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Natural Data Are Often Long-tailed Distributed Over Semantic Classes

Zhang, Xiao, et al. "Range loss for deep face recognition 
with long-tailed training data." [CVPR 2017]

Faces Places

Wang, Yu-Xiong , et al. "Learning to model the tail."  
[NeurIPs 2017]

Species

Van Horn, et al. "The inaturalist species 
classification and detection dataset." [CVPR 2018]

Actions

Zhang, Yubo , et al. ”A study on action detection 
in the wild." arXiv preprint arXiv:1904.12993
(2019).

Objects

Liu, Ziwei, et al. "Large-scale long-tailed recognition in an open 
world."  [CVPR 2019]



Long-tailed Recognition: Imbalance + Few-shot Learning

§ Training set: long-tailed distribution

o Many-shot: #samples > 100

o Medium-shot: #samples < 100 & > 20

o Few-shot: #samples < 20

§ Testing set: balanced distribution

§ Evaluation:

o Overall testing set

o Three splits based on class size
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Previous Methods

Methods Overview
Instance-wise Balancing (current SOTA)
§ Up/Down sampling tail/head classes. (e.g., Decouple [ICLR 2020], BBN [CVPR 2020])

Weighted Loss
§ Assign larger/smaller weights to tail/head classes. (e.g., LDAM [NeurIPS 2019], CB-Loss [CVPR 2019])

Feature Enhancement
§ Use the memory enhanced feature learned from both head and tail classes. (e.g., OLTR [CVPR 2018])
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In order to understand the cause of caveats, we decoupled the model error with bias-variance 
decomposition.



Bias-variance Decomposition with Respect to the Variation in Dataset D

Pedro Domingos. A unified bias-variance decomposition. ICML, 2000 7
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How to Obtain Bias and Variance of Each Method?

Pedro Domingos. A unified bias-variance decomposition. ICML, 2000 8
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How to Obtain Bias and Variance of Each Method?

Pedro Domingos. A unified bias-variance decomposition. ICML, 2000 11
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Few-shot Accuracy Gain at The Cost of Many-shot Drop
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Bias Reduction Tends to Be Greater for Tail Classes
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Variance Is Increased Throughout The Class Spectrum
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Our Key Insights
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Head Classes Tail Classes

Acc Bias Variance Acc Bias Variance

Current SOTAs Worse Comparable Worse Better Better Worse

Why previous methods get worse accuracy on many-shot classes? 
The increased variance leads to a worse bias-variance trade-off.

How to further improve the performance on few-shot classes?
Obtaining the optimal bias-variance trade-off by further reducing variance and bias.



Reducing Model Variance with Multi-expert Framework
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Stage One: Jointly Optimize Diverse Distribution-aware Experts
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Individual loss
decorrelates experts

Collaborative loss leads
to correlated experts

✓✗

Reducing Model Bias with Individual Loss

Using Individual Loss Instead of Collaborative Loss



Further Reducing Model Bias with Distribution-aware Diversity Loss

The distribution-aware diversity loss is proposed to 
penalize the inter-expert correlation, formulated as: 
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Total Loss for Stage One
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Reducing the Computational Complexity with Routing Module
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Stage Two: Routing Diverse Experts



Routing Loss of Expert Assignment

The expert assignment is optimized with the routing loss, a weighted variant 
of binary cross entropy loss: 
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Method Overview
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Stage One: Jointly Optimize Diverse 
Distribution-aware Experts Stage Two: Routing Diverse Experts
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Improving Few-shot Acc.Without Sacrificing Many-shot Acc.
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RIDE Decreases Bias More Than Other Methods on Few-shot Classes
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RIDE Reduces Variances Throughout the Class Spectrum
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RIDE vs Current SOTAs
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Head Classes Tail Classes

Acc Bias Variance Acc Bias Variance

Current SOTAs Worse Comparable Worse Better Better Worse

RIDE Better Better Better Better Better Better

Better accuracy for all splits.
Better bias-variance trade-off for all splits.



CIFAR100-LT (100 Classes)
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SOTA performance on few-shot classes with 5.8% improvements.



ImageNet-LT (1000 Classes)
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Consistent improvements to various backbones by 6.9~7.7%



iNaturalist (8000 Classes)
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Significantly better performance on many-shot than current SOTA BBN.



iNaturalist (8000 Classes)
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SOTA performance on iNaturalist with the largest improvements from few-shot classes.



RIDE is a Universal Framework
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Consistent improvements to various methods can be obtained 



Expert Assignment: Tail Classes Require More Experts
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More than half samples in few-shot require more than one expert
More than half samples in many-shot only require one expert



Summary

ü RIDE is the first paper to theoretically analyze the long tail problem from the perspective of bias-

variance decomposition.

ü RIDE is the first paper that increases the performances on all three splits (many-/med-/few-shot).

ü RIDE significantly outperforms current state-of-the-arts on all experimented benchmarks by 

5%~8%, including CIFAR100-LT, ImageNet-LT and iNaturalist.

ü RIDE is a universal framework that can be integrated with various existing methods, which 

provides a strong framework for future research in long-tailed recognition.
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