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ORIGINAL INVESTIGATION

Quantifying Meibomian Gland Morphology
Using Artificial Intelligence

Jiayun Wang, BE, %2 Shixuan Li, BS,3* Thao N. Yeh, OD, PhD, MPH, FAAO,*? Rudrasis Chakraborty, PhD,3 Andrew D. Graham, MA,?

Stella X. Yu, PhD,'** and Meng C. Lin, OD, PhD, FAAQ!2*

SIGNIFICANCE: Quantifying meibomian gland morphology from meibography images is used for the diagnosis,
treatment, and management of meibomian gland dysfunction in clinics. A novel and automated method is de-
scribed for quantifying meibomian gland morphology from meibography images.

PURPOSE: Meibomian gland morphological abnormality is a common clinical sign of meibomian gland dysfunction,
yet there exist no automated methods that provide standard quantifications of morphological features for individual
glands. This study introduces an automated artificial intelligence approach to segmenting individual meibomian
gland regions in infrared meibography images and analyzing their morphological features.

METHODS: A total of 1443 meibography images were collected and annotated. The dataset was then divided into
development and evaluation sets. The development set was used to train and tune deep learning models for
segmenting glands and identifying ghost glands from images, whereas the evaluation set was used to evaluate
the performance of the model. The gland segmentations were further used to analyze individual gland features, in-
cluding gland local contrast, length, width, and tortuosity.

RESULTS: A total of 1039 meibography images (including 486 upper and 553 lower eyelids) were used for train-
ing and tuning the deep learning model, whereas the remaining 404 images (including 203 upper and 201 lower
eyelids) were used for evaluations. The algorithm on average achieved 63% mean intersection over union in
segmenting glands, and 84.4% sensitivity and 71.7% specificity in identifying ghost glands. Morphological fea-
tures of each gland were also fed to a support vector machine for analyzing their associations with ghost glands.
Analysis of model coefficients indicated that low gland local contrast was the primary indicator for ghost glands.

CONCLUSIONS: The proposed approach can automatically segment individual meibomian glands in infrared
meibography images, identify ghost glands, and quantitatively analyze gland morphological features.
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Meibomian glands, located in the upper and lower eyelids with
orifices at the eyelid margins, are believed to play a critical role in
ocular surface health by secreting lipids into the tears, which form a
polar lipid film that serves to retard aqueous evaporation. Meibomian
gland dysfunction can result in an unstable tear film and excessive
evaporation of tears from the ocular surface and is the most frequent
cause of dry eye symptoms.* The ability to visualize meibomian glands
and to monitor their temporal changes is important for evaluating the
risk of meibomian gland dysfunction, identifying active pathology,
and following treatment outcomes. Meibography, which is the pho-
tograph documentation of meibomian glands in vivo using either
transillumination or infrared imaging, is now commonly used in
clinics for the diagnosis, treatment, and management of meibomian
gland dysfunction.?3

The relative size of areas of meibomian gland atrophy, or gland
loss area, is an important clinical measure for assessing meibomian
gland dysfunction severity. Currently, clinicians estimate the degree
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of meibomian gland atrophy subjectively by comparing the area of
glandular loss with the total eyelid area.3* Although commonly
used, the method evaluates the overall severity of gland atrophy
only, not detailed individual meibomian gland morphological features.
Recent studies have shown that meibomian gland morphological
features, such as length, curvature, or tortuosity, and local contrast
(average gland region intensity normalized by its surrounding inten-
sity), may also be indicative of meibomian gland dysfunction severity
and related to ocular surface disease.5® In addition, the presence of
glands that were once patent but now contain little or no meibum,
referred to as ghost glands, is also thought to be associated with
meibomian gland dysfunction. These glands have a faint or “ghostly”
appearance in meibography images because of decreased local
contrast of the central duct.®®

To accurately measure individual meibomian gland morpho-
logical features from meibography images would be prohibitively
time-consuming in a patient care setting and would require extensive
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training and standardization across the field to be accurate and re-
peatable for research purposes. To date, there has been little prog-
ress made in understanding the roles played by various meibomian
gland morphological features in meibomian gland dysfunction and
various related pathologies (e.g., dry eye, tear film instability). The
lack of quantification tools for individual gland morphology hinders
such progress. Fortunately, recent advances in deep learning, 1912
a form of artificial intelligence, demonstrate the ability of deep
neural networks to learn to perform quantification tasks directly
from a large dataset of images without explicitly specifying rules.
Recent articles'®** have proposed deep learning—based approaches
to analyzing meibomian gland morphology from meibography im-
ages, and some have outperformed trained human observers. How-
ever, such methods are only capable of evaluating global meibomian
gland morphology rather than the fine-grained morphology of in-
dividual glands. Therefore, using deep learning approaches to
partitioning individual meibomian gland regions from meibography
images, a process known as image segmentation - quantitatively
measuring gland morphological features; and identifying the pres-
ence of ghost glands is of timely interest to many clinicians.

This study aims to develop an automated approach based on
deep learning that segments meibomian glands in meibography im-
ages, identifies ghost glands, and quantifies individual meibomian
gland morphological features. The health and morphology of
meibomian glands are likely to be related to the quality of the lipid
layer and the stability of the tear film. If such detailed morpholog-
ical features could be obtained and quantified quickly and accurately,
this would provide researchers with a powerful tool to quantitatively
explore their etiological significance in ocular surface disease. In
the longer term, the proposed tool could make a significant contri-
bution to improving the diagnosis, treatment, and long-term man-
agement of tear film instability and evaporative dry eye.

]
METHODS

Subject Recruitment and Imaging

Adult human subjects, mean (standard deviation) age of 27.8
(12.9) years, were recruited from the University of California,
Berkeley campus and surrounding community for single-visit ocu-
lar surface evaluations during the period from 2012 to 2017. Eligi-
ble subjects were 18 years or older with no history of ocular injury or
surgery, and not taking prescription ocular medications or systemic
medications with effects on the ocular surface or tear film. Meibography
images of the upper and lower eyelids of both eyes illuminated with
800-nm infrared light were captured with the OCULUS Keratograph
5M (OCULUS, Arlington, WA).? During image capture for all sub-
jects, the ambient light was off with the subject's head positioned
in a chin rest and forehead strap apparatus.

Informed consent was obtained from all subjects after a thorough
description of the goals, procedures, risks, and potential benefits of
the study. This study conformed to the tenets of the Declaration of
Helsinki and was approved by the UC Berkeley Committee for Pro-
tection of Human Subjects.

Data Annotations

A total of 1550 images were collected and pre-screened to rule
out images that did not capture the entire eyelid (107 images or
6.9%); thus, 1443 images were used for the study. This study used
a meibography image dataset from a previous article,' in which
the percent area of meibomian gland atrophy was estimated in
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upper eyelid meibography images. In the current article, 754 lower
eyelid images were added to 689 of these upper eyelid images from
the same subjects. Both upper and lower eyelid images then had
the total eyelid area, any regions of meibomian gland atrophy, and
each individual meibomian gland contour traced, or “annotated,”
by 1 of 10 trained observers, using the polygon tool in Fiji (ImageJ
images, only the individual meibomian gland was annotated, not
the overall lid and atrophy regions, because the border of the lower
tarsal plate could not be easily defined owing to intersubject varia-
tion in lower eyelid eversion. Far temporal and nasal gland contours
were not annotated because these regions are generally out of focus
in meibography images owing to the anterior curvature of the eye. All
visible glands within approximately the central 50% of the eyelid area
of each meibography image were annotated. Every gland was also
identified as a ghost or non—ghost gland. Note that ghost gland regions
and meibomian gland atrophy regions are mutually exclusive because
ghost glands are faint but still visible, whereas atrophy regions have no
discernable glands for annotation. Final annotations were verified by a
single lead clinical investigator (TNY) before they were made available
to the machine learning algorithm, to minimize variability in the
ground truth data (i.e., the manual annotations from trained observers)
that would arise from using multiple unsupervised observers. Fig. 1
depicts several examples of meibomian gland region annotations.
Detailed statistics can be found in Table 1. Algorithms were considered
to achieve 100% accuracy if they predicted results identical to the
ground-truth annotations.

Data Allocations

Meibography images were allocated into two subsets according
to collection time. The development set contained meibography
images collected from the years 2015 to 2017, whereas the evalu-
ation set contained those collected from the years 2012 to 2013.
The development set was used for developing the deep learning al-
gorithm, whereas the evaluation set was used for evaluating the
performance of the algorithm. For algorithm development, the de-
velopment set was further divided randomly into two subsets for
training and validation. The images in the training set were used
to train the deep learning model, whereas the validation set was
used for tuning the model hyperparameters (e.g., network architec-
tures, learning rate). The evaluation set, which did not have any
overlapping images/subjects with the development dataset, was
evaluated using the model that achieved the best performance
from the validation set.

Algorithm Design and Training

Data Processing

Raw meibomian gland annotations were pre-processed to a
standardized format before feeding to the deep learning model.
Detailed procedures are available in the supplementary materials
(available at http://links.lww.com/OPX/A517).

Gland Segmentation

In computer vision, image segmentation is the process of
partitioning an image into multiple regions.'®'” Instance segmen-
tation, one important task of image segmentation, aims to identify
the contour of each object at the detailed pixel level.!® 12 Instance
segmentation techniques are suitable for segmenting meibomian
glands because contours of individual meibomian glands are de-
sired outputs. Recently, deep learning approaches have outperformed

1095

Copyright © American Academy of Optometry. Unauthorized reproduction of this article is prohibited.


http://github.com/fiji/fiji/
http://links.lww.com/OPX/A517

Quantifying MG Morphology Using Al — Wang et al.

o

™ \\

FIGURE 1. Meibography images with ground-truth MG regions (outlined in color). The first two rows refer to the upper eyelids, whereas the last two refer
to the lower eyelids. Different colors correspond to different glands. Only MGs overlapping with the central region with width equaling to 50% eyelid
width were considered because the far temporal and far nasal regions are out of focus. MG = meibomian gland.

all other methods in instance segmentation.!®2* A deep learning
algorithm was built upon an instance segmentation network with

TABLE 1. Subject demographics of the meibography image dataset

Development

Train Tune Evaluation
Upper eyelid
Images (no.) 389 97 203
Patient demographics
Unique individuals (no.) 260 94 109
Age, average + SD (y) 27.8+13.1 27.0+11.5 27.9+12.7
Female/total patients (%) 69.6 66.0 69.4
Lower eyelid
Images (no.) 445 108 201
Patient demographics
Unique individuals (no.) 272 97 106
Age, average + SD (y) 27.9+13.1 28.2+13.4 27.7+12.6
Female/total patients (%) 68.4 63.9 67.6

SD = standard deviation.
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discriminative loss?* to predict individual meibomian gland regions
in meibography images not previously seen in the training phase.
Fig. 2 depicts the architecture of the proposed meibomian gland
segmentation network, which takes a meibography image as input
and produces the contour for each gland as output. Details on the
network design and training can be found in the supplementary ma-
terials (available at http://links.lww.com/OPX/A517).

Ghost Gland Identification

The deep learning model was also designed to identify ghost
glands (Fig. 3) at the individual meibomian gland level from a
meibography image. Details on the network design and training can
be found in the supplementary materials (available at http:/links.
lww.com/OPX/A517).

Evaluation Metrics

After finishing the training of deep learning models and identi-
fying the model with the best performance on the tuning set of im-
ages, its performance with respect to meibomian gland instance
segmentation and ghost gland identification was evaluated on the
evaluation dataset.

Gland Segmentation
To quantify the similarity between the predicted meibomian gland
region (i.e., the entire meibomian gland region within the predicted
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Meibography image

Entire MG region segmentation

embedding
clustering

Instance MG semgnetations

FIGURE 2. The MG segmentation network. The gland segmentation network takes a meibography image as an input and produces two intermediate out-
puts: the entire MG region segmentation (along with pixel-wise feature embedding; see the supplementary materials for details, available at http:/links.
Iww.com/OPX/A517) and the number of glands. The predicted MG contour/embedding and gland number are further exploited by the network to predict

instance MG region segmentation. MG = meibomian gland.

contour) and the ground truth, the mean intersection over union was
used. This metric was also used by a previous article evaluating pre-
dicted meibomian gland atrophy segmentation.'® Mean intersection
over union, or the Jaccard index, quantifies the percent overlap be-
tween the target region and the prediction output. It measures the
number of pixels in common between the target and prediction re-
gions divided by the total number of pixels present across both re-
gions. Denoting ground-truth gland region segmentation as GT and
network-predicted segmentation as P, the mean intersection over
union®? can be written as follows:
GTNP

U =
mean [U GTUP

Intuitively, mean intersection over union is analogous to the har-
monic average of the precision and recall (F1 score) and provides
a fair evaluation of the segmentation algorithm by considering
both precision and recall. For segmentation tasks, a higher mean

intersection over union value indicates a better alignment of the al-
gorithm prediction with the ground truth.

Gland Detection

In addition to evaluating the similarity between the predicted
region and the ground truth, it is also necessary to evaluate how
well the model detects objects for instance segmentation. Because
there are multiple glands presented in an image, a high detection
performance means that the model does not miss or wrongly iden-
tify individual glands. The evaluation metric is available in the sup-
plementary materials (available at http:/links.lww.com/OPX/A517).

Ghost Gland Identification

Confusion matrices and receiver operating characteristic curves
were used to evaluate ghost gland classification performance. A
confusion matrix is a table that is used to describe the performance

Individual gland mask

Individual gland image

local
network

FIGURE 3. Ghost gland classification network. The neural network has three inputs: an entire meibography image, a specific gland mask (the region
within the predicted contour), and a corresponding cropped gland image. Inputs consist of a global view of the meibography image and a local view
of individual gland, and thus, two subnetworks are used to learn to identify ghost glands. The global network learns a representation from the entire
meibography image and the individual gland mask, whereas the local network learns a representation from the individual gland image. Two representa-
tions are concatenated to predict ghost glands. In this example, the network outputs a value of O, indicating that it is a non-ghost gland.
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FIGURE 4. Local contrast calculations of MGs. To “normalize” the individual gland intensity, the average gland local contrast is defined as the difference
of average intensity of the gland region and surrounding area, with negative values set to 0. Specifically, given an input image (left), instance glands are
segmented. For a segmented gland region (middle), its surrounding area (outlined in orange) can be obtained by binary dilation operation (see the sup-
plementary materials for details, available at http://links.lww.com/OPX/A517). The difference in intensity is thus calculated. The surrounding areas of all
glands are also shown (right). MG = meibomian gland.

of a classification model on a set of test data for which the true class
labels are known. Each row of the confusion matrix represents a true
class label, whereas each column represents a model-predicted la-
bel. Sensitivity and specificity (with 50% probability threshold) were
calculated from the confusion matrix. A receiver operating character-
istic curve®® graphically depicts the diagnostic ability of a binary
classifier system as its threshold is varied.

Morphology Analysis

A meibography image reveals the morphology of multiple glands.
Individual gland features and global morphology are both important.
We thus aimed to quantify both local and global morphological features.

Local Morphological Features

Based on individual meibomian gland segmentations, morpho-
logical features such as average gland local contrast, and gland
length, width, and tortuosity can be quantitatively measured. De-
tails on measuring each feature from a meibography image are
available in the supplementary materials (available at http://links.
Iww.com/OPX/A517). Visualizations of gland local contrast, length,
and tortuosity extraction are shown in Figs. 4, 5, and 6, respectively.
Specifically, local contrast of a gland region represents its pixel in-
tensity normalized by the surrounding pixel intensity (gray scale, O
to 255). Glands containing little or no meibum have a faint, ghost-like
appearance® and low contrast in the meibography images. In addition,
Yeh and Lin” showed that gland local contrast in meibography cap-
tured using the same instrument was repeatable and invariant to
ambient light conditions. Therefore, it is of interest to include local
contrast of a gland as a morphological feature in the present study.

Association of Local Morphological Features with
Ghost Glands

One goal of analyzing meibomian gland morphology is to under-
stand which morphological features are most associated with ghost
glands. A linear support vector machine for classifying meibomian
glands as ghost glands or non—-ghost glands was constructed with
the four aforementioned morphological features as explanatory var-
iables (inputs). The model could be considered to be using the
weighted sum of input morphological features as the probability
of classifying a gland as a ghost gland. Weights are learned by train-
ing the model. Feature coefficients, or model weights, thus reflect
the relative importance of different features for the ghost gland de-
cisions of the model.

Global Morphological Features

Several global morphological features can also be measured
quantitatively with this deep learning approach. Global features
that can be extracted include number of glands per image, gland
density (the ratio of the gland area to the eyelid area), and percent
atrophy (the ratio of atrophy area to the eyelid area). The number of
glands was calculated for both upper and lower eyelids, whereas
gland density and percent atrophy were calculated over upper eye-
lids only because of the inability to annotate the full eyelid and at-
rophy regions in lower eyelid images as explained previously.

RESULTS

The algorithm development and evaluation were performed for the
whole dataset with both upper and lower eyelid images for local
morphological features and with upper eyelid images for global mor-
phological features. Normalized histograms of global morphological
features (total number of glands, gland density, and percent atrophy)

MG segmentation

Wy

FIGURE 5. Principal curves (marked in yellow) fit for gland length calculation. Gland length is defined as the number of pixels in each principal curve.
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FIGURE 6. Two-sample MGs with tortuosity marked below. For each MG (outlined in red), the convex hull (outlined in blue) of the shape is extracted.
Gland tortuosity is defined as the convexity defect of a gland, the ratio of the cavity area (green region) to the convex hull area. More tortuous glands have
greater gland tortuosity values. The left gland is more tortuous. MG = meibomian gland.

are shown in Figs. 7A to C for upper eyelid images, and those of local
morphological features (local contrast, length, width, tortuosity, and
identification of ghost glands) are shown in Figs. 7D to H.

Dataset and Training Details

Subject demographics stratified on the development and evalua-
tion datasets can be found in Table 1. Details of data pre-processing

and network training are available in the supplementary materials
(available at http://links.lww.com/OPX/A517).

Meibomian Gland Segmentation Performance

Table 2 reports the performance of the meibomian gland instance
segmentation algorithm. For gland segmentation, mean intersection
over unions were 58.4% and 68.0%. Gland detection performance
is available in the supplementary materials (available at http://links.
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FIGURE 7. Histograms (in percentage) of various morphological features of our meibography image dataset.
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TABLE 2. Gland segmentation performance

Upper eyelid Lower eyelid
Precision (%) 62.7 76.9
Recall (%) 53.9 74.1
Mean 1U (%) 58.4 68.0

Mean IU = mean intersection over union.

Ilww.com/OPX/A517). Figs. 8 and 9 provide visualizations of the ground
truth and predicted meibomian gland segmentations for the upper
and lower eyelids, respectively, with the last row in each figure pre-
senting illustrative examples of failure cases.

Ghost Gland Identification Performance

Table 3 reports confusion matrices of ghost gland classification
for the upper and lower eyelids. The deep learning algorithm achieved
84.7% sensitivity and 72.5% specificity for ghost gland classification
in upper eyelid images, and 84.1% sensitivity and 70.8% specificity
for ghost gland classification in lower eyelid images. Receiver operat-
ing characteristic curves for ghost gland classifications for the upper
and lower eyelids are shown in Fig. 10.

Morphological Features and Associations with
Ghost Glands

To give readers a sense of extracted features, individual meibomian
gland morphological features from an example meibography image
are shown in Fig. 11. Detailed morphological features including lo-
cal contrast; gland length, width, and tortuosity; and ghost gland
identification of the 13 visible glands in that image are shown.
Fig. 7 depicts the normalized histograms of local and global morpho-
logical features for the whole meibography image dataset.

To determine the important morphological gland features asso-
ciated with ghost glands, the feature coefficient of a support vector
machine model constructed on meibomian gland features was an-
alyzed. The feature coefficient of the support vector machine model
reflects the importance of different input features. A support vector
machine model achieving 57% sensitivity and 65% specificity was
used. The corresponding feature coefficient of gland local contrast
was —73%, that of gland length was 69%, that of gland width was
14%, and that of gland tortuosity was 30%. The negative sign indi-
cates that glands with lower local contrast are more likely to be ghost
glands. Gland local contrast and length had comparably large
coefficient values.

DISCUSSION

This work presents a deep learning—based approach to automat-
ically analyzing meibomian gland morphology by segmenting indi-
vidual glands from meibography images. This approach introduces
the following three innovations: (1) instance gland regions are auto-
matically segmented from the meibography image, (2) ghost glands
are automatically identified, and (3) morphological features at the
individual meibomian gland level are analyzed. The proposed ap-
proach to quantifying gland morphological features makes it possible
to further study the quantitative relationships between gland morphol-
ogy and clinical signs, to improve the understanding of meibomian
gland morphology and pathology, and could ultimately provide
quick and accurate diagnostic information in the clinical setting.

Previous studies have explored the plausibility of automatically
segmenting glands from meibography images with the goal of
meibomian gland morphological analysis and have achieved satis-
factory results for certain images.'*?* However, such methods only
segment the entire meibomian gland regions instead of individual
meibomian gland regions, which is a serious limitation for further

Ground truth

Prediction

FIGURE 8. Upper eyelid MG segmentation ground truths versus predictions. Different colors refer to different MGs. The predictions were visually similar
to the ground truths. The last row depicts some failure cases. MG = meibomian gland.
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Ground truth

Prediction

Ground ruth Predictin

to the ground truths. The last row depicts some failure cases. MG = meibomian gland.

morphological analysis. Although additional post-processing could
break the entire region into several smaller parts, such methods are
unlikely to achieve adequate results because meibomian glands
are usually dense, and close to or even overlapping with each other.
The proposed method, in contrast, is able to segment instance glands
even when they are close or slightly overlapping, which makes it more
appropriate for further morphological analysis. Empirically, a mean in-
tersection over union with a value of 50% or higher suggests a good
match between the prediction and the ground truth in computer vi-
sion. Thus, both the numerical performance evaluation metric (58
and 68% for the upper and lower eyelids, respectively) and the vi-
sual examples reported in the previous section validated the ac-
ceptable performance of the proposed algorithm.

The proposed approach is able to identify ghost glands, which
have been shown previously to be indicative of meibomian gland
dysfunction.® Based on gland segmentation and quantified mor-
phological features, further analysis of the association between in-
dividual gland morphological features and ghost glands suggested
that low meibomian gland local contrast was most associated with
the presence of ghost glands. This is consistent with the definition
of ghost glands, which have low contrast to their surroundings in

TABLE 3. Performance of ghost gland classification
Predicted: ghost

Predicted: non-ghost

Upper eyelid
188 (84.7%)
789 (27.5%)

34 (15.3%)
2085 (72.5%)

Actual: ghost
Actual: non-ghost
Lower eyelid
74 (84.1%)
699 (29.2%)

14 (15.9%)
1693 (70.8%)

Actual: ghost

Actual: non-ghost

www.optvissci.com

Optom Vis Sci 2021; Vol 98(9)

images because they contain little or no meibum. The coefficient
of gland length is the second largest, meaning that longer glands
are more likely to be ghost glands. Future studies of the links between
gland health, pathology, and morphological features such as gland lo-
cal contrast and length are warranted to verify and further understand
this finding.

The average processing time (including segmentation, classifica-
tion, and morphological analysis) per image was approximately
0.32 seconds. Experiments were performed on a single graphics pro-
cessing unit (GeForce RTX 2080 Ti; NVIDIA, Santa Clara, CA). This
means that more than 900 unprocessed or raw meibography images
can be evaluated for atrophy severity in 5 minutes without additional
human intervention. The processing speed renders it possible to
automatically analyze a large number of meibography images
within a short time and greatly improve efficiency in the clinical
and research settings. Such evaluations currently would be prohib-
itively time-consuming and without standardization for large-scale
clinical trials or on-site ocular health screenings with large num-
bers of patients.

As with any emerging methodology, the proposed approach has
certain limitations. Only glands in the central eyelid region were an-
alyzed. Because the entire eyelid is a curved surface, imaging the
central region of the tarsal plate with an optimal focus causes
defocus of the peripheral glands. In addition, incomplete eyelid
eversion may also occlude far peripheral glands, making accurate
identification of meibomian gland morphological features chal-
lenging. In terms of global morphological features, gland density
and percent atrophy were not analyzed for the lower eyelids in this
study because of the inability to accurately annotate lower eyelid
boundaries for many subjects. The tarsal plate of the lower eyelid
is about 5 mm in length,?® which is approximately half the length
of the upper eyelid. Variability among patients in the eyelid area ex-
posed by eversion of the lower lid makes it difficult to consistently
determine its boundaries. It is also important to note that deep
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FIGURE 10. Receiver operating characteristic curves for ghost gland classification.

learning model performance is measured against, and ultimately
depends upon, human expert annotations of the original meibography
images. It is thus not possible to eliminate completely the subjective
nature of the expertise needed to train the algorithm.?® Finally, it
should be noted that infrared imaging of the eyelids may or may
not provide the best images of all meibomian glands, as some re-
searchers have found significant differences in detecting gland
dropout between infrared imaging and other methods such as opti-
cal coherence tomography.2”

The scope of this study is restricted to reporting a new approach
to evaluating morphological features in meibography without pro-
viding clinical understanding of what the variability of these fea-
tures may indicate. Few other studies to date have attempted to

investigate the associations among meibomian gland morphologi-
cal features, especially local features, and basic physiological or
ocular health outcomes. Some researchers have used the O to 3
(per eyelid) discrete ordinal meiboscore proposed by Arita et al.?®
or variations thereof.?® These scores are generally based on global
features such as percent area of the eyelid affected and do not have
fine resolution or consider local morphological features of individ-
ual meibomian glands. For gland tortuosity, some researchers have
proposed a categorical classification with a threshold of 45°,3° and
some researchers have proposed different tortuosity quantification
methods.3! With the proposed method, a great deal of more de-
tailed and accurate information about both the overall status and
the fine-grained morphology of the meibomian gland array in the

Meibography

MG regions

9 10 11 12 13

1 2 3 4 5 7 8
contrast 121 | 118 | 205 | 17.6 184 | 234 7.4 141 16.7 124 | 17.5 147 | 17.2
length (mm) 427 | 9.74 | 624 | 6.97 | 6.71 894 | 411 784 | 929 | 580 | 913 | 5.02 | 8.96
width (mm) | 0.608 | 0.300 | 0.427 | 0.378 | 0.397 | 0.340 | 0.232 | 0.404 | 0.317 | 0.303 | 0.279 | 0.319 | 0.322

tortuosity (%) | 159 | 49.0 | 254 | 209 | 22.1

349 | 449 | 263 | 340 | 269 | 342 | 240 | 325

|__ghost gland 1 1 0 1 0

1 0 0 0 0 0 0

FIGURE 11. Individual MG morphological features. Based on MG regions (upper right), individual MG morphological features (lower) can be measured.
In the last row, 1 indicates a ghost gland, whereas O indicates a non-ghost gland. MG = meibomian gland.

www.optvissci.com

Optom Vis Sci 2021; Vol 98(9)

1102

Copyright © American Academy of Optometry. Unauthorized reproduction of this article is prohibited.



eyelid can be made available to researchers. Future work is war-
ranted using the proposed methodology to study the relationships
among meibomian gland morphological features, gland health
and pathology, the quality and thickness of the tear lipid layer, tear

film instability, and dry eye.

In conclusion, a deep learning model to automatically segment
individual meibomian glands, analyze both global and local
meibomian gland morphology, and predict the presence of ghost
glands in meibography images has been developed. Given its accuracy

Quantifying MG Morphology Using Al — Wang et al.

and efficiency, the quantitative outputs (morphological features at the
individual gland level) can potentially be helpful in furthering our
understanding of the interplay between meibomian gland features
and clinical signs and symptoms by analyzing large-scale image

datasets.® Future work is warranted to improve meibomian gland

segmentation performance for highly overlapping glands and periph-
eral glands in the nasal and temporal regions of the tarsal plate and
to expand our understanding of the relationships between meibomian
gland morphology and various ocular pathologies.
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