Complex-valued Butterfly Transform for Efficient Hyperspectral Image Processing

Utkarsh Singhal

Stella X. Yu

Convolution	New Layer	
BatchNorm		
ReLU		
Real-Valued	Complex-Valu	→ ed
EfficientNet		
UNet		
ResNet		
	Vew Architecture	

$$x[k] = \sum_{n=0}^{N-1} x[n]e^{\frac{-j2\pi kn}{N}}$$

Discrete Fourier Transform

https://www.nti-audio.com/en/support/know-how/fast-fourier-transform-fft https://towardsdatascience.com/fast-fourier-transform-937926e591cb

• Efficient Architecture: Recursive and Sparse

- Efficient Architecture: Recursive and Sparse
- **Multiscale:** Extracts correlations at multiple scales in a single pass

- Efficient Architecture: Recursive and Sparse
- **Multiscale:** Extracts correlations at multiple scales in a single pass
- Among the most important algorithms of 20th century^[1]

Learnable weights?		
Complex-valued?		
Correlated Input data?		

	FFT		
Learnable weights?	×		
Complex-valued?	1		
Correlated Input data?	1		

	FFT	Butterfly Transform [1]	
Learnable weights?	X	1	
Complex-valued?	1	×	
Correlated Input data?	1	×	

Vahid et al, Butterfly Transform: An Efficient FFT Based Neural Architecture Design, 2019
Dao et al, Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations, 2020
Dao et al, Monarch: Expressive Structured Matrices for Efficient and Accurate Training, 2022

	FFT	Butterfly Transform [1]	Monarch [2,3]	
Learnable weights?	X	✓	1	
Complex-valued?	1	×	✓	
Correlated Input data?	1	×	×	

Vahid et al, Butterfly Transform: An Efficient FFT Based Neural Architecture Design, 2019
Dao et al, Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations, 2020
Dao et al, Monarch: Expressive Structured Matrices for Efficient and Accurate Training, 2022

	FFT	Butterfly Transform [1]	Monarch [2,3]	Ours
Learnable weights?	×	✓	1	✓
Complex-valued?	1	×	✓	1
Correlated Input data?	1	×	×	✓

Vahid et al, Butterfly Transform: An Efficient FFT Based Neural Architecture Design, 2019
Dao et al, Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations, 2020
Dao et al, Monarch: Expressive Structured Matrices for Efficient and Accurate Training, 2022

Hyperspectral Imaging is Invaluable for Remote Sensing Applications

Agriculture

Urban Planning

Environmental Monitoring

Mineral Exploration

HSI classification: Challenges and Current Approaches

Main Challenge: Exploiting correlations across spectral channels and spatial pixel locations

HSI classification: Challenges and Current Approaches

Main Challenge: Exploiting correlations across spectral channels and spatial pixel locations

- [2] Lie et al, A semi-supervised convolutional neural network for hyperspectral image classification
- [3] Seydgar et al, 3-D convolution-recurrent networks for spectral-spatial classification of hyperspectral images
- [4] Zhu et al, A Spectral-Spatial Dependent Global Learning Framework for Insufficient and Imbalanced Hyperspectral Image Classification
- [5] Fauvel et al, Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
- [6] Li et al, Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields,

- [2] Lie et al, A semi-supervised convolutional neural network for hyperspectral image classification
- [3] Seydgar et al, 3-D convolution-recurrent networks for spectral-spatial classification of hyperspectral images
- [4] Zhu et al, A Spectral-Spatial Dependent Global Learning Framework for Insufficient and Imbalanced Hyperspectral Image Classification
- [5] Fauvel et al, Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
- [6] Li et al, Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields,

+ Simple

- Treat Channels Independently
- O(N²) Parameters

- [2] Lie et al, A semi-supervised convolutional neural network for hyperspectral image classification
- [3] Seydgar et al, 3-D convolution-recurrent networks for spectral-spatial classification of hyperspectral images
- [4] Zhu et al, A Spectral-Spatial Dependent Global Learning Framework for Insufficient and Imbalanced Hyperspectral Image Classification
- [5] Fauvel et al, Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
- [6] Li et al, Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields,

- + Simple
- Treat Channels Independently
- O(N²) Parameters

LSTM-Based [3,4]

SVM-based [5,6]

- + Channels Processed Jointly
- Difficult to train
- Treat Input as Generic 1D sequence

- [2] Lie et al, A semi-supervised convolutional neural network for hyperspectral image classification
- [3] Seydgar et al, 3-D convolution-recurrent networks for spectral-spatial classification of hyperspectral images
- [4] Zhu et al, A Spectral-Spatial Dependent Global Learning Framework for Insufficient and Imbalanced Hyperspectral Image Classification
- [5] Fauvel et al, Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
- [6] Li et al, Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields,

- + Simple
- Treat Channels Independently
- O(N²) Parameters

LSTM-Based [3,4]

- + Channels Processed Jointly
- Difficult to train
- Treat Input as Generic 1D sequence

SVM-based [5,6]

- + Few Parameters
- + Simple
- Low Accuracy

[1] Zheng et al, FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

[2] Lie et al, A semi-supervised convolutional neural network for hyperspectral image classification

[3] Seydgar et al, 3-D convolution-recurrent networks for spectral-spatial classification of hyperspectral images

[4] Zhu et al, A Spectral-Spatial Dependent Global Learning Framework for Insufficient and Imbalanced Hyperspectral Image Classification

[5] Fauvel et al, Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles

[6] Li et al, Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields,

- + Simple
- Treat Channels Independently
- O(N²) Parameters

LSTM-Based [3,4]

- + Channels Processed Jointly
- Difficult to train
- Treat Input as Generic 1D sequence

SVM-based [5,6]

- + Few Parameters
- + Simple
- Low Accuracy

[1] Zheng et al, FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

[2] Lie et al, A semi-supervised convolutional neural network for hyperspectral image classification

[3] Seydgar et al, 3-D convolution-recurrent networks for spectral-spatial classification of hyperspectral images

[4] Zhu et al, A Spectral-Spatial Dependent Global Learning Framework for Insufficient and Imbalanced Hyperspectral Image Classification

[5] Fauvel et al, Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles

[6] Li et al, Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields,

Proposed Method: Learnable Complex-Valued Butterfly

- + O(N log(N)) parameters
- + Extracts features at multiple scales
- + Utilizes redundant structure in input signal

Proposed Method: Learned Complex-Valued Butterfly

Complex-Valued Butterfly: Recursive Definition

Proposed Method: Learned Complex-Valued Butterfly

$$\mathbf{B}^{(n,k)} = \begin{bmatrix} \mathbf{B}_1^{(\frac{n}{k},k)} \mathbf{D}_{11} & \dots & \mathbf{B}_1^{(\frac{n}{k},k)} \mathbf{D}_{1k} \\ \vdots & \ddots & \vdots \\ \mathbf{B}_k^{(\frac{n}{k},k)} \mathbf{D}_{k1} & \dots & \mathbf{B}_k^{(\frac{n}{k},k)} \mathbf{D}_{kk} \end{bmatrix}$$

Recursive Matrix Definition

Proposed Method: Learned Complex-Valued Butterfly

$$\mathbf{B}^{(n,k)} = \begin{bmatrix} \mathbf{B}_1^{(\frac{n}{k},k)} \mathbf{D}_{11} & \dots & \mathbf{B}_1^{(\frac{n}{k},k)} \mathbf{D}_{1k} \\ \vdots & \ddots & \vdots \\ \mathbf{B}_k^{(\frac{n}{k},k)} \mathbf{D}_{k1} & \dots & \mathbf{B}_k^{(\frac{n}{k},k)} \mathbf{D}_{kk} \end{bmatrix}$$

Recursive Matrix Definition

$$\mathbf{B}^{(n,k)}\mathbf{x} = \begin{bmatrix} \mathbf{B}_1^{(\frac{n}{k},k)} \sum_{j=1}^k \mathbf{D}_{1j}\mathbf{x}_j \\ \vdots \\ \mathbf{B}_k^{(\frac{n}{k},k)} \sum_{j=1}^k \mathbf{D}_{kj}\mathbf{x}_j \end{bmatrix}$$

Efficient Block-wise Computation

Proposed Method: Generalized Spatial-Spectral Complex-Valued Butterfly

$$\mathbf{B}^{(n,k)}\mathbf{x} = \begin{bmatrix} \mathbf{B}_{1}^{(\frac{n}{k},k)} \sum_{j=1}^{k} \sum_{p=1}^{m \times m} \mathbf{D}_{1jp} \mathbf{x}_{j}^{(p)} \\ \vdots \\ \mathbf{B}_{k}^{(\frac{n}{k},k)} \sum_{j=1}^{k} \sum_{p=1}^{m \times m} \mathbf{D}_{kjp} \mathbf{x}_{j}^{(p)} \end{bmatrix}$$

Generalization: Spatial + Spectral Butterfly

Aggregating over local pixel context

Proposed Method: Complex-Valued Spatial & Spectral Attention

Proposed Method: Architecture Details

Proposed Method: Architecture Details

Experiments: HSI Pixel-wise Classification

Salinas Classification Map

Input Image

Ground Truth

SSDGL

Pavia University Classification Map

Input Image

Ours

Asphalt Meadows Gravel Trees Metal Sheets Bare Soil Bitumen Bricks Shadows

Ground Truth

Pavia University Classification Map

Input Image

Ground Truth

Pavia University Classification Map

Input Image

Ground Truth

Indian Pines Classification Map

Input Image

SSDGL

Ground Truth

Indian Pines Classification Map

Input Image

SSDGL

Ground Truth

Results: HSI Classification

Model	Indian Pines Dataset		Pavia University Dataset		Salinas Dataset				
	OA (%)	AA (%)	Карра	OA (%)	AA (%)	Карра	OA (%)	AA (%)	Карра
SVM	75.3	71.1	0.717	86.5	73.5	0.819	90.9	96.2	0.899
U-Net	93.2	92.1	0.922	96.1	93.5	0.948	-	-	-
SSDGL	99.6	99.8	0.996	99.9	99.9	0.999	100	100	1.0
Ours	99.9	99.9	0.998	99.9	99.9	0.999	99.9	100	99.9

7x fewer parameters with higher/similar accuracy!

Summary

- We propose a class of Complex-Valued Learned Butterfly Transforms
- We discuss the challenges of applying butterfly transforms in neural networks
- We propose using HSI data as a source of input with redundant correlated channels
- On popular HSI classification datasets, our method shows similar accuracy while using 7x fewer parameters than the baseline.