

Tied Block Convolution: Leaner and Better CNNs with Shared Thinner Filters

Xudong Wang^{1,2} and Stella X. Yu^{1,2} ¹University of California, Berkeley; ²International Computer Science Institute

Presented by: Xudong (Frank) Wang Ph.D. Student @ EECS at UC Berkeley Graduate Student Researcher @ International Computer Science Institute

Motivation

Filters of an optimized CNN become more similar at an increasing depth.

[1] Springenberg, J.T., et al., 2014. Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.

Tied Block Convolution (TBC)

Standard Convolution (SC)

Group Convolution (GC)

Tied Block Convolution (TBC)

TBC has several major distinctions from GC in practical consequences (assume that the block number B of TBC is the same as the group number G of GC)

• TBC has B× fewer parameters than GC.

TBC has several major distinctions from GC in practical consequences (assume that the block number B of TBC is the same as the group number G of GC)

- TBC has B× fewer parameters than GC.
- TBC only has one fragmentation on GPU utilization, where as GC has G fragmentations, greatly reducing the degree of parallelism.

The time cost of processing 1k iterations of each feature map using the RTX 2080Ti GPU. Input feature map size is 56 × 56 × 2048.

TBC has several major distinctions from GC in practical consequences (assume that the block number B of TBC is the same as the group number G of GC)

- TBC has B× fewer parameters than GC.
- TBC only has one fragmentation on GPU utilization, where as GC has G fragmentations, greatly reducing the degree of parallelism.
- TBC can better model cross-channel dependencies.

TBC has several major distinctions from GC in practical consequences (assume that the block number B of TBC is the same as the group number G of GC)

- TBC has B× fewer parameters than GC.
- TBC only has one fragmentation on GPU utilization, where as GC has G fragmentations, greatly reducing the degree of parallelism.
- TBC can better model cross-channel dependencies.
- TBC-based TiedResNet greatly surpasses GC-integrated ResNeXt on object detection and instance segmentation tasks.

Tied Block Group Convolution (TGC)

Group Convolution (GC)

$$\tilde{X} = X_1 * W_1 \oplus X_2 * W_2 \oplus \dots \oplus X_G * WG$$

Where \oplus is the concatenation operation along the channel dimension, W_g is the convolution filters for group g, where $g \in \{1, ..., G\}$, $X_g \in R^{\frac{C_i}{G} \times h_i \times w_i}$, $W_g \in R^{\frac{C_o}{G} \times \frac{C_i}{G} \times k \times k}$

Tied Block Group Convolution (TGC)

 $\tilde{X} = (X_{11} * W_1' \oplus \cdots \oplus X_{1B} * W_1') \oplus \cdots \oplus (X_{G1} * W_G' \oplus \cdots \oplus X_{GB} * W_G')$

Where $g \in \{1, \dots, G\}, b \in \{1, \dots, B\}, X_{gb} \in R^{\frac{C_i}{BG} \times h_i \times w_i}, W'_g \in R^{\frac{C_o}{BG} \times \frac{C_i}{BG} \times k \times k}$

TBC in ResNet

ResNet Bottleneck

TiedResNet Bottleneck

TGC/TBC in ResNeXt

ResNeXt Bottleneck

TiedResNeXt Bottleneck

TBC in ResNeSt

TiedResNeSt Bottleneck

Recognition (ImageNet)

The integration of TBC/TFC/TGC can obtain consistent performance improvements to various backbone networks.

Grad-CAM Visualization

TiedResNet focusing on target objects more properly than ResNet and ResNeXt.

Filter Similarity

TiedResNet learns less correlated filters than ResNet.

Detection and Segmentation (MS-COCO)

TiedResNet consistently outperforms ResNet, ResNeXt and HRNetV2 with much fewer parameters.

Detection and Segmentation (MS-COCO)

TiedResNet consistently outperforms ResNet, ResNeXt and HRNetV2 with much fewer parameters.

Object Detection on Pascal VOC

With only 31% parameters, TiedResNet50-S reaches comparable performance with ResNet101.

Framework	Backbone	Params (M)	mAP (%)
SSD513 [27]	VGG16 [33]	138.36	80.6
RefineDet512 [44]	VGG16 [33]	138.36	81.8
R-FCN [10]	ResNet101 [17]	44.65	80.5
DSSD513 [13]	ResNet101 [17]	44.65	81.5
CoupleNet [46]	ResNet101 [17]	44.65	82.7
Faster R-CNN with FPN [24]	ResNet 50 [17]	25.56	80.9
Faster R-CNN with FPN [24]	ResNet101 [17]	44.65	82.1
Faster R-CNN with FPN [24]	TiedResNet50-S	13.91	81.9
Faster R-CNN with FPN [24]	TiedResNet50	22.03	82.6
Faster R-CNN with FPN [24]	TiedResNet101-S	23.98	82.9
Faster R-CNN with FPN [24]	TiedResNet101	39.43	83.8

TiedResNet50 can reach 2.1% gain for AP^{mask}

Framework	Backbone	Params (M)	AP^{mask}
Mask R-CNN [16]	ResNet50 [17]	25.6	31.5
Mask R-CNN [16]	TiedResNet50-S	13.9	32.5
Mask R-CNN [16]	TiedResNet50	22.0	33.6

Object Detection Under High Occlusion Ratios

The occlusion ratio (r) of each image is evaluated by:

 $r = \frac{\text{total overlap area}}{\text{total instance area}}$

The number of images relative to the instance occlusion ratio r in MS-COCO val-2017split.

Object Detection Under High Occlusion Ratios

When r= 0.8, TiedResNet increases by 8.3% at AP⁷⁵ and 5.9% at AP, much more effective at handling highly overlapping instances.

Object Detection Under High Occlusion Ratios

Fewer false positive and false negative proposals

TiedResNet

Sample Results (Cityscapes, Pascal VOC, MS-COCO)

Attention Modules: SE and TiedSE

Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." CVPR. 2018.

Attention Modules: Global Context (GC) and TiedGC

Cao, Y., Xu, J., Lin, S., Wei, F. and Hu, H.. Gcnet: Non-local networks meet squeeze-excitation networks and beyond. ICCVW 2019.

Attention Module (TiedSE and TiedGC)

Significantly reduce attention module parameters with comparable performance

- The proposed Tied Block Convolution (TBC) reduce B²× parameters and B× computational cost;
- > The concept of TBC can be extended to group convolution and fully connected layers;
- > TBC/TGC/TFC can be applied to various backbone networks and attention modules;
- Our extensive experimentation on classification, detection, instance segmentation, and attention demonstrates TBC's significant across-the-board gain over standard convolution and group convolution;

Tied Block Convolution: Leaner and Better CNNs with Shared Thinner Filters

Xudong Wang 1,2 and Stella X. Yu 1,2

¹ University of California, Berkeley
² International Computer Science Institute
xdwang@eecs.berkeley.edu, stellayu@berkeley.edu

Project Page

Code

Preprint

