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Abstract

Remote aerial sensing provides a non-invasive, large geographical-scale technol-

ogy for avian monitoring, but the manual processing of images limits its devel-

opment and applications. Artificial Intelligence (AI) methods can be used to

mitigate this manual image processing requirement. The implementation of AI

methods, however, has several challenges: (1) imbalanced (i.e., long-tailed) data

distribution, (2) annotation uncertainty in categorization, and (3) dataset dis-

crepancies across different study sites. Here we use aerial imagery data of water-

birds around Cape Cod and Lake Michigan in the United States to examine

how these challenges limit avian recognition performance. We review existing

solutions and demonstrate as use cases how methods like Label Distribution

Aware Marginal Loss with Deferred Re-Weighting, hierarchical classification,

and FixMatch address the three challenges. We also present a new approach to

tackle the annotation uncertainty challenge using a Soft-fine Pseudo-Label

methodology. Finally, we aim with this paper to increase awareness in the eco-

logical remote sensing community of these challenges and bridge the gap

between ecological applications and state-of-the-art computer science, thereby

opening new doors to future research.

Introduction

Aerial remote sensing technologies are being increasingly

used to monitor and survey wildlife populations (Tuia

et al., 2022; Wang et al., 2019). They provide non-invasive

tools for detecting, classifying, and assessing the abundance

of target species (McEvoy et al., 2016). Traditional wildlife

aerial surveys employ human observers to conduct visual

counts, often from low-flying aircraft. Although these

methods can be efficient in surveying large geographic

regions, visual observations from low-flying aircraft are

risky (e.g., the risk that observation personnel may encoun-

ter a life-threatening scenario increases at low-flying alti-

tudes) (Sasse, 2003) and are subject to various observer

biases such as count bias (Frederick et al., 2003; Redfern

et al., 2002). In contrast, aerial remote sensing is a safer

alternative that allows flying at a higher altitude, and the

method offers the potential for a consistent and reproduc-

ible population survey with the addition of an accurate

geo-referenced digital format. In addition, aerial imagery

surveys conducted at higher altitudes may also reduce ani-

mal disturbance (Sasse, 2003). The major disadvantage of

using remote sensing for aerial surveys is that covering large

areas can generate hundreds of thousands of images, thus

hundreds of terabytes of data. Therefore, manually proces-

sing remote sensing aerial survey data is time-consuming

and prohibitively expensive for many researchers and natu-

ral resource agencies (Chabot & Francis, 2016).
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Ecologists are increasingly looking to cutting-edge artifi-

cial intelligence (AI) methodology, such as deep learning

and computer vision technologies, to mitigate the need for

labor-intensive processing of digital aerial imagery and to

improve monitoring efficiency. For example, deep learning

has been applied to aid in digital aerial surveys conducted

with various sensor systems, including RGB (i.e., images

coded in red green blue colors) (Hong et al., 2019; Liu

et al., 2018), thermal (Corcoran et al., 2019), and other

sensor systems (Wang et al., 2019). However, several chal-

lenges need to be addressed regarding recognition perfor-

mance for real-world digital aerial imagery applications of

AI methods. These include (1) the imbalanced distribution

challenge – extremely imbalanced data distributions that

generally lead to poor recognition performance; (2) the

annotation uncertainty in categorization challenge – uncer-

tainty in annotation caused by various reasons such as

varying image resolutions of avian individuals; and (3) the

dataset discrepancy challenge – images collected from dif-

ferent study sites (i.e., geographies) that have different

characteristics and classes.

To examine these challenges in detail, we use a case study

of two real-world digital aerial survey datasets of waterbird

species: one collected from the Atlantic Ocean near Cape

Cod, Massachusetts, and the other from Lake Michigan near

Manitowoc, Wisconsin, USA. We also present solutions,

accompanied by brief literature reviews for each challenge,

focusing on how the computer science community has previ-

ously addressed these types of challenges. We aim to increase

awareness of these challenges within the ecological commu-

nity, clarify the factors affecting AI recognition performance,

demonstrate the flexibility of deep learning methods, and

promote future research in AI and digital aerial surveys.

Avian Recognition

Aerial images of birds may include a few or many individuals

depending on resources being used by those birds and

flocking behavior displayed by species-specific bird groups.

Thus implementation of AI methods for identifying the spe-

cies consists of two distinct tasks (Fig. 1): (1) identifying and

cropping out (also referred to as detecting and bounding)

each individual in the image and (2) recognizing species and

type (e.g., male or female, sub-adult or adult).

Although AI counting of number of individuals in large

aggregations is possible (Descamps et al., 2011) [e.g., auto-

mated methods for delineating trees in aerial images of for-

ests (Dalponte et al., 2019) and image segmentation

methods of various types of geographical objects, such as

land cover and land use types, from aerial images (Volpi &

Tuia, 2018)], AI cropping methods of birds in aerial images

remain to be better developed. Therefore, in this work, we

focus on task 2 because task 1 has been addressed by stud-

ies like (Hong et al., 2019; Weinstein et al., 2021). In other

words, we used only sets of data that consist of images of

individuals that have already been cropped out either man-

ually or through the application of AI procedures. The task

at hand then is to build an AI model that automatically

recognizes (i.e., classifies) avian species from aerial image

segments cropped to include only one individual, often at

relatively coarse levels of resolution.

Dataset

For our case study, we used an aerial imagery dataset col-

lected from two study sites over bodies of water: the

Atlantic Ocean near Cape Cod, Massachusetts, and Lake

Michigan near Manitowoc, Wisconsin, USA. After data

collection, wildlife experts manually annotated and

cropped images of individual birds (i.e., targets; Fig. 1).

These images were then passed to a classification algo-

rithm for species classification (Guirado et al., 2019; Liu

et al., 2018). The 10 682 individuals identified in the

Cape Cod dataset and 236 identified in the Lake Michi-

gan dataset were annotated by experts into the six differ-

ent classes illustrated in Figure 2A and B:

Figure 1. This example shows how a raw aerial image is processed into the final species classification in our case study. Once the raw aerial

images are collected, potential objects in the raw images are detected and bounded with boxes either manually or by automatic detection tools

(Hong et al., 2019). We used manual bounding boxes from human annotators in our case study. Once the potential objects were cropped around

the bounding boxes, our task was to build a deep learning classification model to recognize the actual avian species from these cropped images.
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Figure 2. (A) The distribution of our dataset is imbalanced. The classes are sorted by the sample sizes of each class in Cape Cod. The blue, orange,

and green colors represent training and testing images from Cape Cod and testing images from Lake Michigan, respectively. In Cape Cod, the largest

class, Common Eider, has more than 6246 training images, while the smallest class, Long-tailed Duck, only has 17 training images. In other words,

the imbalance ratio of the Cape Cod dataset is 367:1. Lake Michigan dataset only has two classes, Long-tailed Duck and Non-target Species, and it is

also imbalanced in terms of class sizes. Long-tailed Duck from Lake Michigan has 231 images, while there are only five images for Non-target Species.

y-axis is on log scale. (B) The six classes in the Cape Cod dataset have a hierarchical relationship. Non-target plus three target classes – Scoter Super-

class, Common Eider, Long-tailed Duck; and Scoter Super-class could further be categorized/annotated as Black Scoter, White-winged Scoter, and

Unknown Scoter. The reason not all Scoter Super-class images could be further categorized to the species level was related to image resolution in our

dataset – coarse resolution images posed substantial difficulties for human annotators to make accurate annotations of whether some images were

Black Scoter or White-winged Scoter. Specifically, the average image dimension of Unknown Scoter was 56 9 61, while the average image dimen-

sions of Black Scoter and White-winged Scoter were 100 9 107 and 96 9 103, respectively. Unknown Scoter can be considered a coarse annotation

of Black Scoter and White-winged Scoter because it contains images of either one of the two scoter classes but without species-level annotations. On

the other hand, we note that the Non-target Species class includes images that do not belong to the other five classes (i.e., mutually exclusive). (c)

Long-tailed Duck images from Lake Michigan are 3–4 times larger than those from Cape Cod.
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1. Unknown Scoters (scoter individuals that human

annotators could not distinguish to the species level)

2. Black Scoter (Melanitta americana)

3. White-winged Scoter (Melanitta deglandi)

4. Common Eider (Somateria mollissima)

5. Long-tailed Duck (Clangula hyemalis)

6. Non-target Species (all other avian or non-avian indi-

viduals not belonging to the previous classes).

Our model was mainly trained on the Cape Cod data-

set. Lake Michigan data were used to evaluate the model’s

generalization ability (prediction and recognition perfor-

mance) in different environments and study sites. In

other words, we used Lake Michigan data to examine

whether the model trained on the Cape Cod dataset could

generalize well on the Lake Michigan dataset. Addition-

ally, the Non-target Species class from Lake Michigan

does not contain images of target species from Cape Cod.

The details of data pre-processing for the experiments are

reported in the Appendix S1 (Data section).

Challenges of Avian Recognition in
Aerial Imagery

Training with a standard deep learning
classification model

We started by applying a standard six-class classification

model (i.e., the fundamental classification model without

any additional components designed for tasks other than

classification) to our Cape Cod dataset because there are

six classes (i.e., we treated the Unknown Scoter and the

other two scoter classes as three separate classes). The

model we used was ResNet-50 (He et al., 2016), a com-

mon deep learning convolutional neural network (CNN).

The test results from this model are reported in Table 1a.

The implementation and hyperparameter tuning details

are in the Appendix S1 (Methods section).

Table 1a shows that in the Cape Cod test set, except

for the largest class (i.e., most frequently observed class),

Common Eider, which had a 99.0% test accuracy, the

remaining classes did not produce accurate recognition

performance with the standard classification model. Spe-

cifically, the two smallest classes (i.e., least observed clas-

ses), Long-tailed Duck and White-winged Scoter, had 0.0

and 9.5% test accuracy. This performance inconsistency is

negatively related to the training size of each class. In

other words, the fewer training images a class had, the

less accurate the model was. We also tested our model on

the Lake Michigan data, and the performance was also

poor. These results indicate that directly applying a stan-

dard classification model on our avian datasets is insuffi-

cient to produce good recognition performance. Next, we

discuss the causes of this performance inconsistency in

the context of imbalanced distribution, annotation uncer-

tainty in categorization, and dataset discrepancies.

Challenge 1: avian imagery data are
naturally imbalanced

Data collected during multi-species surveys tend to have

an imbalanced (i.e., long-tailed) species distribution

because of the natural composition of animal communi-

ties (Pimm et al., 2014). Several dominant species are

often observed along with many infrequent species that

are sparsely represented in datasets. As illustrated in Fig-

ure 2 row (A), in the Cape Cod dataset, the largest class

had 6246 training images, while the smallest class only

had 17 training images. This training data distribution

imbalance leads to a substantial recognition performance

inconsistency. The fewer training images of a particular

species that the model has, the lower the accuracy for that

species. In our experiment, the performance was particu-

larly poor for species with smaller training datasets, such

as Long-tailed Duck (17 training images) and White-

winged Scoter (45 training images), which had 0.0 and

9.5% test accuracy, respectively (Table 1a). However,

Common Eider, the largest class in the dataset (6,246

images), had a 99.0% test accuracy.

Challenge 2: annotation uncertainty in
categorization

Sometimes aerial data can be collected from aircraft at

various distances from the ground surface, resulting in

varying spatial resolutions as measured by ground sam-

pling distances (GSDs; i.e., the ground distance between

the centers of neighboring image pixels). Thus, the same

species may appear at different image resolutions (i.e.,

number of pixels) within a dataset (Weinstein

et al., 2021). For example, in the Cape Cod dataset, the

average image dimension of Unknown Scoter images was

56 9 61 (number of pixels in image width and height),

while the average image dimensions of Black Scoter and

White-winged Scoter were 100 9 107 and 96 9 103,

respectively. In other words, Unknown Scoter images

contain 3–4 times fewer pixels on average. Coarse-

resolution images increase human annotators’ difficulties

in making accurate classifications resulting in a coarse

annotation rather than individual species annotation of

scoter images. Unknown Scoter is one example of coarsely

annotated classes (Fig. 2B).

Directly incorporating this coarsely annotated class as

an independent class confused the classification models

substantially because the model was forced to distinguish

similar-looking avian individuals as different classes. In

other words, because Unknown Scoter contains images
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that can be either Black Scoter or White-winged Scoter,

Unknown Scoter images share similar visual features with

Black Scoter and White-winged Scoter. Therefore, for a

classification model, it is hard to distinguish instances

among these three scoter classes. For example, Figure A.1

(A) shows that although Unknown Scoter and Black

Scoter had relatively sufficient training images (466 and

341 training images, respectively), 40.7% of the Black

Scoter images were misclassified as Unknown Scoter, and

23.7% of the Unknown Scoter images were mis-classified

as Black Scoter. In addition, 61.9% of the White-winged

Scoter were misclassified as Unknown Scoter.

Table 1. Experiment results.

(a) The standard classification model trained on the Cape Cod training set performed poorly on the Cape Cod and the Lake Michigan test sets.

Test accuracy (%)

Species

Cape Cod Lake Michigan

Cape Cod Lake MichiganTrain # Test # Test #

Unknown Scoter 466 114 - 69.3 -

Black Scoter 341 108 - 55.6 -

White-winged Scoter 45 21 - 9.5 -

Common Eider 6246 3172 - 99.0 -

Long-tailed Duck 17 5 231 0.0 0.0

Non-target Species 108 38 5 18.4 20.0

Average accuracy (%) 41.9 10.0

(b) The imbalanced model substantially improved the test performance from the standard model on the Cape Cod test set.

Test accuracy (%)

Species Train # Test # Standard Imbalanced

Unknown Scoter 466 114 69.3 41.2

Black Scoter 341 108 55.6 59.3

White-winged Scoter 45 21 9.5 81.0

Common Eider 6246 3172 99.0 91.9

Long-tailed Duck 17 5 0.0 100.0

Non-target Species 108 38 18.4 81.6

Average accuracy (%) 41.9 75.8

(c) On the Cape Cod test set, our soft-fine pseudo-labeling (SPL) approach improved the performance of White-winged Scoter from the

imbalanced model by exploiting Unknown Scoter.

Test accuracy (%)

Species Train # Test # Standard Imbalanced Imb. + Two-Stage Imb. + SPL (Ours)

Black Scoter 341 108 96.3 91.7 93.5 89.8

White-winged Scoter 45 21 33.3 85.7 71.4 90.5

Common Eider 6246 3172 99.4 91.2 93.0 91.5

Long-tailed Duck 17 5 0.0 100.0 100.0 100.0

Non-target Species 108 38 36.8 78.9 68.4 81.6

Average accuracy of the two scoter classes (%) 64.8 88.7 82.5 90.1

Average accuracy (%) 53.2 89.5 82.3 90.7

(d) With FixMatch as the adaptation component, our model trained on the Cape Cod dataset performed substantially better than methods

without the adaptation component

Test accuracy (%)

Species Test # Standard Imbalanced + SPL Imbalanced + SPL + Adaptation

Long-tailed Duck 231 0.0 50.2 80.9

Non-target Species 5 20.0 80.0 80.0

Average accuracy (%) 10.0 65.1 80.5
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Challenge 3: dataset discrepancies often
arise among different study sites

In addition to the imbalanced distribution and annotation

uncertainty challenges, in practice, ecological monitoring

projects often expand over time (Steenweg et al., 2017).

New monitoring and study sites are often added, leading to

discrepancies among datasets in lighting conditions, back-

ground environment, atmospheric conditions, image cap-

turing distances, and animal species compositions. For

example, in our case study, Cape Cod and Lake Michigan

datasets have different GSDs, which result in different

image resolutions and appearances of avian individuals

from the same species (Fig. 2C). The Long-tailed Duck

images from Cape Cod have 3–4 times the resolution of

Lake Michigan images and thus contain more visual details

and features. As a result, a classification model trained on

coarse-resolution images (Cape Cod) may perform poorly

on images with finer-scale resolution (Lake Michigan). For

example, the standard model trained on the Cape Cod

dataset only had a 10.0% test performance on the Lake

Michigan dataset (Table 1a). We demonstrate in the follow-

ing “Methods and Results” section that this poor perfor-

mance did not only come from imbalanced distribution

but also from dataset discrepancies.

In addition to image appearance discrepancies in datasets

from different study sites, expanding surveys or monitoring

programs can also change the composition of animal species

recorded (Kays et al., 2020). For example, as data collections

continue over time, previously undetected species may be

encountered (Prach & Walker, 2011) [e.g., less frequent spe-

cies (Pimm et al., 2014), recolonizing species (David Mech

et al., 2019), reintroduced animals (Taylor et al., 2017), or

invasive species that are harmful to the ecosystem (Caravaggi

et al., 2016; Clavero & Garcia-Berthou, 2005)]. When novel

species are introduced, our standard classification model is no

longer effective because conventional AI methods require

datasets to have fixed numbers of classes (Arjovsky

et al., 2019). Therefore, novel species are typically unrecogniz-

able (i.e., not able to be assigned to a category).

Methods and Results

In this section, we provide brief literature reviews of how

the computer science community addresses the challenges

mentioned in the previous section and present solutions

to each challenge.

Solutions for the imbalanced distribution
challenge

Imbalanced recognition and long-tailed recognition are

areas of machine learning and computer vision research

that address imbalanced classification problems (Cao

et al., 2019; Liu et al., 2019; Wang et al., 2020). Common

methods include the following:

1. Training data resampling: artificially balancing train-

ing datasets by either sampling more images from

smaller classes (i.e., up-sampling) or sampling fewer

images from larger classes (i.e., down-sampling) (He

& Garcia, 2009).

2. Training loss re-weighting: assigning different weights

(i.e., training focus) to the training loss functions

based on the number of training images in each class

such that the model can have a stronger focus on

smaller classes (Cao et al., 2019; Cui et al., 2019; Lin,

Goyal, et al., 2017).

3. Knowledge transfer: transferring information (such as

semantic and visual knowledge) from larger classes to

enhance the distinguishability of smaller classes for

better classification performance, usually through

memory banks and multi-stage training (Kang

et al., 2019; Liu et al., 2019; Zhou et al., 2020). For

example, Liu et al. (2019) proposed a method that

improves recognition performance on smaller classes

by exploiting knowledge stored in a memory bank.

4. Multi-expert models: combining outputs from multi-

ple experts/sub-models for optimal performance. By

assigning data to different experts/sub-models (either

through different sampling methods or information

complexity metrics), each expert/sub-model can be

trained to focus on different parts of the dataset (e.g.,

abundant or rare classes). As a result, the joint deci-

sion of expert models (either through geometric

mean or learned fusion mechanisms) can yield more

robust performance compared with single-model

methods. (Cai et al., 2021; Wang et al., 2020; Zhou

et al., 2020).

We used an easy-to-implement yet powerful method

called Label Distribution Aware Marginal loss with

Deferred Re-Weighting (LDAM-DRW; Cao et al., 2019)

to address the imbalanced data distribution in our data-

set. Generally speaking, LDAM-DRW is a margin (i.e.,

sample distance to classifiers) based loss in addition to a

scheduled re-weighting technique. LDAM calculates class-

specific margins based on the sample size of each class.

The fewer training samples a class has, the farther the

samples should be from the classifier (i.e., larger margin

and thus less confusion), and vice versa. In addition,

DRW is a scheduled re-weighting technique that controls

when re-weighting based on class sample sizes should be

applied to the loss function (Cao et al., 2019; Cui

et al., 2019). Compared with traditional re-weighting and

re-balancing methods, LDAM-DRW avoids overfitting on

rare classes in the early training stage, when the learning

rate is relatively larger, and maintains recognition
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performance on abundant classes through class-specific

margins. In addition, LDAM-DRW does not rely on mul-

tiple expert models, which makes the implementation rel-

atively more straightforward. Details of the LDAM-DRW

we used are reported in the Appendix S1 (Methods

section).

The classification model with an imbalanced compo-

nent (LDAM-DRW in our experiments) substantially

improved the recognition performance on the Cape Cod

dataset over the standard classification model (Table 1b).

The average class accuracy improved from 41.9 to 75.8%.

The largest gain came from the two smallest classes,

Long-tailed Duck and White-winged Scoter, from 0.0 to

100.0% and 9.5 to 81.0%, respectively. Despite the

improvements in the less abundant classes, the perfor-

mance of Common Eider dropped by 7.1%, which is a

common phenomenon of imbalanced methods where the

performance of large classes is sacrificed (Liu et al., 2019;

Wang et al., 2020).

The confusion matrices (Figure A.1) show that the

imbalanced model cleared most of the confusion in Long-

tailed Duck and White-winged Scoter because LDAM-

DRW assigned larger margins and loss weights to these

classes with limited training samples. However, the imbal-

anced model still struggled to perform well on Unknown

Scoter and Black Scoter, with only 41.2 and 59.3% test

accuracy, respectively. From Figure A.1(B), it is clear that

the confusion within the three scoter classes was still sub-

stantial. For example, the imbalanced model misclassified

about 44% of Unknown Scoter as either Black Scoter or

White-winged Scoter. Meanwhile, about 31% of Black

Scoter and 19% of White-winged Scoter were misclassi-

fied as Unknown Scoter.

Solutions for the annotation uncertainty in
categorization challenge

Since Unknown Scoter introduced substantial confusion

to the model and the recognition of Unknown Scoter

does not provide species-level information for down-

stream tasks like population modeling, it is more practical

to exclude these coarsely annotated data from model

training to eliminate the confusion. When Unknown Sco-

ter is excluded, the task becomes a five-class classification

problem. In our experiment, the average class accuracy of

fully excluding Unknown Scoter from training and testing

improved from 41.9 to 53.2% on the standard model and

75.8 to 89.5% on the imbalanced model compared with

the six-class classification results because there was no

confusion from Unknown Scoter (Table 1b,c).

However, directly excluding coarsely annotated data is

a sub-optimal solution because images with different res-

olutions can provide complementary information that

ultimately improves the generalization abilities of classifi-

cation models (Lin, Doll�ar, et al., 2017). Since Unknown

Scoter in our dataset may be the class of relatively coarse

resolution images of either Black Scoter or White-winged

Scoter, these images may still provide information to

improve model performance at the species level, especially

when ground-truthed annotations (i.e., human annota-

tions in this context) are limited. For example, although

the five-class imbalanced model vastly improved the test

accuracy of White-winged Scoter from 9.5 to 85.7%

(Table 1c, column Imbalanced), additional performance

can be gained by exploiting information contained in

Unknown Scoter.

Hierarchical classification is one of the common

options addressing uncertain and coarse annotations

(Deng et al., 2014). For example, we can split the training

process into two stages. In the first stage, we merge

Unknown Scoter, Black Scoter, and White-winged Scoter

data into one single super-class, Scoter Super-class, and

train a classification model on four independent classes

(Scoter Super-class, Common Eider, Long-tailed Duck,

and Non-target Species). Then, we can train a separate

classifier to classify only Black Scoter and White-winged

Scoter in the second stage. However, training with multi-

ple stages can quickly become a scaling and model man-

agement problem if the dataset has multiple super-classes.

Each super-class requires an independent second-stage

model and training process. As the number of super-

classes increases, the number of models grows as well,

such that the overall training time and model manage-

ment efforts are substantially increased. In addition, the

performance error can accumulate because the perfor-

mance of second-stage models depends on the perfor-

mance of super-classes in the first stage. For example, on

White-winged Scoter, only 17 out of the 21 testing images

were classified as Scoter Super-class, and the second stage

model was only able to classify from the 17 images and

yielded inferior performance compared with single-stage

Imbalanced model (Table 1c, column Imb. + Two-Stage).

A novel solution: soft-fine pseudo-labels

An alternative solution is to exploit additional informa-

tion from coarsely annotated Unknown Scoter images

without including it as an independent class while keep-

ing the imbalanced component effective on White-winged

Scoter. Therefore, we applied a novel solution called Soft-

fine Pseudo-Labels (SPL) to address the coarse/uncertain

annotation problem that relied only on one stage of train-

ing. The method is derived from pseudo-label techniques,

a set of techniques in machine learning that use model

predictions (i.e., pseudo-labels) to improve the generaliza-

tion ability of machine learning models (Cascante-Bonilla
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et al., 2021; Lee, 2013; Sohn et al., 2020). Pseudo-label

techniques were originally developed to address semi-

supervised learning, where the predictions of unlabeled/

unannotated data are used as pseudo-labels (i.e., labels

that are generated and not ground-truthed) to tune the

model iteratively (Lee, 2013). However, the creation of

pseudo-labels for improved model generalization is not

limited to the semi-supervised setting.

Figure 3A illustrates the differences in treating the three

scoter classes using our SPL approach compared with

standard and two-stage models. Unlike conventional

pseudo-label approaches in semi-supervised learning that

generate pseudo-labels for all possible classes, in our

approach, we only use Unknown Scoter images to gener-

ate finer-grained Black and White-winged Scoter pseudo-

labels. Specifically, we first normalized the outputs of the

classification model (five dimension vectors) with a Soft-

max function (Hinton et al., 2015). Then we normalized

the values that represent Black Scoter and White-winged

Scoter to 1 and set the other three values to 0 (Fig. 3B).

We used these normalized Softmax values as our soft-fine

labels on Unknown Scoter images with an Averaged

Binary Cross-entropy (ABCE) loss, which is a loss func-

tion traditionally used for samples with multiple co-

occurring labels (Tsoumakas & Katakis, 2007).

Our SPL approach forces the model to distinguish

between scoter versus non-scoter images because the gen-

erated soft-fine pseudo-labels (i.e., training signals) have

zeros on the dimensions that represent non-scoter classes.

In addition, since the generated soft-fine pseudo-labels

had co-occurring labels for both Black Scoter and White-

winged Scoter that were treated independently by ABCE

loss, the confusion between these two scoter classes was

also suppressed. The implementation details can be found

in the Appendix S1 (Methods section), and the results of

our case study are reported in Table 1c.

As a result, incorporating Unknown Scoter for comple-

mentary information with our SPL approach further

improved the test accuracy of White-winged Scoter from

85.7 to 90.5% compared with the imbalanced model,

Figure 3. (A) We graphically depict how the three scoter classes can be classified using different approaches. Under the standard approach,

Unknown Scoter is treated as an independent class. Under the two-stage setting, the three scoter classes are firstly grouped into one super-class,

Scoter Super-class, and then a separate model is trained solely for Black and White-winged Scoter classification. With our SPL approach, coarsely

annotated Unknown Scoter images are converted to finer-grained pseudo-labels and used to improve model generalization. US. is Unknown Sco-

ter. BS. is Black Scoter. WS. is White-winged Scoter. SP. is Scoter Super-class. (B) A diagram of our SPL approach to solving the annotation uncer-

tainty challenge using a novel soft-fine pseudo-labeling method. The soft-fine labels are generated by normalizing the Softmax outputs of

Unknown Scoter images. To generate the soft-fine pseudo-labels for coarsely annotated Unknown Scoter images, first, we normalized the two

values representing Black Scoter and White-winged Scoter from the Softmax outputs to 1 and set the other values to zero. Then, the new vectors

were used as the pseudo-labels with soft supervision (i.e., the supervision values are less than 1) on either Black Scoter or White-winged Scoter.

With this approach, the supervision from Unknown Scoter is not as strong as independent classes but still relevant to force the model to recog-

nize the images as scoters with higher probabilities than the other classes. Further, this framework does not rely on multiple stages of training

and class merging, such that the imbalanced model can still be effective on White-winged Scoter. SPL, Soft-fine pseudo-labels.
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which did not use Unknown Scoter data during training

(column Imb. + SPL in Table 1c). In addition, the perfor-

mance of the non-scoter classes was also improved, espe-

cially Non-target Species, which increased from 78.9 to

81.6% compared with the imbalanced model. These

improvements indicate that the use of SPL with coarsely

annotated data not only relieved the confusion among the

scoter classes (Black Scoter and White-winged Scoter) but

also among other classes (Figure A.2). However, in hierar-

chical classification, the performance of other classes was

almost the same, if not worse (except for Black Scoter),

compared with the six-class classification results

(Table 1b). Further, the only additional components to

the imbalanced model are the SPL normalization and

ABCE loss, making this approach scalable without requir-

ing multiple stages of training. These advantages make

SPL more versatile and universal compared with simple

hierarchical classification approaches.

However, despite the scalability and the exclusion of

coarse annotation confusion, the proposed SPL can sacri-

fice some performance in the two scoter classes (Black Sco-

ter and White-winged Scoter) compared with hierarchical

classification. For example, the effective test accuracy of

Black Scoter was 93.5% using two-stage training, whereas it

was only 89.8% using our soft-fine label approach

(Table 1c). The uncertainty during SPL training likely was

the leading cause of this performance drop because the

model was trained to identify all species at once with

pseudo-labels (i.e., labels that are not ground-truthed).

Unknown Scoter evaluation

In our five-class classification experiments, we only

focused on the test performance of samples with finer-

grained annotations. With our SPL approach, although

Unknown Scoter data were exploited during training, they

were excluded from testing because of the lack of finer-

grained annotations. Directly applying classification

models to provide fine-grained predictions can be partic-

ularly challenging when images are too blurry for species

to be recognized, as we noted in some of the Unknown

Scoter images (Figure A.3). How to efficiently address

these blurry images during test time is one of the future

research directions.

Solutions for the dataset discrepancy
challenge

Visual discrepancies

We tested the performance of our SPL model trained

from the Cape Cod dataset on the Lake Michigan dataset.

Because of the visual discrepancies between the Cape Cod

and Lake Michigan datasets, the average accuracy of the

two classes in Lake Michigan dropped substantially from

90.7 to 65.1% (Table 1c,d). Only 50.2% of the Long-

tailed Ducks in Lake Michigan data were correctly classi-

fied when the test accuracy on the Cape Code dataset was

100.0% (Table 1c,d, Imbalanced + SPL). These results

also show that after the imbalanced distribution challenge

was addressed, the model still did not perform well on

Long-tailed Duck from Lake Michigan.

One of the most common approaches to address the

challenge of incorporating data from new study sites is to

fine-tune existing models with new annotations (i.e.,

transfer learning) (Yosinski et al., 2014). In our example,

we need to provide sufficient annotated Lake Michigan

data to fine-tune our Cape Cod model such that the

model can recognize targets from both study sites.

Although the total number of images in the Lake Michi-

gan dataset is relatively small (236 images in our case

study) and thus easy to annotate, the effort and resources

needed for human annotation on larger datasets are not

trivial.

Two machine learning techniques that can help an AI

classification model adapt to new sets of data that look

different without human annotations are the following:

1. Domain adaptation: This technique adapts models

trained from one domain (study sites in this context)

to other domains either with or without annotations

(Peng et al., 2019; Saenko et al., 2010; Venkateswara

et al., 2017). Although they can be recognized as the

same classes by humans, images from different

domains tend to have different distributions in terms

of color, texture, and visual appearance. These differ-

ences result in distribution discrepancies of the

learned feature/latent vectors at the end of CNN

models. Thus, distribution confusion is the most com-

monly adopted domain adaptation technique. The

technique confuses the feature vector distributions of

each domain (usually without class annotations) such

that the models cannot distinguish which domain the

feature vectors come from and learn to use more fun-

damental information (e.g., structural similarities) to

make recognition (Hoffman et al., 2018; Liu, Miao,

et al., 2020; Tzeng et al., 2017). Although domain

adaptation approaches with distribution confusion

may perform better than most other methods, they

usually require complicated distribution matching

and confusion techniques. For example, one of the

state-of-the-art methods, Open Compound Domain

Adaptation (OCDA; Liu, Miao, et al., 2020), requires

four stages of training and tuning and largely relies

on considerable training data, which can be too com-

plicated for small datasets with a limited number of

classes and training data.
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2. Semi-supervised learning: This technique is an alterna-

tive option and is usually more straightforward in

terms of implementation (Lee, 2013; Sohn

et al., 2020). Semi-supervised learning uses unlabeled/

unannotated data to improve the generalization abil-

ity of AI models, usually through the generation of

pseudo-labels (Zhu & Goldberg, 2009). Intrinsically,

similar to the mechanisms of advanced domain adap-

tation approaches with distribution confusion, semi-

supervised learning also expands the feature vector

distribution by learning from unannotated data (Zhu

& Goldberg, 2009). In practice, when data are col-

lected from new study sites, they are treated as unan-

notated data, and pseudo-labels are then generated

for fine-tuning existing models.

Here, we explored how a relatively easy-to-implement

semi-supervised learning method, FixMatch (Sohn

et al., 2020), adapted our Cape Cod model to Lake Mich-

igan images. FixMatch is a pseudo-label method com-

bined with a technique called consistency regularization.

With consistency regularization, models are trained to

produce consistent outputs of the same inputs (images in

this context) that vary by different perturbations such as

data augmentation (French et al., 2017). In other words,

model outputs of the same inputs are expected to be the

same regardless of the perturbation so that the models

can focus more on the invariant (or consistently distin-

guishing) features of inputs, thus improving generaliza-

tion ability (Xie et al., 2019, 2020). FixMatch perturbs the

same inputs (unannotated Lake Michigan data in our

experiments) with two augmentation procedures: weak

and strong augmentations. Specifically, weakly augmented

data are similar to the raw inputs and thus easier for the

model to recognize. On the contrary, strongly augmented

data are largely distorted from raw inputs and thus hard

to recognize. FixMatch uses predictions of weakly aug-

mented inputs as pseudo-labels to train strongly aug-

mented counterparts, which intrinsically regularizes the

consistency of the same inputs from two different pertur-

bations (Sohn et al., 2020). In our experiments, every

Lake Michigan image was augmented weakly and

strongly, and the model regularized the outputs from

both augmentations of the same image. The implementa-

tion of FixMatch is straightforward because the only extra

component required by FixMatch is a two-branch train-

ing data augmentation procedure. It can be plugged into

our SPL model and other existing AI models without

complicated components. The details of this method are

provided in Appendix S1 (Methods section).

In Table 1d, we report the results of applying FixMatch

as the adaptation component to fine-tuning the Cape

Cod model on the Lake Michigan data. Although Fix-

Match was not initially designed for domain adaptation

(i.e., only for semi-supervised learning tasks), it still sub-

stantially improved the classification accuracy on the Lake

Michigan Lake dataset without any annotations. Com-

pared with our SPL approach without the adaptation

component, the class averaged accuracy improved from

65.1 to 80.5%. Most of the improvements came from

Long-tailed Duck, which increased its accuracy from 50.2

to 80.9%.

Novel species

When novel species are introduced, domain adaptation

and semi-supervised learning methods are no longer

effective because conventional AI recognition methods

require datasets to have fixed numbers of classes

(Arjovsky et al., 2019). Therefore, novel species are typi-

cally unrecognizable. Similar to adapting models to new

domains, model fine-tuning through transfer learning

with annotated data is also one of the most widely

adopted methods to expand the models’ recognition

capacity (Yosinski et al., 2014). However, since it is

uncertain which individuals in the newly collected data-

sets are of novel species, a complete annotation (i.e., a

considerable amount of human effort) is necessary for

model fine-tuning.

In such circumstances, improving the efficiency of

human annotation becomes a challenge. Ideally, it is pos-

sible to automatically identify all the images of novel spe-

cies, and human effort can focus solely on these images

rather than all the newly collected data. Out-of-

distribution detection (OOD; DeVries & Taylor, 2018;

Scheirer et al., 2013) is one of the related research areas

in machine learning that attempts to discover novel sam-

ples during test time.

Modern OOD approaches for deep learning usually

apply prediction confidence calibration to separate known

and novel samples (Liang et al., 2018; Liu, Wang,

et al., 2020). In other words, since traditional Softmax-

based deep learning models are often overly confident

(even on novel samples) (Guo et al., 2017), calibrating

the confidence of sample predictions can be effective at

separating known and novel samples. Common

approaches include the following:

1. Confidence enhancement: using additional functions

such as smoothed Softmax or energy function to

reduce the overconfidence of model predictions such

that it is easier to find an effective prediction confi-

dence threshold that separates known versus novel

samples (Grathwohl et al., 2019; Guo et al., 2017;

Hsu et al., 2020; Liang et al., 2018; Liu, Wang,

et al., 2020; Szegedy et al., 2016).

2. Distance-based OOD: using geometrical distances

between samples (e.g., Euclidean distance,
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Mahalanobis distance, and cosine similarity) in

learned feature/latent embedding spaces as a novelty

metric. The distance can be calculated between sam-

ples and class centroids (geometric mean) or nearest

neighbors (Chen et al., 2020; Liu et al., 2019; Miao

et al., 2019; Ren et al., 2021; Techapanurak

et al., 2020).

3. Novel sample generation: generating artificial novel

samples (through data augmentation and generative

models) to train AI models to produce lower confi-

dence predictions on novel samples during testing

(Goodfellow et al., 2020; Hein et al., 2019).

A more straightforward approach can be applied when

non-target species are in the dataset. In most real-world

datasets, especially aerial imagery of small-bodied animals

with uncertain human annotations, there are often

instances of non-target animal species. When we treat

these non-target instances as a single class, we can train

AI models to classify target versus non-target animal spe-

cies. Then all the images that are classified as non-target

during test time can be sent to human experts for verifi-

cation. Intrinsically, target versus non-target classification

is an OOD technique. For example, Figure 2B shows that

target versus non-target species are usually mutually

exclusive, and a classifier can be learned between these

two sets of classes. Thus, during test time, AI models are

very likely to classify images of novel species (unknown

to the Cape Cod model in our experiment) as non-target

species.

In comparing the methods listed in Table 1d, we set an

independent class in both Cape Cod and Lake Michigan

datasets for non-target species. Non-Target Species in

Lake Michigan does not contain target species in Cape

Cod. In the Lake Michigan data (Table 1d), our model

successfully identified most of the non-target species

(with 80.0% test accuracy), although non-target species in

Lake Michigan did not necessarily overlap with those in

the Cape Cod dataset. In addition, since the model is

trained from Cape Cod, it can classify all four target spe-

cies from Cape Cod (such as Long-tailed Duck). How-

ever, when there are insufficient training data for non-

target species, it can be difficult for classification models

to generalize well on novel species, and thus, more

advanced OOD methods may be necessary.

Conclusion

We tackled three challenges of automated avian recogni-

tion in aerial imagery datasets and how various methods

can be applied to address these challenges. We evaluated

how well existing and our novel SPL approach performed

with respect to these three challenges using data from

Cape Cod and Lake Michigan.

First, we demonstrated that the classification perfor-

mance of a standard model is severely curtailed by an

imbalance of the number of images of particular species.

We showed that this imbalanced distribution challenge

can be substantially mitigated by applying a simple imbal-

anced recognition method (LDAM-DRW), especially on

classes with limited training samples like Long-tailed

Duck and White-winged Scoter.

Second, we demonstrated that the classification perfor-

mance of both standard one-stage and hierarchical classi-

fication methods was poor on data that included

uncertainty in human annotations because of coarse reso-

lution issues. This annotation uncertainty in categoriza-

tion challenge results in some images being assigned to a

coarse annotation (Unknown Scoter). We then demon-

strated that classification performance could be much

improved using our novel SPL approach that provides a

link between coarse and fine-grained annotations. In par-

ticular, our approach generated soft-fine pseudo-labels

from coarse Unknown Scoter annotations to improve the

model’s generalization/recognition ability on Black Scoter

and White-winged Scoter classes. With our approach, we

were able to exploit coarsely annotated data for better

model generalization and keep the imbalanced component

effective on White-winged Scoter.

Third, we demonstrated that the test performance

could be substantially improved using FixMatch when

adapting models from data at one site to classifying data

at another site. The dataset discrepancies challenge may

often cause inconsistent classification performance. In our

experiments, we attached FixMatch onto our SPL

approach to address resolution discrepancies between

datasets from Cape Cod and Lake Michigan and achieved

better performance than baselines on the Lake Michigan

data without additional annotations. We also experimen-

ted with the possibility of using a non-target class, Non-

target Species, to detect novel species during testing. Our

results show that the model could identify most of the

Non-target Species images from the Lake Michigan

dataset.

Although each solution we have discussed has its

intrinsic limitations, these methods are often flexible and

can be combined to accommodate specific requirements.

For example, the imbalanced model with LDAM-DRW

was combined with SPL and FixMatch to address imbal-

anced distribution, coarse annotations, and domain dis-

crepancies. We have also demonstrated that existing

methods can be easily adjusted for specific tasks. For

example, our SPL approach is derived from pseudo-label

approaches from semi-supervised learning and multi-label

classification.

In addition, the solutions can be easily replaced by

more advanced methods in the future if necessary. For
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example, when the number of training classes gets bigger,

the imbalanced ratio among classes gets larger, and the

data distribution gets more long-tailed (i.e., a larger pro-

portion of classes have limited training samples), LDAM-

DRW can be replaced by state-of-the-art long-tailed rec-

ognition methods like Routing Diverse Distribution-

Aware Experts (RIDE; Wang et al., 2020) to produce

optimal results. When the domain discrepancies among

datasets get more complicated, such as multiple types of

backgrounds, FixMatch can be replaced by domain adap-

tation methods like OCDA for unlimited possibilities of

target domains.

On the other hand, some of the challenges we have

listed are not specific to aerial avian recognition. For

example, imbalanced and long-tailed distribution also

exists in ecological datasets derived from other sensor sys-

tems such as camera traps (Miao et al., 2021) and bio-

acoustic monitors (Chronister et al., 2021) because natu-

ral animal communities are imbalanced (Pimm

et al., 2014). In addition, real-world challenges are not

limited to the three examples we displayed in this paper.

For example, when combined with automated detection

processes, more complicated challenges are intertwined.

Through the examples presented here and the literature

cited, we have discussed the ways to challenge decomposi-

tion and hope to demonstrate the flexibility of deep

learning methods, open doors to the ecological commu-

nity, and promote further research.
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Table A.1. Details of Cape Cod training-testing split, and

Lake Michigan testing set.

Table A.2. List of hyperparameters used in the baseline

experiments.

Table A.3. Augmentation pool for FixMatch fine-tuning.

Figure A.1. On the Cape Cod test set, the model generally

performed poorly because of the imbalanced data distri-

bution, and substantial recognition confusion exists

among the three scoter classes.

Figure A.2. Our SPL approach further reduced the confu-

sion within Black Scoter and White-winged Scoter from

the imbalanced model within the Cape Cod test set.

Figure A.3. It is hard to verify the predictions of

Unknown Scoter images.
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