Unsupervised Discriminative Learning of Sounds for Audio Event Classification

Sascha Hornauer Ke Li Stella X. Yu

UC Berkeley / ICSI

Shabnam Ghaffarzadegan Liu Ren

Robert Bosch LLC

Phone image by: https://commons.wikimedia.org/wiki/User:Holger.Ellgaard CC BY-SA 3.0

State-of-the-art Relies on ImageNet Pre-Training

Andrey Guzhov, Federico Raue, Jorn Hees, and Andreas Dengel, "Esresnet: Environmental sound classification based on visual domain models," arXiv preprint arXiv:2004.07301, 2020.

Subsequent Classifier Fine-Tuning on Audio for Quick Convergence

Pro: Quicker Accuracy Gain in Early Epochs Than No Pretraining

Quick User Data Adaptation Is Useful for Edge Devices

Con: ImageNet PreTraining Needs Large, Image-Parsing Nets

 Image data requires layers with many parameters

Our Idea: Pretrain on Sound Data Directly without Supervision

Using Audio Data Alone, Faster Pre-Training Performs On Par

Details of the Sound Encoding

Frequency Bins are Distributed Along Channel Dimension

Each resulting instance has three Channels, containing different parts of the frequency spectrum.

Schema Exactly as in ESResnet for Direct Comparison

Details of the Unsupervised Embedding for Pretraining

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018

Train Instance Discrimination on Spectrograms

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin, "Unsupervised feature learning via non-parametric instance discrimination," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018

Training on Sound Classification Task Yields Fast Improvement

Datasets:

- a) ESC10
- b) DCASE2013
- c) ESC50
- d) US8K

Pre-Training with NPID unsupervised on all Datasets.

Downstream training follows official train/val folds.

Results are averages over all Folds

In Summary: Quick Performance Gain for Training Arbitrary Networks on the Edge

