Universal Weakly Supervised Segmentation by Pixel-to-Segment Contrastive Learning

Tsung-Wei Ke

Jyh-Jing Hwang

Stella X. Yu

Semantic Segmentation: Classify Pixels into Semantic Categories

State-of-the-art Methods Require Pixel-wise Annotations

https://paperswithcode.com/sota/semantic-segmentation-on-pascal-voc-2012

Image	Image Tags	Boxes	
	Person Motorbike		
Supervision	Coarse		
Current Methods	Class Activation Map		

Image	Image Tags	Boxes	
	Person Motorbike		
Supervision	Coarse		
Current Methods	Class Activation Map		

Training AffinityNet (Section 3.2) Generating Segmentation Labels (Section 3.3, 3.4) **Learning Segmentation Net** Training **Class Activation** Affinity Training **Class Activation** Segmentation Segmentation Training Maps (CAMs) Labels Maps (CAMs) Labels Labels Images Images Images Random Walk Seg Net Label Input Input AffinityNet AffinityNet **Affinity Matrix**

Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation. Jiwoon Ahn and Suha Kwak. CVPR 2018.

Image	Image Tags	Boxes	Points	Scribbles
	Person Motorbike		•	
Supervision	Coarse		Sparse	
Current Methods	Class Activation Map		Conditional Random Fields	

Image	Image Tags	Boxes	Points	Scribbles
	Person Motorbike		•	
Supervision	Coarse		Sparse	
Current Methods	Class Activation Map		Conditional Random Fields	

Normalized Cut Loss for Weakly-supervised CNN Segmentation. Tang et al. CVPR 2018.

Image	Image Tags	Boxes	Points	Scribbles
	Person Motorbike		•	
Supervision	Coarse		Sparse	
Current Methods	Class Activation Map		Conditional Random Fields	
Our Method	single pixel-to-segment contrastive learning loss formulation			

Our SPML: Contrasts Pixels with Segments on 4 Types of Relationships

 $L(i) = \lambda_I L_{\text{SegSort}^+}(i, \mathcal{V}^+, \mathcal{V}^-) + \lambda_C L_{\text{SegSort}^+}(i, \mathcal{C}^+, \mathcal{C}^-) + \lambda_O L_{\text{SegSort}^+}(i, \mathcal{O}^+, \mathcal{O}^-) + \lambda_A L_{\text{SegSort}^+}(i, \hat{\mathcal{C}}^+, \hat{\mathcal{C}}^-)$

Contrastive loss for pixel *i* with positive segments C^+ , negative segments C^- :

$$L_{\text{SegSort}}^{i} = -\log \frac{\exp(\kappa \boldsymbol{p}_{s}^{\top} \boldsymbol{e}_{i})}{\sum_{l \in \Omega} \exp(\kappa \boldsymbol{p}_{l}^{\top} \boldsymbol{e}_{i})}.$$

SegSort: Segmentation by Discriminative Sorting of Segments. Hwang et al. ICCV 2019.

Beats All Weak Supervision SOTA's on Pascal VOC & DensePose

VOC 2012

Pascal: Varying sparsity of scribbles and point annotation

Context-Aware Segment Retrieval via Learned Pixel-wise Feature

Code available at https://github.com/twke18/SPML

