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Previous Methods for Unsupervised Learning

Instance Discrimination (Contrastive Learning)
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Instance Similarity (Positive Pairs Only)
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Caveats in Instance Discrimination

Instance Discrimination

lgnores between-instance similarity

lgnores natural groups which often underlie downstream
tasks’ discrimination at a coarser semantic level

Repels all other instances including those highly similar ones

Leans towards more instance discrimination than invariant
mapping, reducing robustness



Instance Discrimination vs. Instance-Group Discrimination
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Cross-Level Instance-Group Discrimination (CLD)

Two Augmented Views



Cross-Level Instance-Group Discrimination (CLD)

Feature Projection and Normalization




Cross-Level Instance-Group Discrimination (CLD)

Instance Discrimination
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Cross-Level Instance-Group Discrimination (CLD)

Group Branch
with Partial Shared Projection Head




Cross-Level Instance-Group Discrimination (CLD)

Local Clustering Centroids:
k-Means or Spectral Clustering




Cross-Level Instance-Group Discrimination (CLD)

instance-group discrimination

Cross-view Instance-group Discrimination
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CLD Objective

instance-group discrimination

Xi

Consistent Cross-view Grouping

Minimizing the cross entropy between hard clustering
assignment p;; (as ground-truth) based on group branch

feature f; (x;) and soft assignment g;; predicted from group
branch feature f (xl-’) in a different view.
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Total contrastive learning loss:
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Cross-Level Instance-Group Discrimination (CLD)

" Forinstances x; and x; clustered in the same group:
* Instance feature f(x;) and f¢(x;) are attracted to the
same group centroid M or M', and are thus drawn closer.

instance-group discrimination

" For similar instances x; and x; not in the same cluster:
* Repel common group centroids, thereby pulling instance
features f (x;) and fg (x;) closer

= CLD discriminates at instance and group levels, more inline
with coarser discrimination at downstream tasks.

= Greatly improves the positive/negative ratio for invariant

mapping
* Forexample, the ratio on ImageNet is 1/65536 for MoCo’s
set-wise NCE vs. 1/255 for CLD’s batch-wise NCE.
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Normalized Projection Head (NormLinear / NormMLP)

Existing methods:
project the feature to a unit hypersphere with L2 normalization.

Our methods:
Here, we normalize both the FC layer weights W and the shared feature vector f, so that
projecting f on to W simply calculates their cosine similarity.

The final normalized d-dimensional feature N (x;) has t-th component:
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Simple yet effective with consistent performance gains!



High Correlation Datasets

v' More than 5-9% improvements with faster converging speed.
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High Correlation Datasets

v' More than 5-9% improvements with faster converging speed.
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kNN accuracies on Kitchen-HC

Having highly correlated instances breaks the instance discrimination presumption and causes slow or

unstable training.
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Long-tailed Datasets

v’ 6~11% improvements on CIFAR-LT
v’ 3%5% improvements on ImageNet-LT
v Consistent improvements to MoCo and NPID

CIFAR10-LT | CIFAR100-LT ImageNet-LT

topl topS | topl topS |many/med/few topl top5
Unsupervised
NPID [53] 323 748 | 10.2 29.8 |47.5/21.3/6.6 29.5 51.1
NPID + CLD [41.1 789 | 21.7 443 [52.4/25.0/83 32.7 55.6
vs. baseline |(+8.8 +4.1 |+11.5 +14.5 (+4.9/+3.7/+1.7 +3.2 +4.5
MoCo [24] [34.2 76.7 | 19.7 426 [48.1/21.3/6.9 299 51.8
MoCo+ CLD[43.1 804 | 254 50.0 [53.1/24.9/94 33.3 573
vs. baseline |(+8.9 +3.7 | +5.7 +7.4 |[+5.0/+3.6/+2.5 +3.4 +5.5
Supervised
CE - - - - 40.9/10.7/0.4 209 -
OLTR [7] - - - - 43.2/35.1/18.5 35.6 -




Consistent Performance Gains to Various Methods on ImageNet

ImageNet benchmark:

Consistent improvements to various methods

Methods Architecture | #epoch | #GPU | top-1
BYOL' [ ] R50-MLP (28M) 100 128 | 66.5
w/ CLD* R50-NormMLP (28M) 100 8 | 69.1
InfoMin [1V] R50-MLP (28M) 100 8| 674
w/ CLD R50-MLP (28M) 100 8 | 69.5
w/ CLD R50-NormMLP (28M) 100 8 | 70.1
NPID [57] R50-Linear (24M) 200 8 | 56.5
w/ CLD R50-Linear (24M) 200 8 | 60.6
MoCo [ ] R50-Linear (24M) 200 8 | 60.6
w/ CLD R50-Linear (24M) 200 8 | 634
w/ CLD R50-NormLinear (24M) 200 8 | 63.8
MoCo v2 [ 7] R50-MLP (28M) 200 8 | 67.5
w/ CLD R50-MLP (28M) 200 8 | 69.2
w/ CLD R50-NormMLP (28M) 200 8 | 70.0
InfoMin [1V] R50-MLP (28M) 200 8 | 70.1
w/ CLD R50-MLP (28M) 200 8 | 70.6
w/ CLD R50-NormMLP (28M) 200 8 | 71.5




NormMLP is An Effective Alternative

ImageNet benchmark:
Consistent improvements to various methods
NormMLP is an effective alternative to vanilla

MLP head.

Methods Architecture | #epoch | #GPU | top-1
BYOLT [ 1] R50-MLP (28M) 100 128 | 66.5
w/ CLD* R50-NormMLP (28M) 100 8 | 69.1
InfoMin [ 7] R50-MLP (28M) 100 8 | 67.4

‘ w/ CLD R50-MLP (28M) 100 8 | 69.5 ‘
w/ CLD R50-NormMLP (28M) 100 8 | 70.1
NPID [~ '] R50-Linear (24M) 200 8 | 56.5
w/ CLD R50-Linear (24M) 200 8 | 60.6
MoCo [ '] R50-Linear (24M) 200 8 | 60.6
w/ CLD R50-Linear (24M) 200 8 | 63.4
w/ CLD R50-NormLinear (24M) 200 8 | 63.8
MoCo v2 [ 7] R50-MLP (28M) 200 8 | 67.5

‘ w/ CLD R50-MLP (28M) 200 8 | 69.2 ‘
w/ CLD R50-NormMLP (28M) 200 8 | 70.0
InfoMin [ /7] R50-MLP (28M) 200 8 | 70.1
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Summary: Universal Add-on to Various Methods
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Summary: SOTA Performance with a Much Smaller Compute!

CLD is the first method that achieves over 70% accuracy on ImageNet self-supervision benchmark, with
affordable backbone (ResNet-50), batch size (=256), and training epochs (=100).

Methods Architecture #GPU top-1 (#epoch=100) top-1 (#epoch=200)
MoCo v2 [CVPR 2020] R50-MLP (28M) 8 - 67.5
SimCLR [ICML 2020] R50-MLP (28M) 128 66.5 68.3
SwAV [NeurIPS 2020] R50-MLP (28M) 128 66.5 69.1
BYOL [NeurIPS 2020] R50-MLP (28M) 128 66.5 70.6
SimSiam [Preprint] R50-MLP (28M) 8 68.1 70.0
CLD R50-NormMLP (28M) 8 70.1 71.5

Compare with state-of-the-arts under 100 and 200 training epochs



Summary: CLD Respects Semantics
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