



# Unsupervised Feature Learning by Cross-Level Instance-Group Discrimination

Xudong Wang UC Berkeley / ICSI Ziwei Liu NTU

Stella Yu UC Berkeley / ICSI









### **Previous Methods for Unsupervised Learning**



#### Instance Similarity (Positive Pairs Only)



BYOL [NeurIPS 2020]



#### **Caveats in Instance Discrimination**



Instance Discrimination

- Ignores between-instance similarity
- Ignores natural groups which often underlie downstream tasks' discrimination at a coarser semantic level
- Repels all other instances including those highly similar ones
- Leans towards more instance discrimination than invariant mapping, reducing robustness



#### **Instance Discrimination vs. Instance-Group Discrimination**



Instance Discrimination



Instance-Group Discrimination



Two Augmented Views











Feature Projection and Normalization





#### Instance Discrimination





Group Branch with Partial Shared Projection Head





Local Clustering Centroids: k-Means or Spectral Clustering





Cross-view Instance-group Discrimination



#### **CLD Objective**



#### Consistent Cross-view Grouping

Minimizing the cross entropy between hard clustering assignment  $p_{ij}$  (as ground-truth) based on group branch feature  $f_G(x_i)$  and soft assignment  $q_{ij}$  predicted from group branch feature  $f_G(x_i')$  in a different view.

$$-E_p[\log q] = \sum_{i=1}^n C(f_G(x'_i), M_{\Gamma(i)}, M_{\neq \Gamma(i)}; T_G)$$

#### Total contrastive learning loss:

$$L(f; T_I, T_G, \lambda) = \sum_{i=1}^{n} \underbrace{C(f_I(x_i), v_i, v_{\neq i}; T_I) + C(f_I(x'_i), v_i, v_{\neq i}; T_I)}_{\text{instance-level discrimination}} + \lambda \sum_{i=1}^{n} \underbrace{C(f_G(x'_i), M_{\Gamma(i)}, M_{\neq \Gamma(i)}; T_G) + C(f_G(x_i), M'_{\Gamma'(i)}, M'_{\Gamma'(i)}; T_G)}_{\text{cross-level discrimination}}$$



- For instances  $x_i$  and  $x_j$  clustered in the same group:
  - Instance feature  $f_G(x_i)$  and  $f_G(x_j)$  are attracted to the same group centroid M or M', and are thus drawn closer.
- For similar instances  $x_i$  and  $x_j$  not in the same cluster:
  - Repel common group centroids, thereby pulling instance features  $f_G(x_i)$  and  $f_G(x_j)$  closer
- CLD discriminates at instance and group levels, more inline with coarser discrimination at downstream tasks.
- Greatly improves the positive/negative ratio for invariant mapping
  - For example, the ratio on ImageNet is 1/65536 for MoCo's set-wise NCE vs. 1/255 for CLD's batch-wise NCE.



# Normalized Projection Head (NormLinear / NormMLP)

Existing methods:

project the feature to a unit hypersphere with L2 normalization.

Our methods:

Here, we normalize both the FC layer weights W and the shared feature vector f, so that projecting f on to W simply calculates their cosine similarity.

The final normalized d-dimensional feature  $N(x_i)$  has t-th component:

$$N_t(x_i) = < \frac{W_t}{\|W_t\|}, \frac{f(x_i)}{\|f(x_i)\|} >$$

Simple yet effective with consistent performance gains!



### **High Correlation Datasets**

✓ More than 5-9% improvements with faster converging speed.



kNN accuracies on Kitchen-HC



### **High Correlation Datasets**

✓ More than 5-9% improvements with faster converging speed.



kNN accuracies on Kitchen-HC

t-SNE visualization on different epochs

Having highly correlated instances breaks the instance discrimination presumption and causes slow or unstable training.



#### **Long-tailed Datasets**

- ✓ 6~11% improvements on CIFAR-LT
- ✓ 3~5% improvements on ImageNet-LT
- ✓ Consistent improvements to MoCo and NPID

|              | CIFAI | CIFAR10-LT CIFAR100-LT |       | ImageNet-LT |                |      |      |
|--------------|-------|------------------------|-------|-------------|----------------|------|------|
| 1<br>M       | top1  | top5                   | top1  | top5        | many/med/few   | top1 | top5 |
| Unsupervised |       |                        |       |             |                |      |      |
| NPID [53]    | 32.3  | 74.8                   | 10.2  | 29.8        | 47.5/21.3/6.6  | 29.5 | 51.1 |
| NPID + CLD   | 41.1  | 78.9                   | 21.7  | 44.3        | 52.4/25.0/8.3  | 32.7 | 55.6 |
| vs. baseline | +8.8  | +4.1                   | +11.5 | +14.5       | +4.9/+3.7/+1.7 | +3.2 | +4.5 |
| MoCo [24]    | 34.2  | 76.7                   | 19.7  | 42.6        | 48.1/21.3/6.9  | 29.9 | 51.8 |
| MoCo + CLD   | 43.1  | 80.4                   | 25.4  | 50.0        | 53.1/24.9/9.4  | 33.3 | 57.3 |
| vs. baseline | +8.9  | +3.7                   | +5.7  | +7.4        | +5.0/+3.6/+2.5 | +3.4 | +5.5 |
| Supervised   |       |                        | -     |             | -              |      |      |
| CE           | -     | -                      | -     | -           | 40.9/10.7/0.4  | 20.9 | -    |
| OLTR [37]    | -     | 2                      | -     | -           | 43.2/35.1/18.5 | 35.6 | -    |



# **Consistent Performance Gains to Various Methods on ImageNet**

#### ImageNet benchmark:

• Consistent improvements to various methods

| Methods                | Architecture         | #epoch | #GPU | top-1 |
|------------------------|----------------------|--------|------|-------|
| BYOL <sup>†</sup> [21] | R50-MLP (28M)        | 100    | 128  | 66.5  |
| w/ CLD <sup>‡</sup>    | R50-NormMLP (28M)    | 100    | 8    | 69.1  |
| InfoMin [49]           | R50-MLP (28M)        | 100    | 8    | 67.4  |
| w/ CLD                 | R50-MLP (28M)        | 100    | 8    | 69.5  |
| w/ CLD                 | R50-NormMLP (28M)    | 100    | 8    | 70.1  |
| NPID [53]              | R50-Linear (24M)     | 200    | 8    | 56.5  |
| w/ CLD                 | R50-Linear (24M)     | 200    | 8    | 60.6  |
| MoCo [24]              | R50-Linear (24M)     | 200    | 8    | 60.6  |
| w/ CLD                 | R50-Linear (24M)     | 200    | 8    | 63.4  |
| w/ CLD                 | R50-NormLinear (24M) | 200    | 8    | 63.8  |
| MoCo v2 [7]            | R50-MLP (28M)        | 200    | 8    | 67.5  |
| w/ CLD                 | R50-MLP (28M)        | 200    | 8    | 69.2  |
| w/ CLD                 | R50-NormMLP (28M)    | 200    | 8    | 70.0  |
| InfoMin [49]           | R50-MLP (28M)        | 200    | 8    | 70.1  |
| w/ CLD                 | R50-MLP (28M)        | 200    | 8    | 70.6  |
| w/ CLD                 | R50-NormMLP (28M)    | 200    | 8    | 71.5  |

#### **NormMLP is An Effective Alternative**

#### ImageNet benchmark:

- Consistent improvements to various methods
- NormMLP is an effective alternative to vanilla MLP head.

| Methods                | Architecture         | #epoch | #GPU | top-1 |
|------------------------|----------------------|--------|------|-------|
| BYOL <sup>†</sup> [21] | R50-MLP (28M)        | 100    | 128  | 66.5  |
| w/ CLD‡                | R50-NormMLP (28M)    | 100    | 8    | 69.1  |
| InfoMin [49]           | R50-MLP (28M)        | 100    | 8    | 67.4  |
| w/ CLD                 | R50-MLP (28M)        | 100    | 8    | 69.5  |
| w/ CLD                 | R50-NormMLP (28M)    | 100    | 8    | 70.1  |
| NPID [53]              | R50-Linear (24M)     | 200    | 8    | 56.5  |
| w/ CLD                 | R50-Linear (24M)     | 200    | 8    | 60.6  |
| MoCo [24]              | R50-Linear (24M)     | 200    | 8    | 60.6  |
| w/ CLD                 | R50-Linear (24M)     | 200    | 8    | 63.4  |
| w/ CLD                 | R50-NormLinear (24M) | 200    | 8    | 63.8  |
| MoCo v2 [7]            | R50-MLP (28M)        | 200    | 8    | 67.5  |
| w/ CLD                 | R50-MLP (28M)        | 200    | 8    | 69.2  |
| w/ CLD                 | R50-NormMLP (28M)    | 200    | 8    | 70.0  |
| InfoMin [49]           | R50-MLP (28M)        | 200    | 8    | 70.1  |
| w/ CLD                 | R50-MLP (28M)        | 200    | 8    | 70.6  |
| w/ CLD                 | R50-NormMLP (28M)    | 200    | 8    | 71.5  |

### **Summary: Universal Add-on to Various Methods**





# Summary: SOTA Performance with a Much Smaller Compute!

*CLD is the first method that achieves over 70% accuracy* on ImageNet self-supervision benchmark, with affordable backbone (ResNet-50), batch size (=256), and training epochs (=100).

| Methods             | Architecture      | #GPU | top-1 (#epoch=100) | top-1 (#epoch=200) |
|---------------------|-------------------|------|--------------------|--------------------|
| MoCo v2 [CVPR 2020] | R50-MLP (28M)     | 8    | -                  | 67.5               |
| SimCLR [ICML 2020]  | R50-MLP (28M)     | 128  | 66.5               | 68.3               |
| SwAV [NeurIPS 2020] | R50-MLP (28M)     | 128  | 66.5               | 69.1               |
| BYOL [NeurIPS 2020] | R50-MLP (28M)     | 128  | 66.5               | 70.6               |
| SimSiam [Preprint]  | R50-MLP (28M)     | 8    | 68.1               | 70.0               |
| CLD                 | R50-NormMLP (28M) | 8    | 70.1               | 71.5               |

Compare with state-of-the-arts under 100 and 200 training epochs



### **Summary: CLD Respects Semantics**

Query



chime meerkat

sarong

poodle















Retrieved by **NPID** 





#### Retrieved by **NPID + CLD**



