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Task: Audio Event Classification
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State-of-the-art Relies on ImageNet Pre-Training
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Andrey Guzhov, Federico Raue, Jorn Hees, and Andreas Dengel, “Esresnet: Environmental sound classification based on visual

domain models,” arXiv preprint arXiv:2004.07301, 2020.




Subsequent Classifier Fine-Tuning on Audio for Quick Convergence
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Pro: Quicker Accuracy Gain in Early Epochs Than No Pretraining
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Quick User Data Adaptation Is Useful for Edge Devices




Con: ImageNet PreTraining Needs Large, Image-Parsing Nets
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Re-training during network design takes a

long time
- Image data requires layers with many
parameters



Our Idea: Pretrain on Sound Data Directly without Supervision
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Using Audio Data Alone, Faster Pre-Training Performs On Par
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Details of the Sound Encoding

Stereo

Modified SOTA

Internal 3-Lay
Spectrograr
Transform




Frequency Bins are Distributed Along Channel Dimension

Waveform to color spectrograms

WAL Each resulting instance has three
"‘y” I Channels, containing different

stack . parts of the frequency spectrum.

Schema Exactly as in ESResnet for Direct Comparison



Details of the Unsupervised Embedding for Pretraining
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Train Instance Discrimination on Spectrograms
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Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin, “Unsupervised feature learning via non-parametric instance discrimination,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018



Train Instance Discrimination on Spectrograms
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Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin, “Unsupervised feature learning via non-parametric instance discrimination,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018



Training on Sound Classification Task Yields Fast Improvement

Datasets:

a) ESC10
b) DCASE2013
c) ESC50
d) US8K

Pre-Training with NPID
unsupervised on all
Datasets.

Downstream training
follows official
train/val folds.

Results are averages
over all Folds
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In Summary: Quick Performance Gain for Training
Arbitrary Networks on the Edge
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