam.org/pdf/news/637 .pdf
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Butterfly Architecture and FFT

e Efficient Architecture: Recursive and Sparse

e Multiscale: Extracts correlations at multiple
scales in a single pass

e Among the most important algorithms of
20th century!

[1]: Cipra et. al, SIAM: https://archive.siam.org/pdf/news/637 .pdf
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Butterfly Architectures in Machine Learning

FFT Butterfly Transform [1]

Learnable weights? x /

Complex-valued? / X

Correlated Input data? / X

[1] Vahid et al, Butterfly Transform: An Efficient FFT Based Neural Architecture Design, 2019
[2] Dao et al, Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations, 2020
[3] Dao et al, Monarch: Expressive Structured Matrices for Efficient and Accurate Training, 2022
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FFT Butterfly Transform [1] | Monarch [2,3]
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Butterfly Architectures in Machine Learning

FFT Butterfly Transform [1] | Monarch [2,3] Ours
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Complex-valued? / X / /
Correlated Input data? / X X /

[1] Vahid et al, Butterfly Transform: An Efficient FFT Based Neural Architecture Design, 2019
[2] Dao et al, Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations, 2020
[3] Dao et al, Monarch: Expressive Structured Matrices for Efficient and Accurate Training, 2022
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Hyperspectral Imaging is Invaluable for Remote Sensing Applications

Agriculture

Urban Planning Mineral Exploration



HSI classification: Challenges and Current Approaches

Main Challenge: Exploiting correlations across spectral channels and spatial pixel locations
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[1] Zheng et al, FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

[2] Lie et al, A semi-supervised convolutional neural network for hyperspectral image classification
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[6] Li et al, Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields,



Exploiting correlations across spectral channels and spatial pixel locations
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Proposed Method: Learnable Complex-Valued Butterfly

+ O(N log(N)) parameters
+ Extracts features at multiple scales
+ Utilizes redundant structure in input signal



Proposed Method: Learned Complex-Valued Butterfly
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Proposed Method: Generalized Spatial-Spectral Complex-Valued Butterfly
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Proposed Method: Complex-Valued Spatial & Spectral Attention
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Proposed Method: Architecture Detalils
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Experiments: HSI Pixel-wise Classification
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Indian Pines Classification Map
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Results

: HSI Classification

Model Indian Pines Dataset Pavia University Dataset Salinas Dataset
OA (%) AA(%) Kappa| OA(%) AA(%) Kappa| OA(%) AA(%) Kappa
SVM 75.3 71.1 0.717 86.5 73.5 0.819 90.9 96.2 0.899
U-Net 93.2 92.1 0.922 96.1 93.5 0.948 - - -
SSDGL 99.6 99.8 0.996 99.9 99.9 0.999 100 100 1.0
Ours 99.9 99.9 0.998 99.9 99.9 0.999 99.9 100 99.9

7x fewer parameters with higher/similar accuracy!



Summary

We propose a class of Complex-Valued Learned Butterfly Transforms
We discuss the challenges of applying butterfly transforms in neural networks

We propose using HSI data as a source of input with redundant correlated
channels

On popular HSI classification datasets, our method shows similar accuracy
while using 7x fewer parameters than the baseline.



