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Abstract

Vision-based reinforcement learning (RL) is successful,
but how to generalize it to unknown test environments re-
mains challenging. Existing methods focus on training an RL
policy that is universal to changing visual domains, whereas
we focus on extracting visual foreground that is universal,
feeding clean invariant vision to the RL policy learner. Our
method is completely unsupervised, without manual annota-
tions or access to environment internals.

Given videos of actions in a training environment, we
learn how to extract foregrounds with unsupervised keypoint
detection, followed by unsupervised visual attention to auto-
matically generate a foreground mask per video frame. We
can then introduce artificial distractors and train a model
to reconstruct the clean foreground mask from noisy obser-
vations. Only this learned model is needed during test to
provide distraction-free visual input to the RL policy learner.

Our Visual Attention and Invariance (VAI) method sig-
nificantly outperforms the state-of-the-art on visual domain
generalization, gaining 15∼49% (61∼229%) more cumula-
tive rewards per episode on DeepMind Control (our Drawer-
World Manipulation) benchmarks. Our results demonstrate
that it is not only possible to learn domain-invariant vision
without any supervision, but freeing RL from visual distrac-
tions also makes the policy more focused and thus far better.

1. Introduction

Vision-based deep reinforcement learning (RL) has
achieved considerable success on robot control and manipu-
lation. Visual inputs provide rich information that are easy
and cheap to obtain with cameras [31, 32, 27, 9, 8]. However,
vision-based RL remains challenging: It not only needs to
process high-dimensional visual inputs, but it is also required
to deal with significant variations in new test scenarios (Fig.
1), e.g. color/texture changes or moving distractors [34, 2].

One solution is to learn an ensemble of policies, each
handling one type of variations [44]. However, anticipating
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Figure 1: Top) Two ways to make vision-based reinforce-
ment learning generalizable to unknown environments at the
test time: Existing methods focus on learning an RL policy
that is universal to varying domains, whereas our proposed
Visual Attention and Invariance (VAI) extracts visual fore-
ground that is universal, feeding clean and invariant vision
to RL. Bottom) VAI significantly outperforms PAD (SOTA),
increasing cumulative rewards by 49% and 61% respectively
in random color tests on DeepMind control and random
texture tests on our DrawWorld manipulation benchmarks.

all possible variations quickly becomes infeasible; domain
randomization methods [48, 53, 42, 43, 58] apply augmenta-
tions in a simulated environment and train a domain-agnostic
universal policy conditioned on estimated discrepancies be-
tween testing and training scenarios.

Two caveats limit the appeal of a universal RL policy. 1)
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2) Unsupervised Visual Attention
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3) Self-supervised Visual Invariance
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We thank all three reviewers for their insightful comments!
R2 regards our causal inference with counterfactual reason-
ing ... serves as a valuable point of inspiration for future
research. R3 believes that our idea is novel and interesting
and our experimental results have demonstrated the superi-
ority of the proposed algorithm. R4 acknowledges that the
paper generally is trying to solve an important challenge.
The method is also novel. The performance is strong. We
also appreciate R4’s potential willingness to change the rat-
ing to strong accept because it can be a really impactful
work. We are committed to reproducible research, clear
writing, and public code release.
[R2: 3.1, 3.5, 5] Clarifications for goals. We reduce visual
training and testing inconsistencies by reducing distractions:
variations irrelevant to the task and interfering generaliza-
tion of the learned model, e.g., noise, texture, color, and
background movements. While PAD uses test-time adapta-
tion to handle such inconsistencies, we achieve better results
without using the test-time data, with more stability, with
less compute and latency. Our work also surpasses concur-
rent work SODA1, which tries to solve a similar discrepancy
problem with soft data augmentation (see answer R4: 3.5).
[R2: 3.2, 3.6] What’s the RL agent/setting/assumption?
We assume the same setting as SAC, which is the RL baseline
that was used in PAD, SODA and our VAI. We assume
episodic settings and focus on model-free RL agents. Please
refer to the SAC paper for details. Pelase note that we do not
add any additional assumptions for agent dynamics.
[R2: 3.4] Evidence that data augmentation leads to in-
stability. It is indicated by experiment settings of domain
randomization on Page 5 of the PAD paper that RL with
augmented data often causes training to be more unstable or
even couldn’t converge, which requires really careful con-
trol of the augmentation strength to avoid collapsing. Our
work is meaningful in eliminating augmentation instability
by decoupling these two stages.
[R3: 3.2, 5.2] VAI vs. RL data augmentation only. We
only use weak augmentation to eliminate accidental leakage

1SODA: Hansen N, Wang X. Generalization in Reinforcement Learning by Soft
Data Augmentation. arXiv preprint arXiv:2011.13389.

of pixels from adapter. Table 5 and local experiments on
DeepMind Control show that augmentation contributes little.
[R3: 5.4] Why sample 20 trajectories? VAI uses images
from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher
env because the goal location changes across episodes. If
we only sample within an episode, the algorithm will never
learn to detect the goal. If the goal moves in an episode, such
sampling across episodes may not be needed.
[R3: 5.7] Effect of the de-noise trick. De-noise is a pre-
processing to remove slowly-moving video background. We
find our VAI with de-noise trick reduces most distractions
without influencing the main moving part of the agent.
[R4: 3.1] Qualitative results were shown in section 4 of
supplementary materials. We will add more visualizations.
[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
supplementary materials, section 3. The original keypoints
method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
[R4: 3.4, 5.1-2] What if the training data are noisy/hard?
The reason why PAD, SODA and our method VAI focus on
adapting test-time noise is that unexpected test-time noise
has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).

[R4: 3.5] Comparisons with concurrent work SODA.
The average return of VAI outperforms SODA (conv) on
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R2 regards our causal inference with counterfactual reason-
ing ... serves as a valuable point of inspiration for future
research. R3 believes that our idea is novel and interesting
and our experimental results have demonstrated the superi-
ority of the proposed algorithm. R4 acknowledges that the
paper generally is trying to solve an important challenge.
The method is also novel. The performance is strong. We
also appreciate R4’s potential willingness to change the rat-
ing to strong accept because it can be a really impactful
work. We are committed to reproducible research, clear
writing, and public code release.
[R2: 3.1, 3.5, 5] Clarifications for goals. We reduce visual
training and testing inconsistencies by reducing distractions:
variations irrelevant to the task and interfering generaliza-
tion of the learned model, e.g., noise, texture, color, and
background movements. While PAD uses test-time adapta-
tion to handle such inconsistencies, we achieve better results
without using the test-time data, with more stability, with
less compute and latency. Our work also surpasses concur-
rent work SODA1, which tries to solve a similar discrepancy
problem with soft data augmentation (see answer R4: 3.5).
[R2: 3.2, 3.6] What’s the RL agent/setting/assumption?
We assume the same setting as SAC, which is the RL baseline
that was used in PAD, SODA and our VAI. We assume
episodic settings and focus on model-free RL agents. Please
refer to the SAC paper for details. Pelase note that we do not
add any additional assumptions for agent dynamics.
[R2: 3.4] Evidence that data augmentation leads to in-
stability. It is indicated by experiment settings of domain
randomization on Page 5 of the PAD paper that RL with
augmented data often causes training to be more unstable or
even couldn’t converge, which requires really careful con-
trol of the augmentation strength to avoid collapsing. Our
work is meaningful in eliminating augmentation instability
by decoupling these two stages.
[R3: 3.2, 5.2] VAI vs. RL data augmentation only. We
only use weak augmentation to eliminate accidental leakage
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of pixels from adapter. Table 5 and local experiments on
DeepMind Control show that augmentation contributes little.
[R3: 5.4] Why sample 20 trajectories? VAI uses images
from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher
env because the goal location changes across episodes. If
we only sample within an episode, the algorithm will never
learn to detect the goal. If the goal moves in an episode, such
sampling across episodes may not be needed.
[R3: 5.7] Effect of the de-noise trick. De-noise is a pre-
processing to remove slowly-moving video background. We
find our VAI with de-noise trick reduces most distractions
without influencing the main moving part of the agent.
[R4: 3.1] Qualitative results were shown in section 4 of
supplementary materials. We will add more visualizations.
[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
supplementary materials, section 3. The original keypoints
method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
[R4: 3.4, 5.1-2] What if the training data are noisy/hard?
The reason why PAD, SODA and our method VAI focus on
adapting test-time noise is that unexpected test-time noise
has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).

[R4: 3.5] Comparisons with concurrent work SODA.
The average return of VAI outperforms SODA (conv) on
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ing ... serves as a valuable point of inspiration for future
research. R3 believes that our idea is novel and interesting
and our experimental results have demonstrated the superi-
ority of the proposed algorithm. R4 acknowledges that the
paper generally is trying to solve an important challenge.
The method is also novel. The performance is strong. We
also appreciate R4’s potential willingness to change the rat-
ing to strong accept because it can be a really impactful
work. We are committed to reproducible research, clear
writing, and public code release.
[R2: 3.1, 3.5, 5] Clarifications for goals. We reduce visual
training and testing inconsistencies by reducing distractions:
variations irrelevant to the task and interfering generaliza-
tion of the learned model, e.g., noise, texture, color, and
background movements. While PAD uses test-time adapta-
tion to handle such inconsistencies, we achieve better results
without using the test-time data, with more stability, with
less compute and latency. Our work also surpasses concur-
rent work SODA1, which tries to solve a similar discrepancy
problem with soft data augmentation (see answer R4: 3.5).
[R2: 3.2, 3.6] What’s the RL agent/setting/assumption?
We assume the same setting as SAC, which is the RL baseline
that was used in PAD, SODA and our VAI. We assume
episodic settings and focus on model-free RL agents. Please
refer to the SAC paper for details. Pelase note that we do not
add any additional assumptions for agent dynamics.
[R2: 3.4] Evidence that data augmentation leads to in-
stability. It is indicated by experiment settings of domain
randomization on Page 5 of the PAD paper that RL with
augmented data often causes training to be more unstable or
even couldn’t converge, which requires really careful con-
trol of the augmentation strength to avoid collapsing. Our
work is meaningful in eliminating augmentation instability
by decoupling these two stages.
[R3: 3.2, 5.2] VAI vs. RL data augmentation only. We
only use weak augmentation to eliminate accidental leakage

1SODA: Hansen N, Wang X. Generalization in Reinforcement Learning by Soft
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of pixels from adapter. Table 5 and local experiments on
DeepMind Control show that augmentation contributes little.
[R3: 5.4] Why sample 20 trajectories? VAI uses images
from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher
env because the goal location changes across episodes. If
we only sample within an episode, the algorithm will never
learn to detect the goal. If the goal moves in an episode, such
sampling across episodes may not be needed.
[R3: 5.7] Effect of the de-noise trick. De-noise is a pre-
processing to remove slowly-moving video background. We
find our VAI with de-noise trick reduces most distractions
without influencing the main moving part of the agent.
[R4: 3.1] Qualitative results were shown in section 4 of
supplementary materials. We will add more visualizations.
[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
supplementary materials, section 3. The original keypoints
method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
[R4: 3.4, 5.1-2] What if the training data are noisy/hard?
The reason why PAD, SODA and our method VAI focus on
adapting test-time noise is that unexpected test-time noise
has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).

[R4: 3.5] Comparisons with concurrent work SODA.
The average return of VAI outperforms SODA (conv) on
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of pixels from adapter. Table 5 and local experiments on
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from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher
env because the goal location changes across episodes. If
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sampling across episodes may not be needed.
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[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
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method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
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The reason why PAD, SODA and our method VAI focus on
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has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).
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We thank all three reviewers for their insightful comments!
R2 regards our causal inference with counterfactual reason-
ing ... serves as a valuable point of inspiration for future
research. R3 believes that our idea is novel and interesting
and our experimental results have demonstrated the superi-
ority of the proposed algorithm. R4 acknowledges that the
paper generally is trying to solve an important challenge.
The method is also novel. The performance is strong. We
also appreciate R4’s potential willingness to change the rat-
ing to strong accept because it can be a really impactful
work. We are committed to reproducible research, clear
writing, and public code release.
[R2: 3.1, 3.5, 5] Clarifications for goals. We reduce visual
training and testing inconsistencies by reducing distractions:
variations irrelevant to the task and interfering generaliza-
tion of the learned model, e.g., noise, texture, color, and
background movements. While PAD uses test-time adapta-
tion to handle such inconsistencies, we achieve better results
without using the test-time data, with more stability, with
less compute and latency. Our work also surpasses concur-
rent work SODA1, which tries to solve a similar discrepancy
problem with soft data augmentation (see answer R4: 3.5).
[R2: 3.2, 3.6] What’s the RL agent/setting/assumption?
We assume the same setting as SAC, which is the RL baseline
that was used in PAD, SODA and our VAI. We assume
episodic settings and focus on model-free RL agents. Please
refer to the SAC paper for details. Pelase note that we do not
add any additional assumptions for agent dynamics.
[R2: 3.4] Evidence that data augmentation leads to in-
stability. It is indicated by experiment settings of domain
randomization on Page 5 of the PAD paper that RL with
augmented data often causes training to be more unstable or
even couldn’t converge, which requires really careful con-
trol of the augmentation strength to avoid collapsing. Our
work is meaningful in eliminating augmentation instability
by decoupling these two stages.
[R3: 3.2, 5.2] VAI vs. RL data augmentation only. We
only use weak augmentation to eliminate accidental leakage

1SODA: Hansen N, Wang X. Generalization in Reinforcement Learning by Soft
Data Augmentation. arXiv preprint arXiv:2011.13389.

of pixels from adapter. Table 5 and local experiments on
DeepMind Control show that augmentation contributes little.
[R3: 5.4] Why sample 20 trajectories? VAI uses images
from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher
env because the goal location changes across episodes. If
we only sample within an episode, the algorithm will never
learn to detect the goal. If the goal moves in an episode, such
sampling across episodes may not be needed.
[R3: 5.7] Effect of the de-noise trick. De-noise is a pre-
processing to remove slowly-moving video background. We
find our VAI with de-noise trick reduces most distractions
without influencing the main moving part of the agent.
[R4: 3.1] Qualitative results were shown in section 4 of
supplementary materials. We will add more visualizations.
[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
supplementary materials, section 3. The original keypoints
method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
[R4: 3.4, 5.1-2] What if the training data are noisy/hard?
The reason why PAD, SODA and our method VAI focus on
adapting test-time noise is that unexpected test-time noise
has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).

[R4: 3.5] Comparisons with concurrent work SODA.
The average return of VAI outperforms SODA (conv) on
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We thank all three reviewers for their insightful comments!
R2 regards our causal inference with counterfactual reason-
ing ... serves as a valuable point of inspiration for future
research. R3 believes that our idea is novel and interesting
and our experimental results have demonstrated the superi-
ority of the proposed algorithm. R4 acknowledges that the
paper generally is trying to solve an important challenge.
The method is also novel. The performance is strong. We
also appreciate R4’s potential willingness to change the rat-
ing to strong accept because it can be a really impactful
work. We are committed to reproducible research, clear
writing, and public code release.
[R2: 3.1, 3.5, 5] Clarifications for goals. We reduce visual
training and testing inconsistencies by reducing distractions:
variations irrelevant to the task and interfering generaliza-
tion of the learned model, e.g., noise, texture, color, and
background movements. While PAD uses test-time adapta-
tion to handle such inconsistencies, we achieve better results
without using the test-time data, with more stability, with
less compute and latency. Our work also surpasses concur-
rent work SODA1, which tries to solve a similar discrepancy
problem with soft data augmentation (see answer R4: 3.5).
[R2: 3.2, 3.6] What’s the RL agent/setting/assumption?
We assume the same setting as SAC, which is the RL baseline
that was used in PAD, SODA and our VAI. We assume
episodic settings and focus on model-free RL agents. Please
refer to the SAC paper for details. Pelase note that we do not
add any additional assumptions for agent dynamics.
[R2: 3.4] Evidence that data augmentation leads to in-
stability. It is indicated by experiment settings of domain
randomization on Page 5 of the PAD paper that RL with
augmented data often causes training to be more unstable or
even couldn’t converge, which requires really careful con-
trol of the augmentation strength to avoid collapsing. Our
work is meaningful in eliminating augmentation instability
by decoupling these two stages.
[R3: 3.2, 5.2] VAI vs. RL data augmentation only. We
only use weak augmentation to eliminate accidental leakage

1SODA: Hansen N, Wang X. Generalization in Reinforcement Learning by Soft
Data Augmentation. arXiv preprint arXiv:2011.13389.

of pixels from adapter. Table 5 and local experiments on
DeepMind Control show that augmentation contributes little.
[R3: 5.4] Why sample 20 trajectories? VAI uses images
from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher
env because the goal location changes across episodes. If
we only sample within an episode, the algorithm will never
learn to detect the goal. If the goal moves in an episode, such
sampling across episodes may not be needed.
[R3: 5.7] Effect of the de-noise trick. De-noise is a pre-
processing to remove slowly-moving video background. We
find our VAI with de-noise trick reduces most distractions
without influencing the main moving part of the agent.
[R4: 3.1] Qualitative results were shown in section 4 of
supplementary materials. We will add more visualizations.
[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
supplementary materials, section 3. The original keypoints
method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
[R4: 3.4, 5.1-2] What if the training data are noisy/hard?
The reason why PAD, SODA and our method VAI focus on
adapting test-time noise is that unexpected test-time noise
has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).

[R4: 3.5] Comparisons with concurrent work SODA.
The average return of VAI outperforms SODA (conv) on

Figure 2: Our VAI method has three components. 1) Unsupervised keypoint detection: Given two adjacent video frames, we
learn to predict keypoints and visual features from each image so that foreground features and target keypoints can be used to
reconstruct the target frame, without any manual annotations. 2) Unsupervised visual attention: We apply causal inference
to remove the model bias from the foreground mask derived from detected keypoints. 3) Self-supervised visual invariance:
We are then able to add artificial distractors and train a model to reconstruct the clean foreground observations. Keypoint and
attention modules are only used during training to extract foregrounds from videos without supervision, whereas only the last
encoder/decoder (colored in green) trained for visual invariance is used to remove distractors automatically at the test time.

Model complexity. The policy learner must have enough
complexity to fit a large variety of environments. While there
are universal visual recognition and object detection models
that can adapt to multiple domains [45, 55], it would be
hard to accomplish the same with a RL policy network often
containing only a few convolutional layers. 2) Training in-
stability. RL training could be brittle, as gradients for (often
non-differentiable) dynamic environments can only be ap-
proximated with a high variance through sampling. Adding
strong augmentations adds variance and further instability,
causing inability to converge. [15] handles instability with
weaker augmentations, in turn reducing generalization.

The state-of-the-art (SOTA) approach, PAD [15], per-
forms unsupervised policy adaption with a test-time auxil-
iary task (e.g. inverse dynamic prediction) to fine-tune the
visual encoder of the policy network on the fly. However,
there is no guarantee that intermediate representations would
fit the control part of the policy network. Drastic environ-
ment changes such as background texture change from grid
to marble can cause feature mismatches between adapted
layers and frozen layers, resulting in high failure rates.

Instead of pursuing a policy that is universal to changing
visual domains, we propose to extract visual foreground that
is universal, and then feed clean invariant vision to a standard
RL policy learner (Fig. 2). As the visual observation varies
little between training and testing, the RL policy can be
simplified and focused, delivering far better results.

Our technical challenge is to deliver such clean visuals
with a completely unsupervised learning approach, without
mannual annotations or access to environment internals.

Given videos of actions in a training environment, we
first learn how to extract visual foreground with unsuper-
vised keypoint detection followed by unsupervised visual
attention to automatically generate a foreground mask per
video frame. We can then introduce artificial distractors

and train a model to reconstruct the clean foreground mask
from noisy observations. Only this learned model, not the
keypoint or attention model, is needed during test to provide
distraction-free visual input to the RL policy learner.

Our unsupervised Visual Attention and Invariance (VAI)
method has several desirable properties.
1. Unsupervised task-agnostic visual adaption training.

Our foreground extraction only assumes little background
change between adjacent video frames, requiring no man-
ual annotations or knowledge of environment internals
(e.g. get samples with altered textures). It does not de-
pend on the task, policy learning, or task-specific rewards
associated with RL. That is, for different tasks in the same
environment, we only need to collect one set of visual
observations and train one visual adapter, which gets us a
huge saving in real-world robotic applications.

2. Stable policy training, no test-time adaptation. By
freeing RL from visual distractions, our policy learning
is stable and fast without being subject to strong domain
augmentations, and our policy deployment is immediate
without test-time fine-tuning.

3. Clear interpretation and modularization. We extract
keypoints from videos to identify foreground, based on
which attentional masks can be formed. This unsuper-
vised foreground parsing allows us to anticipate visual
distractions and train a model to restore clean foregrounds.
Compared to existing methods that work on intermediate
features, our method has clear assumptions at each step,
which can be visualized, analyzed, and improved.
We conduct experiments on two challenging benchmarks

with diverse simulation environments: DeepMind Control
suite [51, 15] and our DrawerWorld robotic manipulation
tasks with texture distortions and background distractions
during deployment. Our VAI significantly outperforms the
state-of-the-art, gaining 15∼49% (61∼229%) more cumula-



tive rewards per episode on DeepMind Control (our Drawer-
World Manipulation) benchmarks.

To summarize, we make the following contributions.
1. We propose a novel domain generalization approach for

vision-based RL: Instead of learning a universal policy
for varying visual domains, we decouple vision and ac-
tion, learning to extract universal visual foreground while
keeping the RL policy learning intact.

2. We propose a fully unsupervised, task-agnostic visual
adaptation method that removes unseen distractions and
restores clean foreground visuals. Without manual anno-
tations, strong domain augmentations, or test-time adapta-
tion, our policy training is stable and fast, and our policy
deployment is immediate without any latency.

3. We build unsupervised keypoint detection based on
KeyNet [22] and Transporter [24]. We develop a novel
unsupervised visual attention module with causal infer-
ence for counterfactual removal. We achieve visual in-
variance by unsupervised distraction adaptation based on
foreground extraction. Each step is modularized and has
clear interpretations and visualizations.

4. We propose DrawerWorld, a pixel-based robotic manip-
ulation benchmark, to test the adaptation capability of
vision-based RL to various realistic textures.

5. Our results demonstrate that it is not only possible to learn
domain-invariant vision from videos without supervision,
but freeing RL from visual distractions also leads to better
policies, setting new SOTA by a large margin.

2. Related Works
Unsupervised Learning has made much progress in nat-
ural language processing, computer vision, and RL. It
aims to learn a feature transferable to downstream tasks
[7, 37, 25, 6, 57, 17, 5, 4, 56]. In RL, UNREAL [21] pro-
poses unsupervised reinforcement and auxiliary learning to
improve learning efficiency of model-free RL algorithms,
by maximizing pseudo-reward functions; CPC [38] learns
representations for RL in 3D environments by predicting the
future in the latent space with autoregressive models; CURL
[49] extracts high-level features from raw pixels using con-
trastive learning and performs off-policy control on extracted
features to improve data-efficiency on pixel-based RL.
Domain Adaptation incorporates an adaptation module to
align the feature distribution from the source domain and the
target domain without paired data [39, 28, 47, 30, 62, 11].
There are various approaches to this, from using supervised
data [63, 28, 47], to assumed correspondences [13], to unsu-
pervised approaches [1, 54, 62].
Multi-domain Learning learns representations for multiple
domains known a prior [23, 35, 45, 55]. A combination of
shared and domain-specific parameters are adopted. It is
also feasible to simply learn multiple visual domains with
residual domain adapters [45, 55].

Our work is different from these works, since we do not have
prior knowledge of test data distributions and the model
needs to generalize to unknown test environments.
Robustness to Distribution Shifts studies the effect of cor-
ruptions, perturbations, out-of-distribution examples, and
real-world distribution shifts [36, 29, 20, 33, 43, 19]. Recent
deep RL approaches model such uncertainties explicitly.
[18] uses recurrent neural networks for direct adaptive con-
trol and determines dynamic model parameters on-the-fly.
UP-OSI [60] applies indirect adaptive control for online pa-
rameter identification. EPOpt [44] uses simulated source
domains and adversarial training to learn policies that are ro-
bust and generalizable to a range of possible target domains.
PAD [15] uses self-supervision to continue policy training
during deployment without any rewards, achieving SOTA
in several environments. SODA [16], a concurrent work to
ours, alternates strong augmentations associated with self-
supervised learning and weak augmentations associated with
RL for obtaining both generalizability and stability.
Instead of demanding a universal policy that is invariant to
distribution shifts or transferable to novel environments, we
achieve generalizability by demanding universal visuals that
can be fed into the subsequent RL policy learner, freeing it
from visual distractions and making it more effective.

3. Unsupervised Visual Attention & Invariance
Our goal is to extract universal visual foreground and then

feed clean invariant vision to an RL policy learner (Fig. 2).
Our technical challenge is to deliver such clean visuals with
a completely unsupervised learning approach, without man-
nual annotations or access to environment internals.

Our VAI method has three components: Unsupervised
keypoint detection, unsupervised visual attention, and self-
supervised visual invariance. The first two are only used
during training to extract foregrounds from videos without
supervision, whereas only the last trained model is deployed
to automatically remove distractors from a test video.

3.1. Unsupervised Keypoint Detection

We assume that training videos contain moving fore-
grounds against a relatively still background. Our idea for
unsupervised foreground extraction is the following: Given
two such source and target frames, we can learn to predict
keypoints and visual features from each image so that fore-
ground features and target keypoints can be used to recon-
struct the target frame, without requiring manual annotations.

For a particular image pair, the moving foreground may
have a still part (upper body), or the background may have
a moving part (flickering flames) . However, when the key-
point predictor and the visual feature extractor have to work
consistently across all the videos in the same environment,
they would have to focus on the entire moving foreground
and disregard the random minor background motion.
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We thank all three reviewers for their insightful comments!
R2 regards our causal inference with counterfactual reason-
ing ... serves as a valuable point of inspiration for future
research. R3 believes that our idea is novel and interesting
and our experimental results have demonstrated the superi-
ority of the proposed algorithm. R4 acknowledges that the
paper generally is trying to solve an important challenge.
The method is also novel. The performance is strong. We
also appreciate R4’s potential willingness to change the rat-
ing to strong accept because it can be a really impactful
work. We are committed to reproducible research, clear
writing, and public code release.
[R2: 3.1, 3.5, 5] Clarifications for goals. We reduce visual
training and testing inconsistencies by reducing distractions:
variations irrelevant to the task and interfering generaliza-
tion of the learned model, e.g., noise, texture, color, and
background movements. While PAD uses test-time adapta-
tion to handle such inconsistencies, we achieve better results
without using the test-time data, with more stability, with
less compute and latency. Our work also surpasses concur-
rent work SODA1, which tries to solve a similar discrepancy
problem with soft data augmentation (see answer R4: 3.5).
[R2: 3.2, 3.6] What’s the RL agent/setting/assumption?
We assume the same setting as SAC, which is the RL baseline
that was used in PAD, SODA and our VAI. We assume
episodic settings and focus on model-free RL agents. Please
refer to the SAC paper for details. Pelase note that we do not
add any additional assumptions for agent dynamics.
[R2: 3.4] Evidence that data augmentation leads to in-
stability. It is indicated by experiment settings of domain
randomization on Page 5 of the PAD paper that RL with
augmented data often causes training to be more unstable or
even couldn’t converge, which requires really careful con-
trol of the augmentation strength to avoid collapsing. Our
work is meaningful in eliminating augmentation instability
by decoupling these two stages.
[R3: 3.2, 5.2] VAI vs. RL data augmentation only. We
only use weak augmentation to eliminate accidental leakage
of pixels from adapter. Table 5 and local experiments on
DeepMind Control show that augmentation contributes little.
[R3: 5.4] Why sample 20 trajectories? VAI uses images
from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher

1SODA: Hansen N, Wang X. Generalization in Reinforcement Learning by Soft
Data Augmentation. arXiv preprint arXiv:2011.13389.

env because the goal location changes across episodes. If
we only sample within an episode, the algorithm will never
learn to detect the goal. If the goal moves in an episode, such
sampling across episodes may not be needed.
[R3: 5.7] Effect of the de-noise trick. De-noise is a pre-
processing to remove slowly-moving video background. We
find our VAI with de-noise trick reduces most distractions
without influencing the main moving part of the agent.
[R4: 3.1] Qualitative results were shown in section 4 of
supplementary materials. We will add more visualizations.
[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
supplementary materials, section 3. The original keypoints
method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
[R4: 3.4, 5.1-2] What if the training data are noisy/hard?
The reason why PAD, SODA and our method VAI focus on
adapting test-time noise is that unexpected test-time noise
has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).

[R4: 3.5] Comparisons with concurrent work SODA.
The average return of VAI outperforms SODA (conv) on
challenging video background benchmarks. Note that the
“SODA (overlay)” uses an external dataset with 1.8M images.

Average return Walker,
walk

Walker,
stand

Cartpole,
swingup

Ball in cup,
catch

Finger,
spin

PAD [ICLR’2021] 169 435 176 249 355
SODA [Preprint] 635 903 474 539 363
VAI 870 966 624 790 569
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We thank all three reviewers for their insightful comments!
R2 regards our causal inference with counterfactual reason-
ing ... serves as a valuable point of inspiration for future
research. R3 believes that our idea is novel and interesting
and our experimental results have demonstrated the superi-
ority of the proposed algorithm. R4 acknowledges that the
paper generally is trying to solve an important challenge.
The method is also novel. The performance is strong. We
also appreciate R4’s potential willingness to change the rat-
ing to strong accept because it can be a really impactful
work. We are committed to reproducible research, clear
writing, and public code release.
[R2: 3.1, 3.5, 5] Clarifications for goals. We reduce visual
training and testing inconsistencies by reducing distractions:
variations irrelevant to the task and interfering generaliza-
tion of the learned model, e.g., noise, texture, color, and
background movements. While PAD uses test-time adapta-
tion to handle such inconsistencies, we achieve better results
without using the test-time data, with more stability, with
less compute and latency. Our work also surpasses concur-
rent work SODA1, which tries to solve a similar discrepancy
problem with soft data augmentation (see answer R4: 3.5).
[R2: 3.2, 3.6] What’s the RL agent/setting/assumption?
We assume the same setting as SAC, which is the RL baseline
that was used in PAD, SODA and our VAI. We assume
episodic settings and focus on model-free RL agents. Please
refer to the SAC paper for details. Pelase note that we do not
add any additional assumptions for agent dynamics.
[R2: 3.4] Evidence that data augmentation leads to in-
stability. It is indicated by experiment settings of domain
randomization on Page 5 of the PAD paper that RL with
augmented data often causes training to be more unstable or
even couldn’t converge, which requires really careful con-
trol of the augmentation strength to avoid collapsing. Our
work is meaningful in eliminating augmentation instability
by decoupling these two stages.
[R3: 3.2, 5.2] VAI vs. RL data augmentation only. We
only use weak augmentation to eliminate accidental leakage
of pixels from adapter. Table 5 and local experiments on
DeepMind Control show that augmentation contributes little.
[R3: 5.4] Why sample 20 trajectories? VAI uses images
from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher

1SODA: Hansen N, Wang X. Generalization in Reinforcement Learning by Soft
Data Augmentation. arXiv preprint arXiv:2011.13389.

env because the goal location changes across episodes. If
we only sample within an episode, the algorithm will never
learn to detect the goal. If the goal moves in an episode, such
sampling across episodes may not be needed.
[R3: 5.7] Effect of the de-noise trick. De-noise is a pre-
processing to remove slowly-moving video background. We
find our VAI with de-noise trick reduces most distractions
without influencing the main moving part of the agent.
[R4: 3.1] Qualitative results were shown in section 4 of
supplementary materials. We will add more visualizations.
[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
supplementary materials, section 3. The original keypoints
method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
[R4: 3.4, 5.1-2] What if the training data are noisy/hard?
The reason why PAD, SODA and our method VAI focus on
adapting test-time noise is that unexpected test-time noise
has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).

[R4: 3.5] Comparisons with concurrent work SODA.
The average return of VAI outperforms SODA (conv) on
challenging video background benchmarks. Note that the
“SODA (overlay)” uses an external dataset with 1.8M images.

Average return Walker,
walk

Walker,
stand

Cartpole,
swingup

Ball in cup,
catch

Finger,
spin

PAD [ICLR’2021] 169 435 176 249 355
SODA [Preprint] 635 903 474 539 363
VAI 870 966 624 790 569
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We thank all three reviewers for their insightful comments!
R2 regards our causal inference with counterfactual reason-
ing ... serves as a valuable point of inspiration for future
research. R3 believes that our idea is novel and interesting
and our experimental results have demonstrated the superi-
ority of the proposed algorithm. R4 acknowledges that the
paper generally is trying to solve an important challenge.
The method is also novel. The performance is strong. We
also appreciate R4’s potential willingness to change the rat-
ing to strong accept because it can be a really impactful
work. We are committed to reproducible research, clear
writing, and public code release.
[R2: 3.1, 3.5, 5] Clarifications for goals. We reduce visual
training and testing inconsistencies by reducing distractions:
variations irrelevant to the task and interfering generaliza-
tion of the learned model, e.g., noise, texture, color, and
background movements. While PAD uses test-time adapta-
tion to handle such inconsistencies, we achieve better results
without using the test-time data, with more stability, with
less compute and latency. Our work also surpasses concur-
rent work SODA1, which tries to solve a similar discrepancy
problem with soft data augmentation (see answer R4: 3.5).
[R2: 3.2, 3.6] What’s the RL agent/setting/assumption?
We assume the same setting as SAC, which is the RL baseline
that was used in PAD, SODA and our VAI. We assume
episodic settings and focus on model-free RL agents. Please
refer to the SAC paper for details. Pelase note that we do not
add any additional assumptions for agent dynamics.
[R2: 3.4] Evidence that data augmentation leads to in-
stability. It is indicated by experiment settings of domain
randomization on Page 5 of the PAD paper that RL with
augmented data often causes training to be more unstable or
even couldn’t converge, which requires really careful con-
trol of the augmentation strength to avoid collapsing. Our
work is meaningful in eliminating augmentation instability
by decoupling these two stages.
[R3: 3.2, 5.2] VAI vs. RL data augmentation only. We
only use weak augmentation to eliminate accidental leakage

1SODA: Hansen N, Wang X. Generalization in Reinforcement Learning by Soft
Data Augmentation. arXiv preprint arXiv:2011.13389.

of pixels from adapter. Table 5 and local experiments on
DeepMind Control show that augmentation contributes little.
[R3: 5.4] Why sample 20 trajectories? VAI uses images
from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher
env because the goal location changes across episodes. If
we only sample within an episode, the algorithm will never
learn to detect the goal. If the goal moves in an episode, such
sampling across episodes may not be needed.
[R3: 5.7] Effect of the de-noise trick. De-noise is a pre-
processing to remove slowly-moving video background. We
find our VAI with de-noise trick reduces most distractions
without influencing the main moving part of the agent.
[R4: 3.1] Qualitative results were shown in section 4 of
supplementary materials. We will add more visualizations.
[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
supplementary materials, section 3. The original keypoints
method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
[R4: 3.4, 5.1-2] What if the training data are noisy/hard?
The reason why PAD, SODA and our method VAI focus on
adapting test-time noise is that unexpected test-time noise
has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).

[R4: 3.5] Comparisons with concurrent work SODA.
The average return of VAI outperforms SODA (conv) on
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We thank all three reviewers for their insightful comments!
R2 regards our causal inference with counterfactual reason-
ing ... serves as a valuable point of inspiration for future
research. R3 believes that our idea is novel and interesting
and our experimental results have demonstrated the superi-
ority of the proposed algorithm. R4 acknowledges that the
paper generally is trying to solve an important challenge.
The method is also novel. The performance is strong. We
also appreciate R4’s potential willingness to change the rat-
ing to strong accept because it can be a really impactful
work. We are committed to reproducible research, clear
writing, and public code release.
[R2: 3.1, 3.5, 5] Clarifications for goals. We reduce visual
training and testing inconsistencies by reducing distractions:
variations irrelevant to the task and interfering generaliza-
tion of the learned model, e.g., noise, texture, color, and
background movements. While PAD uses test-time adapta-
tion to handle such inconsistencies, we achieve better results
without using the test-time data, with more stability, with
less compute and latency. Our work also surpasses concur-
rent work SODA1, which tries to solve a similar discrepancy
problem with soft data augmentation (see answer R4: 3.5).
[R2: 3.2, 3.6] What’s the RL agent/setting/assumption?
We assume the same setting as SAC, which is the RL baseline
that was used in PAD, SODA and our VAI. We assume
episodic settings and focus on model-free RL agents. Please
refer to the SAC paper for details. Pelase note that we do not
add any additional assumptions for agent dynamics.
[R2: 3.4] Evidence that data augmentation leads to in-
stability. It is indicated by experiment settings of domain
randomization on Page 5 of the PAD paper that RL with
augmented data often causes training to be more unstable or
even couldn’t converge, which requires really careful con-
trol of the augmentation strength to avoid collapsing. Our
work is meaningful in eliminating augmentation instability
by decoupling these two stages.
[R3: 3.2, 5.2] VAI vs. RL data augmentation only. We
only use weak augmentation to eliminate accidental leakage

1SODA: Hansen N, Wang X. Generalization in Reinforcement Learning by Soft
Data Augmentation. arXiv preprint arXiv:2011.13389.

of pixels from adapter. Table 5 and local experiments on
DeepMind Control show that augmentation contributes little.
[R3: 5.4] Why sample 20 trajectories? VAI uses images
from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher
env because the goal location changes across episodes. If
we only sample within an episode, the algorithm will never
learn to detect the goal. If the goal moves in an episode, such
sampling across episodes may not be needed.
[R3: 5.7] Effect of the de-noise trick. De-noise is a pre-
processing to remove slowly-moving video background. We
find our VAI with de-noise trick reduces most distractions
without influencing the main moving part of the agent.
[R4: 3.1] Qualitative results were shown in section 4 of
supplementary materials. We will add more visualizations.
[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
supplementary materials, section 3. The original keypoints
method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
[R4: 3.4, 5.1-2] What if the training data are noisy/hard?
The reason why PAD, SODA and our method VAI focus on
adapting test-time noise is that unexpected test-time noise
has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).

[R4: 3.5] Comparisons with concurrent work SODA.
The average return of VAI outperforms SODA (conv) on
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We thank all three reviewers for their insightful comments!
R2 regards our causal inference with counterfactual reason-
ing ... serves as a valuable point of inspiration for future
research. R3 believes that our idea is novel and interesting
and our experimental results have demonstrated the superi-
ority of the proposed algorithm. R4 acknowledges that the
paper generally is trying to solve an important challenge.
The method is also novel. The performance is strong. We
also appreciate R4’s potential willingness to change the rat-
ing to strong accept because it can be a really impactful
work. We are committed to reproducible research, clear
writing, and public code release.
[R2: 3.1, 3.5, 5] Clarifications for goals. We reduce visual
training and testing inconsistencies by reducing distractions:
variations irrelevant to the task and interfering generaliza-
tion of the learned model, e.g., noise, texture, color, and
background movements. While PAD uses test-time adapta-
tion to handle such inconsistencies, we achieve better results
without using the test-time data, with more stability, with
less compute and latency. Our work also surpasses concur-
rent work SODA1, which tries to solve a similar discrepancy
problem with soft data augmentation (see answer R4: 3.5).
[R2: 3.2, 3.6] What’s the RL agent/setting/assumption?
We assume the same setting as SAC, which is the RL baseline
that was used in PAD, SODA and our VAI. We assume
episodic settings and focus on model-free RL agents. Please
refer to the SAC paper for details. Pelase note that we do not
add any additional assumptions for agent dynamics.
[R2: 3.4] Evidence that data augmentation leads to in-
stability. It is indicated by experiment settings of domain
randomization on Page 5 of the PAD paper that RL with
augmented data often causes training to be more unstable or
even couldn’t converge, which requires really careful con-
trol of the augmentation strength to avoid collapsing. Our
work is meaningful in eliminating augmentation instability
by decoupling these two stages.
[R3: 3.2, 5.2] VAI vs. RL data augmentation only. We
only use weak augmentation to eliminate accidental leakage

1SODA: Hansen N, Wang X. Generalization in Reinforcement Learning by Soft
Data Augmentation. arXiv preprint arXiv:2011.13389.

of pixels from adapter. Table 5 and local experiments on
DeepMind Control show that augmentation contributes little.
[R3: 5.4] Why sample 20 trajectories? VAI uses images
from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher
env because the goal location changes across episodes. If
we only sample within an episode, the algorithm will never
learn to detect the goal. If the goal moves in an episode, such
sampling across episodes may not be needed.
[R3: 5.7] Effect of the de-noise trick. De-noise is a pre-
processing to remove slowly-moving video background. We
find our VAI with de-noise trick reduces most distractions
without influencing the main moving part of the agent.
[R4: 3.1] Qualitative results were shown in section 4 of
supplementary materials. We will add more visualizations.
[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
supplementary materials, section 3. The original keypoints
method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
[R4: 3.4, 5.1-2] What if the training data are noisy/hard?
The reason why PAD, SODA and our method VAI focus on
adapting test-time noise is that unexpected test-time noise
has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).

[R4: 3.5] Comparisons with concurrent work SODA.
The average return of VAI outperforms SODA (conv) on
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We thank all three reviewers for their insightful comments!
R2 regards our causal inference with counterfactual reason-
ing ... serves as a valuable point of inspiration for future
research. R3 believes that our idea is novel and interesting
and our experimental results have demonstrated the superi-
ority of the proposed algorithm. R4 acknowledges that the
paper generally is trying to solve an important challenge.
The method is also novel. The performance is strong. We
also appreciate R4’s potential willingness to change the rat-
ing to strong accept because it can be a really impactful
work. We are committed to reproducible research, clear
writing, and public code release.
[R2: 3.1, 3.5, 5] Clarifications for goals. We reduce visual
training and testing inconsistencies by reducing distractions:
variations irrelevant to the task and interfering generaliza-
tion of the learned model, e.g., noise, texture, color, and
background movements. While PAD uses test-time adapta-
tion to handle such inconsistencies, we achieve better results
without using the test-time data, with more stability, with
less compute and latency. Our work also surpasses concur-
rent work SODA1, which tries to solve a similar discrepancy
problem with soft data augmentation (see answer R4: 3.5).
[R2: 3.2, 3.6] What’s the RL agent/setting/assumption?
We assume the same setting as SAC, which is the RL baseline
that was used in PAD, SODA and our VAI. We assume
episodic settings and focus on model-free RL agents. Please
refer to the SAC paper for details. Pelase note that we do not
add any additional assumptions for agent dynamics.
[R2: 3.4] Evidence that data augmentation leads to in-
stability. It is indicated by experiment settings of domain
randomization on Page 5 of the PAD paper that RL with
augmented data often causes training to be more unstable or
even couldn’t converge, which requires really careful con-
trol of the augmentation strength to avoid collapsing. Our
work is meaningful in eliminating augmentation instability
by decoupling these two stages.
[R3: 3.2, 5.2] VAI vs. RL data augmentation only. We
only use weak augmentation to eliminate accidental leakage

1SODA: Hansen N, Wang X. Generalization in Reinforcement Learning by Soft
Data Augmentation. arXiv preprint arXiv:2011.13389.

of pixels from adapter. Table 5 and local experiments on
DeepMind Control show that augmentation contributes little.
[R3: 5.4] Why sample 20 trajectories? VAI uses images
from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher
env because the goal location changes across episodes. If
we only sample within an episode, the algorithm will never
learn to detect the goal. If the goal moves in an episode, such
sampling across episodes may not be needed.
[R3: 5.7] Effect of the de-noise trick. De-noise is a pre-
processing to remove slowly-moving video background. We
find our VAI with de-noise trick reduces most distractions
without influencing the main moving part of the agent.
[R4: 3.1] Qualitative results were shown in section 4 of
supplementary materials. We will add more visualizations.
[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
supplementary materials, section 3. The original keypoints
method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
[R4: 3.4, 5.1-2] What if the training data are noisy/hard?
The reason why PAD, SODA and our method VAI focus on
adapting test-time noise is that unexpected test-time noise
has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).

[R4: 3.5] Comparisons with concurrent work SODA.
The average return of VAI outperforms SODA (conv) on
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We thank all three reviewers for their insightful comments!
R2 regards our causal inference with counterfactual reason-
ing ... serves as a valuable point of inspiration for future
research. R3 believes that our idea is novel and interesting
and our experimental results have demonstrated the superi-
ority of the proposed algorithm. R4 acknowledges that the
paper generally is trying to solve an important challenge.
The method is also novel. The performance is strong. We
also appreciate R4’s potential willingness to change the rat-
ing to strong accept because it can be a really impactful
work. We are committed to reproducible research, clear
writing, and public code release.
[R2: 3.1, 3.5, 5] Clarifications for goals. We reduce visual
training and testing inconsistencies by reducing distractions:
variations irrelevant to the task and interfering generaliza-
tion of the learned model, e.g., noise, texture, color, and
background movements. While PAD uses test-time adapta-
tion to handle such inconsistencies, we achieve better results
without using the test-time data, with more stability, with
less compute and latency. Our work also surpasses concur-
rent work SODA1, which tries to solve a similar discrepancy
problem with soft data augmentation (see answer R4: 3.5).
[R2: 3.2, 3.6] What’s the RL agent/setting/assumption?
We assume the same setting as SAC, which is the RL baseline
that was used in PAD, SODA and our VAI. We assume
episodic settings and focus on model-free RL agents. Please
refer to the SAC paper for details. Pelase note that we do not
add any additional assumptions for agent dynamics.
[R2: 3.4] Evidence that data augmentation leads to in-
stability. It is indicated by experiment settings of domain
randomization on Page 5 of the PAD paper that RL with
augmented data often causes training to be more unstable or
even couldn’t converge, which requires really careful con-
trol of the augmentation strength to avoid collapsing. Our
work is meaningful in eliminating augmentation instability
by decoupling these two stages.
[R3: 3.2, 5.2] VAI vs. RL data augmentation only. We
only use weak augmentation to eliminate accidental leakage

1SODA: Hansen N, Wang X. Generalization in Reinforcement Learning by Soft
Data Augmentation. arXiv preprint arXiv:2011.13389.

of pixels from adapter. Table 5 and local experiments on
DeepMind Control show that augmentation contributes little.
[R3: 5.4] Why sample 20 trajectories? VAI uses images
from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher
env because the goal location changes across episodes. If
we only sample within an episode, the algorithm will never
learn to detect the goal. If the goal moves in an episode, such
sampling across episodes may not be needed.
[R3: 5.7] Effect of the de-noise trick. De-noise is a pre-
processing to remove slowly-moving video background. We
find our VAI with de-noise trick reduces most distractions
without influencing the main moving part of the agent.
[R4: 3.1] Qualitative results were shown in section 4 of
supplementary materials. We will add more visualizations.
[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
supplementary materials, section 3. The original keypoints
method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
[R4: 3.4, 5.1-2] What if the training data are noisy/hard?
The reason why PAD, SODA and our method VAI focus on
adapting test-time noise is that unexpected test-time noise
has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).

[R4: 3.5] Comparisons with concurrent work SODA.
The average return of VAI outperforms SODA (conv) on
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We thank all three reviewers for their insightful comments!
R2 regards our causal inference with counterfactual reason-
ing ... serves as a valuable point of inspiration for future
research. R3 believes that our idea is novel and interesting
and our experimental results have demonstrated the superi-
ority of the proposed algorithm. R4 acknowledges that the
paper generally is trying to solve an important challenge.
The method is also novel. The performance is strong. We
also appreciate R4’s potential willingness to change the rat-
ing to strong accept because it can be a really impactful
work. We are committed to reproducible research, clear
writing, and public code release.
[R2: 3.1, 3.5, 5] Clarifications for goals. We reduce visual
training and testing inconsistencies by reducing distractions:
variations irrelevant to the task and interfering generaliza-
tion of the learned model, e.g., noise, texture, color, and
background movements. While PAD uses test-time adapta-
tion to handle such inconsistencies, we achieve better results
without using the test-time data, with more stability, with
less compute and latency. Our work also surpasses concur-
rent work SODA1, which tries to solve a similar discrepancy
problem with soft data augmentation (see answer R4: 3.5).
[R2: 3.2, 3.6] What’s the RL agent/setting/assumption?
We assume the same setting as SAC, which is the RL baseline
that was used in PAD, SODA and our VAI. We assume
episodic settings and focus on model-free RL agents. Please
refer to the SAC paper for details. Pelase note that we do not
add any additional assumptions for agent dynamics.
[R2: 3.4] Evidence that data augmentation leads to in-
stability. It is indicated by experiment settings of domain
randomization on Page 5 of the PAD paper that RL with
augmented data often causes training to be more unstable or
even couldn’t converge, which requires really careful con-
trol of the augmentation strength to avoid collapsing. Our
work is meaningful in eliminating augmentation instability
by decoupling these two stages.
[R3: 3.2, 5.2] VAI vs. RL data augmentation only. We
only use weak augmentation to eliminate accidental leakage

1SODA: Hansen N, Wang X. Generalization in Reinforcement Learning by Soft
Data Augmentation. arXiv preprint arXiv:2011.13389.

of pixels from adapter. Table 5 and local experiments on
DeepMind Control show that augmentation contributes little.
[R3: 5.4] Why sample 20 trajectories? VAI uses images
from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher
env because the goal location changes across episodes. If
we only sample within an episode, the algorithm will never
learn to detect the goal. If the goal moves in an episode, such
sampling across episodes may not be needed.
[R3: 5.7] Effect of the de-noise trick. De-noise is a pre-
processing to remove slowly-moving video background. We
find our VAI with de-noise trick reduces most distractions
without influencing the main moving part of the agent.
[R4: 3.1] Qualitative results were shown in section 4 of
supplementary materials. We will add more visualizations.
[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
supplementary materials, section 3. The original keypoints
method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
[R4: 3.4, 5.1-2] What if the training data are noisy/hard?
The reason why PAD, SODA and our method VAI focus on
adapting test-time noise is that unexpected test-time noise
has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).

[R4: 3.5] Comparisons with concurrent work SODA.
The average return of VAI outperforms SODA (conv) on
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We thank all three reviewers for their insightful comments!
R2 regards our causal inference with counterfactual reason-
ing ... serves as a valuable point of inspiration for future
research. R3 believes that our idea is novel and interesting
and our experimental results have demonstrated the superi-
ority of the proposed algorithm. R4 acknowledges that the
paper generally is trying to solve an important challenge.
The method is also novel. The performance is strong. We
also appreciate R4’s potential willingness to change the rat-
ing to strong accept because it can be a really impactful
work. We are committed to reproducible research, clear
writing, and public code release.
[R2: 3.1, 3.5, 5] Clarifications for goals. We reduce visual
training and testing inconsistencies by reducing distractions:
variations irrelevant to the task and interfering generaliza-
tion of the learned model, e.g., noise, texture, color, and
background movements. While PAD uses test-time adapta-
tion to handle such inconsistencies, we achieve better results
without using the test-time data, with more stability, with
less compute and latency. Our work also surpasses concur-
rent work SODA1, which tries to solve a similar discrepancy
problem with soft data augmentation (see answer R4: 3.5).
[R2: 3.2, 3.6] What’s the RL agent/setting/assumption?
We assume the same setting as SAC, which is the RL baseline
that was used in PAD, SODA and our VAI. We assume
episodic settings and focus on model-free RL agents. Please
refer to the SAC paper for details. Pelase note that we do not
add any additional assumptions for agent dynamics.
[R2: 3.4] Evidence that data augmentation leads to in-
stability. It is indicated by experiment settings of domain
randomization on Page 5 of the PAD paper that RL with
augmented data often causes training to be more unstable or
even couldn’t converge, which requires really careful con-
trol of the augmentation strength to avoid collapsing. Our
work is meaningful in eliminating augmentation instability
by decoupling these two stages.
[R3: 3.2, 5.2] VAI vs. RL data augmentation only. We
only use weak augmentation to eliminate accidental leakage

1SODA: Hansen N, Wang X. Generalization in Reinforcement Learning by Soft
Data Augmentation. arXiv preprint arXiv:2011.13389.

of pixels from adapter. Table 5 and local experiments on
DeepMind Control show that augmentation contributes little.
[R3: 5.4] Why sample 20 trajectories? VAI uses images
from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher
env because the goal location changes across episodes. If
we only sample within an episode, the algorithm will never
learn to detect the goal. If the goal moves in an episode, such
sampling across episodes may not be needed.
[R3: 5.7] Effect of the de-noise trick. De-noise is a pre-
processing to remove slowly-moving video background. We
find our VAI with de-noise trick reduces most distractions
without influencing the main moving part of the agent.
[R4: 3.1] Qualitative results were shown in section 4 of
supplementary materials. We will add more visualizations.
[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
supplementary materials, section 3. The original keypoints
method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
[R4: 3.4, 5.1-2] What if the training data are noisy/hard?
The reason why PAD, SODA and our method VAI focus on
adapting test-time noise is that unexpected test-time noise
has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).

[R4: 3.5] Comparisons with concurrent work SODA.
The average return of VAI outperforms SODA (conv) on
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We thank all three reviewers for their insightful comments!
R2 regards our causal inference with counterfactual reason-
ing ... serves as a valuable point of inspiration for future
research. R3 believes that our idea is novel and interesting
and our experimental results have demonstrated the superi-
ority of the proposed algorithm. R4 acknowledges that the
paper generally is trying to solve an important challenge.
The method is also novel. The performance is strong. We
also appreciate R4’s potential willingness to change the rat-
ing to strong accept because it can be a really impactful
work. We are committed to reproducible research, clear
writing, and public code release.
[R2: 3.1, 3.5, 5] Clarifications for goals. We reduce visual
training and testing inconsistencies by reducing distractions:
variations irrelevant to the task and interfering generaliza-
tion of the learned model, e.g., noise, texture, color, and
background movements. While PAD uses test-time adapta-
tion to handle such inconsistencies, we achieve better results
without using the test-time data, with more stability, with
less compute and latency. Our work also surpasses concur-
rent work SODA1, which tries to solve a similar discrepancy
problem with soft data augmentation (see answer R4: 3.5).
[R2: 3.2, 3.6] What’s the RL agent/setting/assumption?
We assume the same setting as SAC, which is the RL baseline
that was used in PAD, SODA and our VAI. We assume
episodic settings and focus on model-free RL agents. Please
refer to the SAC paper for details. Pelase note that we do not
add any additional assumptions for agent dynamics.
[R2: 3.4] Evidence that data augmentation leads to in-
stability. It is indicated by experiment settings of domain
randomization on Page 5 of the PAD paper that RL with
augmented data often causes training to be more unstable or
even couldn’t converge, which requires really careful con-
trol of the augmentation strength to avoid collapsing. Our
work is meaningful in eliminating augmentation instability
by decoupling these two stages.
[R3: 3.2, 5.2] VAI vs. RL data augmentation only. We
only use weak augmentation to eliminate accidental leakage

1SODA: Hansen N, Wang X. Generalization in Reinforcement Learning by Soft
Data Augmentation. arXiv preprint arXiv:2011.13389.

of pixels from adapter. Table 5 and local experiments on
DeepMind Control show that augmentation contributes little.
[R3: 5.4] Why sample 20 trajectories? VAI uses images
from 20 episodes to train adapter (20 is a hyperparam). The
samples can be put into replay buffer of RL (not wasted).
[R3: 5.5] When to sample from different episodes? Sam-
pling frames from different episodes is only used in Reacher
env because the goal location changes across episodes. If
we only sample within an episode, the algorithm will never
learn to detect the goal. If the goal moves in an episode, such
sampling across episodes may not be needed.
[R3: 5.7] Effect of the de-noise trick. De-noise is a pre-
processing to remove slowly-moving video background. We
find our VAI with de-noise trick reduces most distractions
without influencing the main moving part of the agent.
[R4: 3.1] Qualitative results were shown in section 4 of
supplementary materials. We will add more visualizations.
[R4: 3.2, 5.3] Why using naive keypoints is not as good
as VAI? The baseline experiments with only keypoints are in
supplementary materials, section 3. The original keypoints
method works in easier 2D environments (e.g. PacMan),
because differentiating different ghosts is beneficial to the
reconstruction objective: By assigning an output channel,
i.e., keypoint, to the ghost in a specific color, the objective is
achieved easily. However, this doesn’t apply to complicated
or 3D environments (e.g. Walker). Modeling each part of
Walker body with a specific channel in activation maps will
be hard since it’s difficult even for humans to distinguish the
left and right feet (Fig. 1). Fig. 3 shows that it is hard for
an unsupervised keypoint detector to maintain meaningful
correspondences over time.
[R4: 3.4, 5.1-2] What if the training data are noisy/hard?
The reason why PAD, SODA and our method VAI focus on
adapting test-time noise is that unexpected test-time noise
has a much larger potential impact than train-time noise: If
the training noise isn’t too fatal to prevent the RL agent from
learning, the RL agent will be invariant to the noise even
without extra components, e.g. PAD. Domain randomization
methods even try to add noise to the training data to reg-
ularize the model. Although our novelty is mostly in how
we ensure RL doesn’t break upon test-time noise, to fully
address your question, we also train an adapter with chal-
lenging natural video background distractions, to compare
with the original environment in Fig. 3. We obtain the clean
mask below, showing VAI’s tolerance on train-time noise
without using the de-noise trick (see answer to R3: 5.7).

[R4: 3.5] Comparisons with concurrent work SODA.
The average return of VAI outperforms SODA (conv) on

Feature Matching 
Loss ℒ%&'()

Figure 3: Technical implementation of our three components. 1) Unsupervised keypoint detection: We build unsupervised
keypoint detection and visual feature extraction based on KeyNet [22] and Transporter [24]. The goal is to reconstruct the
target frame from the target foreground appearance and the source-transported background appearance, capturing a moving
foreground on a relatively still background. 2) Unsupervised visual attention: We remove the model bias in the foreground
mask derived from detected keypoints with novel causal inference for counterfactual removal. 3) Self-supervised visual
invariance: We train a model to restore an invariant foreground visual image by adding artificial distractors to extracted
foreground and perform self-supervised distraction removal.

Let os,ot∈RC×H×W denote the source and target frames
sampled from a trajectory, where C, H , and W are the
channel dimension, image height and width respectively. Let
Φ(·) denote the visual feature extractor. Let Ψ(·) denote
the keypoint network that predicts K keypoints in terms of
2D spatial locations {µk}. We render each keypoint as a
smaller H ′ ×W ′ Gaussian heatmap with fixed variance σ2,
and derive a foreground mask by taking the max of all of
them:

G(µ;x) = max
k∈{1,2,...,K}

exp

(
−‖x− µk‖2

2σ2

)
. (1)

We follow KeyNet [22, 24] to reconstruct the target obser-
vation ot from K landmarks Ψ(os),Ψ(ot). We follow [24]
to transport the source background appearance to the target
frame by putting the source feature at common background
areas and the target feature at the target keypoints:

Φ̂(ot,os) =Φ(os)⊗ (1− G(Ψ(os)))(1− G(Ψ(ot)))

+Φ(ot)⊗ G(Ψ(ot)) (2)

where⊗ denotes location-wise multiplication applied to each
channel. A visual attention (VA) decoder outputs a recon-
struction ôt of target frame ot from the transported feature
Φ̂(ot,os). Minimizing the reconstruction loss below opti-
mizes the KeyNet and the visual attention encoder/decoder
end-to-end:

LO-R(ot, ôt) = ‖ot − ôt‖22. (3)

Note that the original Transporter only focuses on changes
between frames in the same episode, whereas we also sample
frames from different episodes 50% of the time in reacher en-
vironment which has a fixed target throughout each episode,
so that our keypoints will be able to capture the target and
spread over the entire moving foreground.

3.2. Unsupervised Spatial Attention

Now we already have an unsupervisedly learned keypoint
detector. We first explain why we do not use keypoints for
control and instead derive a visual foreground mask. We
then describe our novel causal inference formulation for
obtaining a foreground mask without model bias.

Transporter [24] successfully makes use of keypoints for
RL in Atari ALE [3] and Manipulator [51]. Keypoints are ge-
ometrical extraction without visual appearance distractions
that they could be potentially used to minimize differences
between training and testing environments.

However, there are three major issues with keypoints in
practice. 1) It is often hard to track keypoints consistently
across frames; even for humans, whether a keypoint is on the
left or right foot is unclear in Fig. 4. This implies that using
predicted keypoints for control directly would be brittle even
in clean images.

2) While keypoints along with image features and LSTM
could work on relatively complicated tasks [24], they add
substantial model complexity and computational costs. 3)
While keypoints themselves are free of visual distractions,



Figure 4: Our VAI foreground reconstruction (Row 1) pro-
vides clearer and more robust foreground visual information
than detecting keypoints across image frames using Trans-
porter (Row 2). Due to occlusion, symmetry, and lacking
visual distinctions, it is often impossible to track keypoints
consistently across frames. That is, keypoint locations alone
are not suitable as an invariant visual representation.

walker walk finger spin

Figure 5: Foreground reconstructions with causal inference
are cleaner (Row 2) than those without (Row 1).
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Figure 6: Causal graph of casual inference with counter-
factual reasoning for our foreground mask extraction. The
Controlled Direct Effect (CDE) is measured by the contrast
between two outcomes: the counterfactual outcome given
the visual feature At and that given the null feature A0.

their extractor (KeyNet) is only trained for the training envi-
ronment, with no guarantee for robustness against domain
shifts.

We thus propose to generate a foreground mask G(Ψ(ot))
from the (un-ordered) collection of predicted keypoints in-
stead. We enhance the visual feature in the foreground:
G(Ψ(ot)) ⊗ Φ(ot) and pass it to the VA decoder to recon-
struct a cleaner image ôt (Fig. 5 Row 1). However, it is
blurry with common background remnants captured in the
bias terms of the decoder. The bias terms are essential for
proper reconstruction and cannot be simply set to zero.

We apply causal inference with counterfactual reasoning
[40, 46, 41, 12, 50] to remove the model bias (Fig. 6). Intu-

cartpole walker open drawer

Figure 7: Our detected keypoints (Row 1) and generated fore-
ground masks (Row 2) from DeepMind control and Draw-
erWorld benchmarks. Note that they could cover multiple
moving objects in the foreground.

itively, the predicted foreground mask Y has a direct cause
from the visual feature A, and an indirect cause from the
model bias M through the decoder D. To pursue the direct
causal effect, we perform counterfactual reasoning known as
Controlled Direct Effect (CDE) [40, 12], which contrasts the
counterfactual outcomes (marked by do(·)) between visual
feature At and null visual feature A0 (set to the zero tensor):

CDE(Y )=[Y |do(At), do(M)]−[Y |do(A0), do(M)]. (4)

We further threshold it to obtain the foreground mask D(ot):

D(ot) =

{
0,CDE(Y ) < ε

1,CDE(Y ) ≥ ε . (5)

Fig. 7 shows our detected keypoints and generated masks:
1) While the keypoints may be sparse and imprecise, the
foreground mask is clean and complete; 2) Our unsupervis-
edly learned keypoints do not correspond to semantic joints
of articulation, e.g., for the grasper opening a drawer, there
are keypoints on both the grasper and the drawer, and our
derived foreground mask contains both moving objects.

3.3. Self-supervised Visual Invariance

Our spatial attention module outputs a foreground mask,
after seeing samples in the training environment. To make
it adaptable to unknown test environments, we augment the
clean foreground image with artificial distractors and train
a model to reconstruct a mask to retrieve clean foreground
observation.

Given image ot, we generate equally cropped, differently
augmented, clean target image It and noisy source image Is.

It = Tf (ot ⊗D(ot)) (6)
Is = It + Tb (ot ⊗ (1−D(ot)) (7)

where Tf adds possible foreground changes such as color
jitter and random brightness change, whereas Tb adds a
set of possible background changes such as random col-
ored boxes to the background. We learn a convolutional



training randomized colors video backgrounds distractions
Figure 8: Visualization results of testing environments in DeepMind Control benchmark [15, 51]. The testing environment
changes include randomized colors, video backgrounds, and background distractions.

encoder/decoder pair to reconstruct the clean foreground
mask D(ot) from noisy Is, so that they could focus more
on the foreground and ignore background distractors. We
impose a feature matching loss at output of encoder E and
an image reconstruction loss at output of decoder D̂:

Ltotal = ‖E(Is)− E(It)‖22 + λ · ‖D̂(Is)−D(It)‖22 (8)

whereD(It) is simply the cropped version ofD(ot). During
RL training and deployment, for any frame I , we feed I ⊗
D̂(E(I)) to the learned RL policy.

What augmentations to use has a big impact on gener-
alization. We propose four additional strong background
augmentations on Tb. 1) The background could randomly
assume the training image background, a random color, or
the mean foreground color with small perturbations. 2) Gaus-
sian pixel-wise noise and random boxes are added. Multi-
ColorOut, an extension to Cutout-color [26], adds multiple
boxes of random sizes, colors, and positions. 3) Darkened
foreground copies are added to the background areas where
the foreground mask values are 0, to simulate distractors
that look similar to the foreground. 4) We follow [16] to ran-
domly select images in the Places dataset [61] as background
images for augmentation. For fair comparisons, we list our
results with and without this option. With such generic aug-
mentations, our model is able to perform well on realistic
textures and unknown testing environments even though it
has not encountered them during training.

RL policy training with weak augmentations. Our vi-
sual invariance model outputs a clean foreground image with
background distractors suppressed. The RL policy learner
still needs to handle foreground variations in unknown test
environments. We train our RL policy with weak foreground
augmentations to make it robust to noise and distortions. We
add the usual Gaussian random noise and use only a simple
MultiColorOut to simulate the inclusion of backgrounds and
missing foreground parts. Empirically we find that such
weak augmentations do not affect the RL training stability.

4. Experiments
We experiment on two benchmarks, DeepMind and Draw-

erWorld, and perform ablation studies. The DeepMind Con-
trol benchmark contains various background distractions

Random colors SAC DR PAD SODA+P VAI VAI+P ∆

Walker, walk 414
±74

594
±104

468
±47

692
±68

819
±11

918
±6

+226
(↑ 33%)

Walker, stand 719
±74

715
±96

797
±46

893
±12

964
±2

968
±3

+75
(↑ 8%)

Cartpole, swingup 592
±50

647
±48

630
±63

805
±28

830
±10

819
±6

+14
(↑ 2%)

Cartpole, balance 857
±60

867
±37

848
±29

- 990
±4

957
±9

+142
(↑ 17%)

Ball in cup, catch 411
±183

470
±252

563
±50

949
±19

886
±33

960
±8

+11
(↑ 1%)

Finger, spin 626
±163

465
±314

803
±72

793
±128

932
±3

968
±6

+165
(↑ 21%)

Finger, turn easy 270
±43

167
±26

304
±46

- 445
±36

455
±48

+151
(↑ 50%)

Cheetah, run 154
±41

145
±29

159
±28

- 337
±1

334
±2

+178
(↑ 112%)

Reacher, easy 163
±45

105
±37

214
±44

- 934
±22

936
±19

+722
(↑ 337%)

average 467 464 531 - 793 812 +281
(↑ 53%)

Table 1: VAI outperforms existing methods on DeepMind
randomized color tests by a large margin without using the
external Places dataset; it is even better than SODA+P, which
uses Places as a part of the training set. Soft Actor-Critic
(SAC) [14, 32] is used as a base algorithm for DR (do-
main randomization), PAD [15], SODA [16], and our VAI.
SODA+P and VAI+P use Places [61] as overlay or adapter
augmentation. The results of SAC and DR are copied from
PAD [15]. Listed are the mean and std of cumulative rewards
across 10 random seeds and 100 random episode initializa-
tions per seed. The absolute and relative improvement of
VAI over SOTA method are listed in the ∆ column.

[52, 15]. We propose a DrawerWorld Robotic Manipula-
tion benchmark, based on MetaWorld [59], in order to test a
model’s texture adaptability in manipulation tasks.

4.1. DeepMind Control Benchmark

Tasks. There are walking, standing, and reaching objects
[52], all in 3D simulation. Our agent receives pixel-based
inputs instead of state-based inputs from the underlying dy-
namics unless otherwise stated.
Testing. We follow PAD [15] and test our method under
three types of environments: 1) randomized colors; 2) video
backgrounds; and 3) distracting objects. For tasks with
video background and distracting objects, we apply a moving
average de-noising trick by subtracting a moving average



Video background SAC DR PAD SODASODA+P VAI VAI+P∆

Walker, walk 616
±80

655
±55

717
±79

635
±48

768
±38

870
±21

917
±8

+149
(↑ 19%)

Walker, stand 899
±53

869
±60

935
±20

903
±56

955
±13

966
±4

968
±2

+13
(↑ 1%)

Cartpole, swingup 375
±90

485
±67

521
±76

474
±143

758
±62

624
±146

761
±127

+3
(↑ 0%)

Cartpole, balance 693
±109

766
±92

687
±58

- - 869
±189

847
±205

+182
(↑ 26%)

Ball in cup, catch 393
±175

271
±189

436
±55

539
±111

875
±56

790
±249

846
±229

-29
(↓ 3%)

Finger, spin 447
±102

338
±207

691
±80

363
±185

695
±97

569
±366

953
±28

+258
(↑ 37%)

Finger, turn easy 355
±108

223
±91

362
±101

- - 419
±50

442
±33

+80
(↑ 22%)

Cheetah, run 194
±30

150
±34

206
±34

- - 322
±35

325
±31

+119
(↑ 58%)

average 497 470 569 - - 678 757 +188
(↑ 33%)

Table 2: VAI+P (VAI) outperforms PAD by more than 33%
(19%) on challenging DeepMind video backgrounds. Same
settings and conventions as Table 1.

Distracting objects SAC DR PAD VAI ∆

Cartpole, swingup 815
±60

809
±24

771
±64

891
±0

+120
(↑ 16%)

Cartpole, balance 969
±20

938
±35

960
±29

993
±0

+24
(↑ 2%)

Ball in cup, catch 177
±111

331
±189

545
±173

956
±4

+411
(↑ 75%)

Finger, spin 652
±184

564
±288

867
±72

805
±3

-62
(↓ 7%)

Finger, turn easy 302
±68

165
±12

347
±48

389
±18

+42
(↑ 12%)

average 583 561 698 806 +108
(↑ 15%)

Table 3: VAI outperforms current SOTAs by more than 15%
on DeepMind Control distracting objects. Although VAI
performs worse than PAD on “Finger, spin” task in terms of
mean rewards, the reward variance is greatly reduced from
72 to 3 in std. Same settings and conventions as Table 1.

of the past observations from the current observation and
adding back the mean color of the moving average. We
introduced a constant factor α multiplied to past moving
average to tune the aggressiveness of the de-noising trick.
Training. For each scenario, we train agents without distrac-
tions and evaluate the model across 10 random seeds and
100 random environment initializations. To get observation
samples for training, we export 5000 transitions from the
replay buffer for the training environment, which are col-
lected with a random policy. We use the same environment
settings such as frame skip and data augmentation as in PAD
to ensure fair comparisons between VAI, PAD, and others.
Randomized color results. Table 1 shows that our VAI
outperforms published SOTA on all the 9 tasks by up-to
an astonishing 337% margin in terms of mean cumulative
rewards, without seeing samples in the test environment
at any time. In contrast, DR is trained with color change
to the environment (which requires knowing and changing
the internals of the environment), which, to some extent,
previews what the test environment would be. Similarly,

success %
DrawerOpen DrawerClose

SAC PAD VAI ∆ SAC PAD VAI ∆

Grid 98
±2

84
±7

100
±0

+2
(↑ 2%)

100
±0

95
±3

99
±1

-1
(↓ 1%)

Black 95
±2

95
±3

100
±1

+5
(↑ 5%)

75
±4

64
±9

100
±0

+25
(↑ 33%)

Blanket 28
±8

54
±6

86
±6

+32
(↑ 59%)

0
±0

0
±0

85
±8

+85
(↑ ∞%)

Fabric 2
±1

20
±6

99
±1

+79
(↑ 395%)

0
±0

0
±0

74
±8

+74
(↑ ∞%)

Metal 35
±7

81
±3

98
±2

+17
(↑ 21%)

0
±0

2
±2

98
±3

+96
(↑ 4800%)

Marble 3
±1

3
±1

43
±7

+40
(↑ 1333%)

0
±0

0
±0

49
±13

+49
(↑ ∞%)

Wood 18
±5

39
±9

94
±4

+55
(↑ 141%)

0
±0

12
±2

70
±6

+58
(↑ 483%)

average 40 54 87 +33
(↑ 61%)

25 25 82 +57
(↑ 228%)

Table 4: Our VAI consistently outperforms all the baselines
in new texture environments, and on DrawerClose in par-
ticular, VAI succeeds 82% vs. SAC/PAD’s 25%. Grid is
the training environment. Black means a completely dark
background without texture. Other textures are shown in
Fig. 9. DrawerClose is more challenging than DrawerOpen,
as the drawer handle is concealed by the effector in Draw-
erClose, which would require the agent to infer the handle
position from the position and the size of the effector. The
success rate is the percentage of successful attempts out of
100 attempts to open or close a drawer. The mean/std are
collected over 10 seeds.

although PAD does not use any evaluation samples during
training, it does use the samples at the test time to tune the
encoder. Since VAI does not change model weights, it has
no adaptation delay, better stability, and less compute (see
more details in supplementary materials). By suppressing
distractions and feeding only the foreground image, the RL
algorithm ideally sees the same input no matter what the
environment is and is thus not influenced by background
distractions or domain shifts in the test environment.
Video background results. Table 2 shows that our VAI
outperforms baselines in 7 out of 8 tasks in terms of mean
cumulative rewards, often by a large margin.
Distracting object results. Table 3 shows that our VAI
surpasses baselines on 4 out of 5 tasks in terms of cumulative
rewards. It not only obtains nearly full scores on “Cartpole,
balance” and “Ball in cup, catch” tasks, but also greatly
decreases the variance of results to a negligible level.

4.2. DrawerWorld Manipulation Benchmark

A New Texture Benchmark for Manipulation. CNNs are
sensitive to textures [10]. We propose to evaluate a model’s
texture adaptability in manipulation tasks, based on the Meta-
World [59] benchmark for meta RL and multi-task RL.

In the original MetaWorld, the observations include 3D
Cartesian positions of the robot, the object, and the goal
positions collected with sensors on the object and the robot.
Accurate object positions and robot keypoints are hard to get



Figure 9: DrawerWorld environments. Grid is the texture
used in training. Other 5 evaluation textures are from realistic
photos, which makes the task challenging.

by in real-world applications, we thus propose a variant of
MetaWorld, DrawerWorld, with visual observations instead.
We focus on the variety of realistic textures (Fig. 9).
Tasks. There are DrawerOpen and DrawerClose tasks,
where a Sawyer arm is manipulated to open and close a
drawer. The action space contains the end-effector positions
in 3D. We adopt MetaWorld reward functions and success
metrics. See supplementary materials for details.
Testing. We test the agent on surfaces of different textures
which, unlike the grid texture used for training, come from
photos instead of from simulations. These tasks are ex-
tremely challenging for two reasons: 1) The agent has never
seen any realistic textures during training; 2) Each texture
also has a different color, so the agent needs to handle both
color change and texture change at the same time.
Texture background results. Table 4 shows that our VAI
outperforms PAD [15] and SAC [14] significantly in all the
test environments. In particular, for 5 out of 6 textures such
as blanket, metal, and wood, SAC and PAD have 0% success
rate, whereas VAI performs far better at 85%, 98%, and 70%
respectively. In the training grid environment, PAD performs
worse than SAC, consistent with [15] on the DeepMind
Control benchmark, whereas our VAI is on-par or slightly
better than SAC, suggesting that we are not gaining texture
adaptability at the cost of losing training performance.

CNNs’ sensitivity to textures poses a big challenge for
visual adaptation. 1) SAC adapts to unknown test environ-
ments with augmentations at the training time. Since textures
are not used during training, SAC breaks down during tex-
ture testing. 2) PAD has to change its feature encoder a lot in
order to adapt to never-seen textures at the time time, shifting
the feature distribution. However, PAD assumes an invariant
feature distribution and, therefore, does not fine-tune the
control part of the policy network at the test time, which
causes the vision-RL pipeline to break down.

4.3. Ablation Studies

We evaluate four ablated variants of our methods on the
DrawerOpen task:

success rate (%) Grid Wood Metal Fabric

SAC 98
±2

18
±5

35
±7

2
±1

+ RL Augmentation 100
±1

18
±5

41
±8

24
±5

+ Foreground Extraction 100
±0

18
±4

13
±4

38
±4

+ Background Augmentation 100
±0

94
±4

98
±2

99
±1

Table 5: Ablation studies for augmentation and foreground
extraction on DrawOpen task. From top to bottom rows,
components are added to the method cumulatively. Each
method is trained in the grid environment and tested in new
texture enviroments of wood, metal, and fabric. Success
rates are collected over 500K steps. Only the last method
with all augmentations deliver consistent robustness.

1. SAC, a base universal policy learning model
2. Method 1 + RL with image augmentations, equivalent to

Domain Randomization;
3. Method 2 + Visual invariance module trained without

augmentations: Tf , Tb are identity functions;
4. Method 3 + We apply the augmentations in Section 3.3

on Tf , Tb, for greater adaptability.
Table 5 shows that while all the methods perform well

in the training environment, they adapt poorly to realistic
textures except the last one. These results suggest that adding
visual augmentations during RL or to the entire image as a
whole is insufficient; providing a clean observation for RL
agents with foreground clues adds significant robustness to
vision-based RL.

5. Summary
We propose a fully unsupervised method to make vision-

based RL more generalizable to unknown test environments.
While existing methods focus on learning a universal policy,
we focus on learning universal foreground vision.

We learn to extract foregrounds with unsupervised key-
point detection, followed by unsupervised visual attention
to remove model bias and generate a foreground mask. We
then train a model to reconstruct the clean foreground mask
from noise-augmented observations.

We propose an additional challenging DrawerWorld
benchmark, which trains manipulation tasks on grid and
tests on texture environments. Existing methods fail due to
CNN’s sensitivity to textures, yet our model with foreground
extraction and strong generic augmentation is robust to never-
seen textures without sacrificing training performance.

Our method significantly advances the state-of-the-art in
vision-based RL, demonstrating that it is not only possible
to learn domain-invariant vision without supervision, but
freeing RL from visual distractions also improves the policy.
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