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Abstract

Humans can easily segment moving objects without knowing what they are. That
objectness could emerge from continuous visual observations motivates us to
model segmentation and movement concurrently from unlabeled videos. Our
premise is that a video contains different views of the same scene related by
moving components, and the right region segmentation and region flow allow view
synthesis which can be checked on the data itself without any external supervision.
Our model first deconstructs video frames in two separate pathways: an appearance
pathway that outputs feature-based region segmentation for a single image, and
a motion pathway that outputs motion features for a pair of images. It then binds
them in a conjoint region flow feature representation and predicts segment flow that
provides a gross characterization of moving regions for the entire scene. By training
the model to minimize view synthesis errors based on segment flow, our appearance
and motion pathways learn region segmentation and flow estimation automatically
without building them up from low-level edges or optical flow respectively.
Our model demonstrates the surprising emergence of objectness in the appearance
pathway, surpassing prior works on 1) zero-shot object segmentation from a single
image, 2) moving object segmentation from a video with unsupervised test-time
adaptation, and 3) semantic image segmentation with supervised fine-tuning. Our
work is the first truly end-to-end learned zero-shot object segmentation model from
unlabeled videos. It not only develops generic objectness for segmentation and
tracking, but also outperforms image-based contrastive representation learning
without augmentation engineering.

1 Introduction

Contrastive learning [1–3] has recently become a powerful method for obtaining high-level visual
representations from images [4]. While these representations are shown to be more generalizing,
there remain two practical limitations: 1) Hand-crafted augmentations such as image cropping and
color jittering [5] are critical for achieving invariant recognition, and yet they fall short of capturing
more complex object deformations and 3D viewpoint changes. 2) Additional labeled data are required
at the downstream for representation fine-tuning, preventing standalone applications.

Our goal here is to overcome these limitations of contrastive representation learning by developing
object segmentation models automatically from unlabeled videos without any supervision. Unlike
single static images, videos contain sequences of dynamic images that could reveal not only moving
objects from their backgrounds, but also their internal part organizations with articulated movements.
Once figure-ground segregation occurs automatically in raw videos, object semantics can be readily
discovered from those foreground segmentations.
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Figure 1: Our zero-shot object segmentation is learned from an unsupervised factorization of images
into segments and their motions, whereas past work segments objects based on dense pixel-wise
optical flows, which are brittle in the presence of noise, articulated movement, and abrupt motion.

Several observations motivate us to explore such zero-shot learning of object segmentation. 1)
Humans can easily segment moving objects without knowing what they are. 2) In biological
vision, newborn chicks raised in a controlled visual world rapidly develop more accurate object
representations when presented with temporally slow and smooth objects, generalizing from very
limited viewpoints [6, 7]. 3) Invariant recognition can be developed by seeking slowly varying features
from temporally varying signals [8], disentangling object identity and object location unsupervisedly.

We model segmentation and movement concurrently from unlabeled videos. Our premise is that a
video contains different views of the same scene related by moving components, and the right region
segmentation and region flow would allow mutual view synthesis between frames that can be checked
on the data itself. That is, if we know how regions of frame j are moved from regions of frame i, we
can synthesize frame j by copying regions from frame i and paste them according to how they move.
Comparing the synthesized frame j with the actual frame j provides feedback on how to improve
both region segmentation and region flow estimation without needing any supervision.

View synthesis has been frequently adopted as a self-supervised criterion for learning dense optical
flows [9], monocular depth [10], and multi-plane image representation [11] etc from images. Unlike
prior works that focus on low-level visual correspondences, our work tackles object segmentation
for mid- to high-level visual recognition directly. Specifically, as illustrated in Figure 1, instead of
deriving dense optical flows between successive frames and supplying additional cues for image-
based object segmentation in a bottom-up manner, we seek a top-down factorized representation that
provides a gross characterization of moving regions for the entire scene.

Our model first deconstructs video frames by processing them in two separate pathways: an appear-
ance pathway that models what is moving and outputs feature-based region segmentation given a
single image, and a motion pathway that models how it moves and outputs motion features given a
pair of images. It then binds them in a conjoint region flow feature representation, based on which
we predict segment flow as the common fate [12] or piecewise constant movement of all the pixels in
the same region. By training the model to minimize view synthesis errors based on segment flow,
our appearance and motion pathways learn region segmentation and flow estimation automatically
without building them up from low-level edges or optical flows respectively.

After training our segmentation and flow features for view synthesis on unlabeled videos, our model
demonstrates the surprising emergence of objectness in a particular feature channel of the appearance
pathway. That is, our model can be directly applied to novel images and videos for segmenting
foreground objects: Our appearance pathway can perform zero-shot object segmentation on a single
image, whereas our overall model can perform zero-shot moving object segmentation on a single
video with test-time adaptation. Our image feature learned from unlabeled videos can be further
fine-tuned on a small labeled dataset for semantic segmentation. Experimentally, we demonstrate
strong performance on all three applications, with considerable gains over baselines.

To summarize, our work makes the following contributions. 1) We develop the first truly end-to-
end learned zero-shot object segmentation model from unlabeled videos, assuming no low-level
computation such as edges or optical flow. 2) We bypass the traditional low-level dense optical flow
and propose to compute novel mid-level segment flow directly. 3) Our model not only develops
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generic objectness for segmentation and tracking, but also outperforms prevalent image-based
contrastive learning methods without augmentation engineering. Our code is available at https:
//github.com/rt219/The-Emergence-of-Objectness.

2 Related Works

Video object segmentation. Segmentation of moving objects requires finding correspondences
across time. A major line of work assumes that an object mask is given in the initial frame, and the
goal is to propagate the mask to future frames based on the similarity of learned visual representation.
Such a representation can be trained from pixel-level object masks with long-term relations in videos
[13, 14], or from self-supervised criteria such as colorization [15] and cycle-consistency [16].

Fully unsupervised video object segmentation without initial masks has received less attention.
NLC [17] and ARP [18] segment moving objects based on temporal clustering, but they rely on
edge and saliency annotations, and are thus not completely unsupervised. FTS [19] performs
segmentation by obtaining motion boundaries from optical flow. SAGE [20] takes into account edges,
motion segmentation, and image saliency for video object segmentation. Contextual information
separation [21] segments moving objects by exploiting independence between the foreground motion
and the background motion. A concurrent work based on motion grouping [22] clusters pixels by
similar motion vectors. These works rely on off-the-shelf optical flow results, which may be trained
with [23, 24] or without [9] supervision. Our work does not assume any known low-level features
such as edges or optical flow, and learns the right feature to extract completely from scratch.

Motion Segmentation. Classical methods for motion segmentation [25–27] find regions of distinc-
tive motion based on two-frame optical flow. Supervised learning approaches [28, 29] map optical
flow to segmentation masks. Ideally, these methods require dense and accurate optical flow. In
practice, the low-level differential flow is often present along edges; it is neither dense nor smooth
within a region, often inhomogeneous for deformable and articulated objects [30], and sensitive to
varying scene depths and camera motion [31–33, 33]. Motion segmentation is shown to be less brittle
when examined over a large time interval [30]. Trajectory clustering [34] tracks point trajectories
over hundreds of frames, extracts descriptors for the trajectories, and clusters them to obtain a
segmentation. Such a global approach is computationally demanding.

In contrast, our segmentation is based not on motion between two frames, but on image appearance
in a single image, which provides rich cues such as color, texture, and edges for pixel grouping and
segregation. While our segmentation model does not need dense pixel correspondences between
frames, it is learned to be in sync with region-wise correspondences for best view synthesis.

Unsupervised learning for segmentation. Human annotation of pixel-wise segmentations is not
only time-consuming, but also often inaccurate along boundaries. Learning segmentation without
labels is thus of great interest in practice. SegSort [35] predicts segmentation by learning to group
super-pixels of similar appearance and semantic context from static images. Later work [36] contrasts
holistic mask proposals obtained by traditional bottom-up grouping.

A related line of work focuses on learning part segmentation from images and videos of the same ob-
ject category, such as humans and faces. SCOPS [37] is a representative co-part segmentation method,
learned in a self-supervised fashion; its general idea follows unsupervised landmark detection [38],
leveraging geometric invariance, representation equivariance, and perceptual reconstruction. [39]
explores motion cues in videos to discover object part organization and dynamics. Motion-supervised
co-part segmentation [40] models part motion between adjacent frames using affine parameters. A
similar idea is implemented with capsule networks [41]. In contrast, our work is not restricted to
videos in a single category and learns object segmentation from a collection of generic videos.

Learning objectness from data. Segregating foreground objects from background is a central
problem in visual recognition. Prior works on images first generate hierarchical segmentations [42–
44] using low-level visual cues such as colors and boundaries [45], and then rank these candidate
regions according to a certain criterion [46, 47]. These approaches often generate many overlapping
redundant individual object instance proposals.

Videos of slowly moving objects [8] are shown to enable development of newborn vision [6, 7].
Linear models [48, 49] can factorize a sequence of images into foreground and background layers,
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assuming independent motion among them. Layered representations are also used for optical flow
estimation [50, 27, 51], view-interpolation, and time retargeting [52–55].

Our work adopts an unordered layered representation with multiple segmentation channels, each
identifying a region of common motion. While our view synthesis objective during training does
not differentiate foreground or background in these channels, surprisingly, objectness emerges
automatically in a particular channel after we train our model from a collection of raw videos.

Image representation learning from videos. Motion reveals the location, shape, and part hierarchy
of moving objects. Motion segmentation has thus been used to supervise learning of image-level
object representations [56]. Motion propagation [57] predicts dense optical flow from sparse optical
flow, conditioned on the color image. Unlike prior works, the single image representation produced
by our model is not learned from motion supervision, but concurrently learned with between-frame
region flow as a by-product of our moving object segmentation from unlabeled videos.

3 Segmentation by Appearance-Motion Decomposition

We would like our model to segment moving objects without necessarily knowing what and how
many they are. Our model is trained on a collection of unlabeled generic videos, and can be directly
deployed on a novel image (video) to produce (moving) object segmentation. No human annotations
are required during either training or testing.

warp
frame 𝑖

frame 𝑗

segmentation

motion

segment
flows
𝑖 → 𝑗

reconstructed frame 𝑗

Figure 2: We learn a single-image segmentation network and a dual-frame motion network with an
unsupervised image reconstruction loss. We sample two frames, i and j, from a video. Frame i goes
through the segmentation network and outputs a set of masks, whereas frames i and j go through the
motion network and output a feature map. The feature is pooled per mask and a flow is predicted.
All the segments and their flows are combined into a segment flow representation from frame i→ j,
which are used to warp frame i into j, and compared against frame j to train the two networks.

Illustrated in Figure 2, our so-called appearance-motion decomposition (AMD) model first decon-
structs a pair of video frames, Xi and Xj , in two separate pathways. The bottom appearance pathway
fA takes in a single image Xi and outputs a feature-based segmentation, whereas the top motion
pathway fM takes in both frames (Xi, Xj) and outputs the flow features between them. The two
pathways then come together to construct a conjoined segment flow representation F , which is used to
synthesize frame Xj by warping Xi. The overall model can be trained to minimize the reconstruction
error on frame Xj over sampled image pairs in the training dataset.

1) Appearance pathway for feature-based segmentation.. We adopt a fully convolutional neural
network for segmenting a single RGB image of size h×w into c regions, where c is a hyper-parameter.
Formally, video frame Xi ∈ R3×h×w is transformed by fA into segmentation S with c soft masks:

S = fA(Xi) ∈ Rc×h×w, (1)
c∑

m=1

S(p) = 1, p = 1, . . . , h× w. (2)
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The above normalization equation reflects that values of S are the probabilities of pixel p belonging
to c regions. Empirically, we choose c=5 by default. Our ablation study later shows that a larger c
may lead to over-segmentation, whereas a smaller c may lack the spatial resolution to locate objects.

Note that our segmentation network is based on the RGB appearance in a single frame instead of
optical flow between two frames. Since it is designed to operate on static images, it can be transferred
to downstream image-based vision tasks. Our segmentation network trained on unlabeled videos
can be directly used to segment not only moving objects from novel videos (Section 4.2), but also
salient objects from single images in a zero-shot fashion (Section 4.1). It can be further fine-tuned on
a labeled image dataset for semantic segmentation (Section 4.3).

2) Motion pathway for correspondences. We adopt PWC-Net [23] for extracting pixel-wise motion
features between a pair of images. PWC-Net is originally designed for predicting dense optical flow,
and the feature for each pixel in one frame captures its similarity to spatial neighbors in the other
frame. Formally, video frames (Xi, Xj) are transformed by fM into motion correspondence feature
V of dv dimensions:

V = fM (Xi, Xj) ∈ Rdv×h×w. (3)

Note that we only adopt the network architecture not the trained weights of PWC-Net in [23], and
our choice among alternative architectures such as FlowNet [58], FlowNet2 [59], SpyNet [60], and
RAFT [24] is based on conceptual simplicity and light-weight model size.

3) Segment flow representation. We now construct a conjoined segment flow representation from
both pathways to enable view synthesis. Specifically, we pool the pixel-wise correspondence feature
V in the motion pathway according to the image segmentation S in the appearance pathway, resulting
in an average dv-dimensional motion feature per segment, i.e., Vm for the m-th mask Sm:

Vm =

∑h×w
p=1 V (p)× Sm(p)∑h×w

p=1 Sm(p)
∈ Rdv , m=1, . . . , c. (4)

We then predict a single common 2D flow vector Fm for the entire m-th segment Sm based on its
average motion feature Vm, using a two-layer multilayer perceptron (MLP) for the head function g:

Fm = g(Vm) ∈ R2, m=1, . . . , c. (5)

So far, we deconstruct a pair of video frames (Xi, Xj) into c segmentation masks and their associated
flow vectors {(Sm, Fm) : m = 1, . . . ,m}, assuming one common motion for pixels within the
same segment. This piece-wise constant motion assumption simplifies flow estimation and provides
a gross characterization of movement in the scene. While it may not hold for deformable and
articulated objects, when trained over a collection of videos, our model with appearance feature-based
segmentation is able to aggregate smoothly moving pieces in a wholesome segment.

We then compose these moving components into a novel flow representation F for the entire image:

F (p) =
c∑

m=1

Fm × Sm(p), p=1, . . . , h× w. (6)

We call F segment flow, as its values indicate the overall displacement at the segment level. This
conjoined representation allows motion and segmentation to cross-supervise each other. Given a
between-frame flow vector, the segmentation network could be supervised to find pixels of this offset.
Given a segmentation mask, the motion network could be supervised to find the flow for this mask.

Our approach to image segmentation with motion inputs is fundamentally different from motion
segmentation methods: 1) Our segmentation mask is predicted from static image appearance that
does not require dense and accurate flow for supervision; 2) Our flow estimation is at the segment
level, which can be inferred from sparse and noisy pixel-level flow estimates.

4) Reconstruction objective for view synthesis. How do we validate our segment flow F , a con-
joined representation from both appearance and motion pathways? Intuitively, the right segmentation
S and motion Fm would allow the synthesis of frame Xj from frame Xi according to their segment
flow F , and the reconstruction X̂j should be close to the actual frame Xj :

X̂j(p) = Xi(p+ F (p)), p = 1, . . . , h× w (7)

L = D(Xj , X̂j), (8)
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whereD is a metric measuring the distance between two images. We adopt the pixel-wise photometric
loss SSIM [61] for simplicity, among alternatives such as deep-feature matching losses [62, 63] and
contrastive losses [64]. The warping loss L is the only self-supervision our model receives.

Note that a small reconstruction error does not necessarily mean that the segmentation and flow are
correct, but correct segmentation and flow must result in a small reconstruction error. That is, this
reconstruction objective is a necessary condition for correct segmentation and flow estimation.

Compared to traditional optical flow estimation, our model also derives motion flow from brightness
constancy between two frames, but the optical flow computation assumes pixel-wise local displace-
ments that are independent of each other, whereas our segment flow assumes all the pixels in the same
segment have a common displacement. In addition, our segmentation is determined from the image
appearance, instead of fixed-size patches assumed in the Lucas–Kanade optical flow method [65].

Our model has thus two essential bottlenecks: One is the number of segments, and the other is
piecewise constant segment flow. Both are important for directly delivering a mid-level organization
without building it up from low-level vision such as edges and optical flow.

5) The emergence of objectness. The appearance pathway in our model only segments an image into
c regions, one in each of its c channels. Our reconstruction objective is only concerned with collective
view synthesis from these c channels, and does not designate any channels for moving objects or
background. That is, any channel could contain the moving foreground object for a particular video.

Surprisingly, we observe empirically that objects in training videos tend to concentrate in the same
channel, with a relatively sharp and uniform mask in the center of the image (Figure 3). We conduct
analysis to understand the emergence of objectness in a particular channel, the channel activated by
the feature that seems to capture generic objects against their backgrounds.

average pixel-wise mask entropy per channel
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Figure 3: Top) Our model shows the surprising emergence of objectness in a particular channel. Note
that the index of the channel (channel 0 here) could be random in different training runs, but there
is always a channel concentrated with objects from all the training videos. Bottom) Channel-wise
statistics over 17,500 sample training frames of our segmentation network reveal that our objectness
channel has a) the least segmentation uncertainty (measured by the entropy of Sm), b) the largest
reconstruction training error (measured by SSIM), and c) mostly central locations (the average of
the mean and standard deviation of mask centers marked by the channel number and the small black
circle) and relatively focused areas (the half of average mask spread shown as the color-shaded disk).

We calculate three types of per-pixel statistics for each segmentation channel from 17,500 sampled
frames across training videos: 1) segmentation uncertainty measured by the entropy of mask value
Sm, 2) reconstruction error between Xj and X̂j measured by SSIM, and 3) the mean and standard
deviation of the mask center and the average mask spread. Figure 3 shows that the objectness
channel has the least segmentation uncertainty, the largest reconstruction training error, mostly central
locations and relatively focused areas.

Our conjecture is that three factors contribute to the emergence of objectness in our model: 1) Training
videos tend to track moving objects in the center field of view; 2) Our piece-wise constant motion
assumption holds better for the background; 3) Motion of object pixels tends to be independent of
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that of background pixels, whereas motion of background pixels could be interpolated from other
pixels scattered in multiple background regions.

6) Limitations. Our current model develops a general sense of objectness from a collection of
unlabeled videos. It can only segment foreground objects without differentiating between object
instances or between semantic classes. It is not guaranteed to segment out all the objects or full
objects. Like most data-driven learning methods, our model performance heavily depends on the
properties of training videos, the coverage of object categories, and the object motion as well as
camera motion. Nevertheless, we still find it amazing that our model is able to generalize the concept
of objectness across a variety of datasets in a zero-shot fashion, moving a step closer to human vision.

4 Experiments

Tasks. We train our AMD model on unlabeled videos and test it on three downstream applications.
1) Zero-shot object segmentation. We directly apply our segmentation network to static images
for salient object detection. 2) Zero-shot moving object segmentation. We apply our AMD model
to segment moving objects in novel videos with zero human labels. 3) Fine-tuning for semantic
segmentation. We fine-tune our appearance pathway on labeled images for semantic segmentation.

Training data. Our training videos come from Youtube-VOS [66], a large object-centric video
dataset. Its training split contains about 4,000 videos covering 94 categories of objects. The total
duration of the dataset is 334 minutes. We sample video frames at 24 frames per second, without
using any segmentation labels provided in Youtube-VOS.

Implementation details. We train our model from scratch without external pretraining. For the
segmentation network, we use ResNet50 [67] as our backbone followed by a fully convolutional
head containing two convolutional blocks. For the motion network, we use PWC-Net [23]. We
resize the shorter edge of the input image to 400 pixels, and randomly crop a square image of size
384 × 384 with random horizontal flipping augmentation. No other augmentations are used. We
adopt the symmetric reconstruction loss that considers either frame as the target frame and sums the
two reconstruction errors. We use the Adam optimizer with a learning rate of 1× 10−4 and a weight
decay of 1× 10−6. We train AMD on 8× V100 GPUs, with each processing two pairs of sampled
adjacent frames. The network is optimized for 400K iterations.

4.1 Zero-Shot Saliency Detection

We directly evaluate our Youtube-VOS trained segmentation network on DUTS [74], a salient object
detection benchmark which contains 5,019 test images with pixel-level ground truth annotations. We
follow two widely used metrics: the Fβ score and the per-pixel mean squared errors (MAE). Fβ is
defined as the weighted harmonic mean of the precision (P ) and recall (R) scores: Fβ = (1+β2)P×R

β2P+R ,
with β2 = 0.3. MAE is simply the per-pixel averaged error of the soft prediction scores.

Experimental results. We compare our saliency estimation results against several traditional methods
based on low-level cues and various priors: background priors [68], objectness [70, 72], and color
contrast [75]. Table 1 shows that our method achieves an Fβ score 60.2 and an MAE score of 0.13,
outperforming baselines by sizable margins. Note that AMD is not designed specifically for this task
or this dataset, and its strong performance demonstrates the generalization power of our model.

Table 1: Salient object detection perfor-
mance on the DUTS dataset. Our model
outperforms traditional low-level meth-
ods by notable margins.

Model Fβ MAE
RBD[68] 51.0 0.20
HS[69] 52.1 0.23
MC[70] 52.9 0.19
DSR[71] 55.8 0.14
DRFI[72] 55.2 0.15

AMD 60.2 0.13

Table 2: Transfer performance for semantic segmenta-
tion on VOC2012. Our method outperforms TimeCycle
and compares favorably with contrastive methods.

Model Data Aug. mIoU
Scratch – – 48.0

TimeCyle[73] VLOG light 52.8
MoCo-v2[2] YTB light 61.5

AMD YTB light 62.0
MoCo-v2[2] YTB heavy 62.8

AMD YTB heavy 62.1
MoCo-v2[2] IMN heavy 72.4
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movable objects stationary objects

Figure 4: Sample salient object detection results. We directly apply our pretrained segmentation
network to novel images in DUTS without any finetuning. Surprisingly, we find that the model
pretrained on videos to segment moving objects can generalize to detect stationary unmovable objects
in a static image, e.g. the statue, the plate, the bench and the tree in the last column.

In related unsupervised learning of saliency detection [76–78], the priors of traditional low-level
methods are ensembled. Though they do not use saliency annotations, their models are pretrained for
ImageNet classification and even semantic segmentation with pixel-level annotations. These methods
are thus not fully unsupervised and omitted from comparisons.

Figure 4 shows sample results on salient object detection. Surprisingly, we find that our model trained
on Youtube-VOS to segment moving objects not only detects movable objects in single images, but
also stationary unmovable objects such as statues, benches, trees and plates. These results suggest
that our model learns generic objectness from unlabeled videos.

To quantify this observation, we manually label objects from the DUTS dataset into movable objects
and stationary objects. The F1 score of movable objects and stationary objects are 63.0 and 57.9
respectively, without a significant performance gap. We hypothesize that our model could also learn
objectness from camera motion, which causes objects and backgrounds at various depths to have
different 2D optical flow even though the objects are static.

4.2 Zero-shot Video Object Segmentation

Since our method does not require any labels, we apply our AMD model to object segmentation in
novel videos using test-time adaptation: Given a novel video, we optimize the training objective in
Eq. 8 on pairs of frames sampled from the test video. The adaptation takes 100 iterations per video.

We evaluate zero-shot video object segmentation on three datasets. DAVIS 2016 [79] contains
20 validation videos with 1,376 annotated frames. SegTrackv2 [80] contains 14 videos with 976
annotated frames. Following prior works, we combine multiple foreground objects in the annotation
into a single object for evaluation. FBMS59 [30] contains 59 videos with 720 annotated frames. The
dataset is challenging as the object may be static for a period of time. We pre-process ground-truth
labels as in [21]. For evaluation, we report the Jaccard score, which is equivalent to the intersection
over union (IoU) between the prediction and the ground truth segmentation.
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Table 3: Unsupervised video object segmentation performance on DAVIS 2016, SegTrackv2 and
FBMS59 datasets, measured in terms of Jaccard score. The table is split into traditional non-learning-
based and recent self-supervised learning methods. Results which rely on other kinds of human
supervisions (Sup.) are grayed. Dependence for pretrained dense flow method is also listed for each
model. MG’s results on SegTrackv2 and FMBS59 using ARFlow are reproduced by ours and marked
with ∗. We evaluate AMD in two settings: appearance pathway only and both pathways with test
time adaptation. AMD performs favorably to CIS on DAVIS 2016, while showing large gains on the
other two benchmarks.

Model e2e Sup. Flow DAVIS 2016 SegTrackv2 FBMS59

tr
ad

iti
on

al

SAGE[81] 7 7 LDOF[82] 42.6 57.6 61.2
NLC[17] 7 edge SIFTFlow[83] 55.1 67.2 51.5
CUT[34] 7 7 LDOF[82] 55.2 54.3 57.2
FTS[19] 7 7 LDOF[84] 55.8 47.8 47.7
ARP[18] 7 saliency CPMFlow[85] 76.2 57.2 59.8

le
ar

ni
ng

CIS[21] 7 7 PWC[23] 59.2 45.6 36.8
MG[22] 7 7 ARFlow[9] 53.2 37.8∗ 50.4∗

AMD (per-img) 3 7 7 45.7 28.7 42.9
AMD (per-vid) 3 7 7 57.8 57.0 47.5

Experimental results. We consider baseline methods claiming to be unsupervised for the full
pipeline: traditional non-learning-based approaches [81, 17, 19, 34, 18] and recent self-supervised
learning methods [21, 22]. Table 3 summarizes results for all the methods on the three datasets. Note
that NLC [17] actually relies on an edge model trained with human-annotated boundaries, whereas
ARP [18] depends on a segmentation model trained on a human-annotated saliency dataset. We thus
shade their entries in gray. For all the traditional methods, since the original papers do not report
results on most of these benchmarks, we simply provide their performance reported in CIS [21].

We evaluate AMD with and without test-time adaptation. No adaptation boils down to per-image
saliency estimation using only the appearance pathway, whereas adaptation fine-tunes both appearance
and motion pathways. On DAVIS 2016, our method achieves a Jaccard score of 57.8%, surpassing all
traditional unsupervised models. For CIS [21], their best performing model uses a significant amount
of post-processing, including model ensembling, multi-crop, temporal and spatial smoothing. We
thus refer to their performance obtained from a single model without post-processing. Our model is
slightly worse than CIS on DAVIS, by 1.4%. However, on SegTrackv2 and FBMS59, our method
outperforms CIS by large margins of 11.4% and 10.7% respectively. Motion grouping [22] is a
work concurrent with ours. It is a motion segmentation approach that relies on an off-the-shelf
pre-computed dense optical flow model. Motion grouping performs worse than our method on
DAVIS2016 and SegTrackv2 when a low-performance unsupervised optical flow model ARFlow is
used [9]. With a state-of-the-art supervised optical flow model [24] which is trained on ground truth
flow, their performance improves significantly. Among all the discussed methods, ours is the first
end-to-end self-supervised learning approach which does not require a pretrained optical flow model.

Figure 5 shows result comparisons with CIS [21]. For most of these examples, our segment flow only
coarsely reflects the true pixel-level optical flow. However, our segmentation results are significantly
better and less noisy, insensitive to the flow quality. In the first and the third examples, our model
produces high-quality object segmentations even though the object motion cues are weak.

4.3 Semantic Segmentation

Since our Youtube-VOS trained segmentation network can already segment generic objects, we further
examine its modeling power of semantic segmentation on Pascal VOC 2012 [86], which contains 20
object categories with 10,582 training images and 1,449 validation images. We finetune our AMD
model on the PASCAL VOC training set and evaluate it on the validation set. The finetuning takes
40,000 iterations with batch size 16 and the initial learning rate 0.01. The learning rate undergoes
polynomial decay with a power parameter of 0.9.

Experimental results. Our baselines are an image-based contrastive model, MoCo-v2 [2], and a
self-supervised video pretraining model, TimeCycle [73]. TimeCycle is pretrained on the VLOG
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Figure 5: Comparisons with motion segmentation method CIS [21]. CIS segmentation is sensitive to
noise, articulated motion, and camera motion in its dense flow. By disentangling appearance from
motion, our AMD is less prone to these vulnerabilities, resulting in better and more robust results.

dataset, which is larger than our Youtube-VOS dataset. For MoCo-v2, we also pretrain the contrastive
model on Youtube-VOS, to ablate the role of pretraining datasets. Since our method does not utilize
heavy augmentations as in contrastive models, we also study the effects of data augmentations.
Table 2 shows that our method outperforms the video pretrained TimeCycle significantly by 9.2%.
With light augmentation (resizing, cropping), our model slightly outperforms MoCo-v2 by 0.5%.
However, with heavy data augmentation (color jitter, grayscale, blurring), our method underperforms
MoCo-v2 by 0.7%. The reason is that our model does not directly relate augmentations, and thus
cannot build up invariance effectively across augmentations. MoCo-v2 performs much stronger when
pretrained on ImageNet, possibly because the semantic distribution of ImageNet is well aligned with
that of VOC2012. Overall, our model outperforms a prior self-supervised video model TimeCycle
and compares favorably to a contrastive model MoCo-v2 under the same training data setting.

4.4 Ablation Study

The number of segmentation channels, c, is an important hyper-parameter of our model. Figure 6
shows our model predictions trained for c = 5, 6, 8; training becomes unstable when c ≤ 4. A larger
c tends to lead to over-segmentation: The car and the swan are split into multiple regions even when
the motion is very similar between separated regions. The model trained with c = 5 segments a full
object, while the model trained with c = 8 separates the object into parts. Quantitatively, the video
object segmentation performance on DAVIS2016 drops as we increase the number of segments.

c = 5 c = 6 c = 8 c = 5 c = 6 c = 8

#segments DAVIS (J)
c = 5 57.8
c = 6 45.3
c = 8 41.0

Figure 6: Ablation study on c with different numbers of segments. Left) Two sample results with
segmentation masks and segment flows. Right) Jaccard scores on DAVIS2016. As c increases, the
object region is oversegmented, decreasing the video object segmentation performance.

Summary. We show that objectness emerges from our AMD model trained on unlabeled videos.
Our model first deconstructs video frames into appearance and motion, and then binds them into
a conjoined segment flow representation for view synthesis. While prior works rely on accurate
dense optical flow for object segmentation, our method learns from scratch on raw pixel observations.
While our segment flow is a coarse characterization of motion, our object segmentation is in fact
more robust. Validated on several segmentation benchmarks, our AMD model is the first end-to-end
learning approach for zero-shot object segmentation without using any pretrained modules.

Acknowledgements. This work was supported, in part, by Berkeley Deep Drive to SY.
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