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Natural Data Are Often Long-tailed Distributed Over Semantic Classes
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Long-tailed Recognition: Imbalance + Few-shot Learning

* Training set: long-tailed distribution 1 # training samples
o Many-shot: #samples > 100
o Medium-shot: #samples < 100 & > 20
o Few-shot: #samples < 20

= Testing set: balanced distribution

= Evaluation: Head Tail

o Overall testing set | | 1, Class

o Three splits based on class size
Many Medium Few



Previous Methods

Methods Overview

0 Instance-wise Balancing (current SOTA)
= Up/Down sampling tail/head classes. (e.g., Decouple [ICLR 2020], BBN [CVPR 2020])

9 Weighted Loss
= Assign larger/smaller weights to tail/head classes. (e.g., LDAM [NeurlPS 2019], CB-Loss [CVPR 2019])

9 Feature Enhancement
= Use the memory enhanced feature learned from both head and tail classes. (e.g., OLTR [CVPR 2018])
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Previous Methods

Methods Overview

0 Instance-wise Balancing (current SOTA)
= Up/Down sampling tail/head classes. (e.g., Decouple [ICLR 2020], BBN [CVPR 2020])
9 Weighted Loss
= Assign larger/smaller weights to tail/head classes. (e.g., LDAM [NeurlPS 2019], CB-Loss [CVPR 2019])

9 Feature Enhancement
= Use the memory enhanced feature learned from both head and tail classes. (e.g., OLTR [CVPR 2018])

Caveats

= All these methods generally gain accuracy on tail classes at the cost of performance loss on head
classes.

In order to understand the cause of caveats, we decoupled the model error with bias-variance
decomposition.



Bias-variance Decomposition with Respect to the Variation in Dataset D

Error(x; h) = Bias(h)® + Variance(h) + irreducible error.
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Pedro Domingos. A unified bias-variance decomposition. ICML, 2000



How to Obtain Bias and Variance of Each Method?

Stage 1: Training D models on D data subsets
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How to Obtain Bias and Variance of Each Method?

Stage 1: Training D models on D data subsets | Stage 2: Collect predictions ||
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How to Obtain Bias and Variance of Each Method?

Stage 1: Training D models on D data subsets

(X1; 5}1)

Training
Dataset

\
fo,
-

(XDI 5}D)

\
fo,
-

<)
!

Optimizer

I Stage 2: Collect predictions | Stage 3: Calculate Bias/Variance

Testing
Dataset

Pedro Domingos. A unified bias-variance decomposition. ICML, 2000

\
fo,
-

\
for
-

4 )
@ ®
o %3
o
o
N\ /
Variance
4 )
.\ t.
®
N\ /




How to Obtain Bias and Variance of Each Method?
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Few-shot Accuracy Gain at The Cost of Many-shot Drop
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Bias Reduction Tends to Be Greater for Tail Classes
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Variance Is Increased Throughout The Class Spectrum
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Our Key Insights

Head Classes Tail Classes
Acc Bias Variance Acc Bias Variance
Current SOTAs | Worse Comparable Worse Better Better Worse

Why previous methods get worse accuracy on many-shot classes?
The increased variance leads to a worse bias-variance trade-off.

How to further improve the performance on few-shot classes?
Obtaining the optimal bias-variance trade-off by further reducing variance and bias.
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Reducing Model Variance with Multi-expert Framework

Stage One: Jointly Optimize Diverse Distribution-aware Experts
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Reducing Model Bias with Individual Loss

Using Individual Loss Instead of Collaborative Loss

Collaborative loss leads X
to correlated experts

Averaging = | 0ss

Individual loss
decorrelates experts

trainable

frozen
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Further Reducing Model Bias with Distribution-aware Diversity Loss

The distribution-aware diversity loss is proposed to
penalize the inter-expert correlation, formulated as:

n
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Temperature vs. Class Index

Long tail

Head classes Tail classes
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Total Loss for Stage One

A n

E%‘otal — Eélassify (oz(f)* y) o

where 7 1s the expert index, .CZClassif),(., .) can be LDAM loss, focal loss, etc., depending on the
training mechanisms we choose.
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Reducing the Computational Complexity with Routing Module

Stage Two: Routing Diverse Experts
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Routing Loss of Expert Assignment

The expert assignment is optimized with the routing loss, a weighted variant
of binary cross entropy loss:

1 1
— wy(1 —y)log(l —
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LRouting — _wpylog(
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Method Overview

Stage One: Jointly Optimize Diverse
Distribution-aware Experts
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Improving Few-shot Acc
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RIDE Decreases Bias More Than Other Methods on Few-shot Classes
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RIDE Reduces Variances Throughout the Class Spectrum

Accuracy T Bias ¢ Variance
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RIDE vs Current SOTAs

]
Head Classes Tail Classes
Acc Bias Variance Acc Bias Variance
Current SOTAs Comparable
RIDE

Better accuracy for all splits.
Better bias-variance trade-off for all splits.
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CIFAR100-LT (100 Classes)

SOTA performance on few-shot classes with 5.8% improvements.

Methods MFlops Acc. (%) Many | Med | Few
Cross Entropy (CE) 1 69.5 (1.0x) 38.3 - - -
Cross Entropy (CE) 7 69.5 (1.0x) 39.1 66.1 373 | 106
Focal Loss I (Lin et al., 2017) 69.5 (1.0x) 38.4 - - -
OLTR f (Liu et al., 2019) - 41.2 61.8 41.4 17.6
LDAM + DRW (Cao et al., 2019) 69.5 (1.0x) 42.0 - - -
LDAM + DRW 7 (Cao et al., 2019) 69.5 (1.0x) 42.0 61.5 41.7 |]20.2
BBN (Zhou et al., 2020) 74.3 (1.1x) 42.6 - - -
7-norm | (Kang et al., 2020) 69.5 (1.0x) 43.2 65.7 43.6 173
cRT { (Kang et al., 2020) 69.5 (1.0x) 43.3 64.0 44.8 18.1
M2m (Kim et al., 2020) - 43.5 - - -
LFME (Xiang et al., 2020) - 43.8 - - -
RIDE (2 experts) 64.8 (0.9x) 47.0 (+3.2) | 67.9 484 ||21.8
RIDE (3 experts) 71.8(1.1%) 48.0 (+4.2) | 68.1 49.2 |[]23.9
RIDE (4 experts) 91.9 (1.3x) 49.1 (+5.3) | 69.3 49.3 || 26.0
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ImageNet-LT (1000 Classes)

Consistent improvements to various backbones by 6.9~7.7%

Methinds ResNet-50 ResNeXt-50

“ GFlops Acc. (%) GFlops Acc. (%)
Cross Entropy (CE) | 4.11 (1.0x) 41.6 4.26 (1.0x) 44 4
OLTR § (Liu et al., 2019) - - - 46.3
NCM (Kang et al., 2020) 4.11 (1.0x) 44.3 4.26 (1.0x) 47.3
7-norm (Kang et al., 2020) 4.11 (1.0x) 46.7 4.26 (1.0x) 49.4
cRT (Kang et al., 2020) 4.11 (1.0x) 47.3 4.26 (1.0x) 49.6
LWS (Kang et al., 2020) 4.11 (1.0x) 47.7 4.26 (1.0x) 49.9
RIDE (2 experts) 3.71 (0.9x) 54 .4 (+6.7) 3.92 (0.9x) 55.9 (+6.0)
RIDE (3 experts) 4.36 (1.1x) 54.9 (+7.2) 4.69 (1.1x) 56.4 (+6.5)
RIDE (4 experts) 5.15 (1.3x) 55.4 (+7.7) 5.19 (1.2x) 56.8 (+6.9)
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iNaturalist (8000 Classes)

Significantly better performance on many-shot than current SOTA BBN.

Methods GFlops All Many Medium Few

CE 4.14 (1.0x) | 61.7 72.2 63.0 572
CB-Focal 1 4.14 (1.0x) | 61.1 - . -

OLTR 4.14 (1.0x) | 63.9 59.0 64.1 64.9
LDAM + DRW 7 4.14 (1.0x) | 64.6 - E -

cRT 4.14 (1.0x) | 65.2 69.0 66.0 63.2
T-norm 414 (1.0x) | 65.6 65.6 65.3 65.9

LWS 4.14 (1.0x) | 659 65.0 66.3 65.5

BBN 436 (1.1x) | 66.3 494 70.8 65.3
RIDE (2 experts) 3.67 (0.9x) 71.4 (+5.1) [70.2|(+1.2) 71.3 (+0.5) 71.7 (+5.8)
RIDE (3 experts) 4.17 (1.0x) | 72.2((+5.9) |70.2\(+1.2) 722 (+1.4) 72.7 (+6.8)
RIDE (4 experts) 4.51 (1.1x) | 72.6 (+6.3) |70.9{(+1.9) 724 (+1.6) 73.1(+7.2)
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iNaturalist (8000 Classes)

SOTA performance on iNaturalist with the largest improvements from few-shot classes.

Methods GFlops All Many Medium Few

CE 4.14 (1.0x) | 61.7 72.2 63.0 ST.2
CB-Focal 1 4.14 (1.0x) | 61.1 - - -

OLTR 4.14 (1.0x) | 63.9 59.0 64.1 64.9
LDAM + DRW 7 4.14 (1.0x) | 64.6 - - -

cRT 4.14(1.0x) | 652 69.0 66.0 63.2
T-norm 4.14 (1.0x) | 65.6 65.6 65.3 65.9

LWS 4.14 (1.0x) | 65.9 65.0 66.3 65.5

BBN 4.36 (1.1x) | 66.3 49.4 70.8 653
RIDE (2 experts) 3.67 (0.9x) 71.4 (+5.1) 70.2 (+1.2) 71.3 (+0.5) 71.7 (+5.8)
RIDE (3 experts) 4.17 (1.0x) 72.2 (+5.9) 70.2 (+1.2) 72.2 (+1.4)  72.7 (+6.8)
RIDE (4 experts) 4.51 (1.1x) | 72.6 (+6.3) | 70.9 (+1.9) 724 (+1.6) 73.1(+7.2)




RIDE is a Universal Framework

Consistent improvements to various methods can be obtained
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Expert Assignment: Tail Classes Require More Experts

More than half samples in few-shot require more than one expert
More than half samples in many-shot only require one expert
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Summary

v RIDE is the first paper to theoretically analyze the long tail problem from the perspective of bias-
variance decomposition.

v" RIDE is the first paper that increases the performances on all three splits (many-/med-/few-shot).

v RIDE significantly outperforms current state-of-the-arts on all experimented benchmarks by
5%~8%, including CIFAR100-LT, ImageNet-LT and iNaturalist.

v" RIDE is a universal framework that can be integrated with various existing methods, which

provides a strong framework for future research in long-tailed recognition.
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