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In our rapidly changing world, continuous monitoring of natu-
ral systems is essential to understand and mitigate the impact of 
human activity on ecological processes1–3. Recent technological 

innovations now allow for the rapid collection of ecological data 
across vast spatial and temporal scales. However, the resulting infor-
mation deluge creates a bottleneck for researchers, who must process 
the data at management-relevant timescales4. Artificial intelligence 
(AI) offers promising solutions for rapid and high-accuracy data 
processing5,6. However, the dynamic nature of ecological systems 
poses unique challenges when developing accurate algorithms7,8. To 
overcome these hurdles, we showcase how the integration of lim-
ited human labour into the machine learning workflow can greatly 
increase both the efficiency and accuracy of data processing.

Long-term camera trapping
We are currently experiencing a rapid, human-driven loss of global 
biodiversity9–12. To understand the complex patterns, drivers and 
consequences of species declines and extinctions, ecologists are 
increasingly employing emerging technology to assist with data col-
lection and processing. Motion-activated remote cameras (hence-
forth ‘camera traps’) have emerged as a popular non-invasive tool for 
monitoring terrestrial vertebrate communities13–15. Their decreasing 
cost and greater reliability have recently led to the application of cam-
era traps for long-term, continuous deployment aiming to monitor 
entire wildlife communities across multiple seasons and years1,16–18. 
Compared with one-time or annual surveys, continuous monitor-
ing reveals new insights into wildlife responses to local, regional and 
global environmental changes, as well as to conservation interven-
tions. This scale of monitoring is particularly valuable for captur-
ing responses to environmental perturbations as they occur1,2. The 
‘Snapshot Serengeti’ project (http://www.snapshotserengeti.org), 
which has operated continuously since 2010, is a flagship example 

of a long-term camera-trap monitoring programme. Over the past 
decade, this survey has gathered unprecedented longitudinal data 
that have substantially enhanced our understanding of the seasonal 
and inter-annual dynamics of the Serengeti ecosystem16,19,20. Projects 
of this magnitude have become increasingly common across eastern 
and southern Africa18 and around the world1.

The greatest logistical barrier to long-term monitoring with 
camera traps is the overwhelming amount of human labour needed 
to annotate thousands or millions of wildlife images for ecologi-
cal analysis4,5,16. This annotation bottleneck creates a considerable 
mismatch between the paces of data collection and data process-
ing, substantially curtailing the usefulness of camera-trap data 
for ongoing conservation and monitoring efforts4. For example, 
a relatively modest camera-trap survey (~80 camera traps1) cap-
tures millions of images a year. We estimate that it would take a 
single trained expert around 200 full-time working days to anno-
tate one million images. As such, hundreds of human annotators 
(for example, experts, trained volunteers and citizen scientists) are 
required to keep pace with image accumulation. This need is likely 
to grow exponentially over the coming decades as more monitor-
ing sites are set up. Although only one or two experts are needed 
to validate each wildlife image, it is common practice that multiple 
(5–20) volunteers or citizen scientists look at each image to produce 
a high-accuracy ‘consensus’ classification (~97% accurate compared 
to expert identifications16). This duplication of effort needed to gen-
erate accurate results using volunteers further perpetuates the clas-
sification bottleneck.

Automatic image-recognition systems
The use of deep learning (a subset of AI technology) to automati-
cally identify animals in camera-trap images has recently drawn 
considerable attention from the ecological community. Currently, 
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trained deep learning algorithms can classify a million images in a 
single day running on a desktop computer, a substantial advance-
ment over the months of effort required for human annotators to 
accomplish the same task5,21,22.

There have been several attempts to develop robust camera-trap 
recognition methods for real-world deployment, either tackling 
distribution shifts (in species numbers and locations) with trans-
fer learning23–25 or addressing new species emergence with active 
learning26–28. However, before it becomes feasible to rely on deep  

learning to handle the mass of image data from large-scale, long-term 
camera-trap projects, two major impediments must be overcome: 
(1) accounting for temporal changes in species composition at study 
sites due to migration, invasion, reintroduction and extinction and 
(2) handling the long-tailed distribution of records across species 
(that is, extreme imbalance in the number of images of different 
species; Extended Data Fig. 1). As discussed in the following, these 
issues limit the ability of current AI to accurately recognize species 
that are of notable interest to conservation practitioners.
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Fig. 1 | Overview of a realistic animal classification system. a, The dynamic recognition loop. In real-world applications, machine learning models do not 
stop at one training stage. As data collection progresses over time, there is a continuous cycle of inference, annotation and model updating. Every time 
a tranche of new data are added, pre-trained models are applied to classify the data. When there are novel and difficult samples, human annotation is 
required and the model needs to be updated to reflect the newly added data. b, The progression of a realistic animal classification system. Even if the 
trained model has high accuracy for the previous validation sets, there may be a difference in the classes between previous validation sets and current 
inference data (for example, there may be novel categories in the newly collected data that did not exist in previous training and validation sets). Models 
thus need to be updated over time. Here we present a more practical procedure that can both maximize the utility of modern image-recognition methods 
and minimize the dependence on manual annotation for model updating. We incorporate an active learning technique that actively selects low-confidence 
predictions for further human annotation, while keeping highly confident predictions as pseudo-labels. Models are then updated according to both human 
annotations and pseudo-labels. Ann., annotation; CNN, convolutional neural network; CNovel, number of novel classes at time step Tn; N, total number of 
classes at time step Tn − 1; T, time step.

Nature Machine Intelligence | VOL 3 | October 2021 | 885–895 | www.nature.com/natmachintell886

http://www.nature.com/natmachintell


ArticlesNATuRE MACHinE InTElligEnCE

Changing species composition. A novel challenge for long-term 
surveys is that new species may be detected on cameras in subse-
quent seasons or years, either because the species are rare and unde-
tected in previous survey periods29 or because they are new to the 
system. Additionally, the species composition of ecological systems 
naturally varies through time through the process of succession30. 
Novel species are often of particular conservation concern, as they 
may represent recolonizing populations31, reintroduced animals32 or 
harmful invasive species33,34.

In conventional deep learning, researchers focus on the perfor-
mance of existing test data while ignoring the potential for future 
changes in data composition35. In other words, deep learning mod-
els typically require datasets to be fixed in the number of catego-
ries (in other words, they are static), whereas, in reality, long-term 
camera-trap datasets are not constrained to certain numbers of spe-
cies (they are dynamic).

Fine-tuning models through transfer learning is currently the 
best solution when new species populate a study area36. However, 
this process requires full annotation of newly collected datasets, 
requiring a considerable amount of new human effort. This defeats 
the purpose of deep learning to reduce manual labour for long-term 
camera-trap monitoring.

Data from wildlife communities are long-tailed. Wildlife com-
munities typically contain many individuals of several common 
species and few individuals of many rare species, resulting in 
camera-trap data with a long-tailed distribution. For example, 
in the dataset used for the project from Gorongosa National 
Park, Mozambique, ~50,000 images (>60% of animal images) 
are of baboons, warthogs and waterbucks, while only 22 images 
are of pangolins (a rare and protected species). This imbalance 
creates performance inconsistencies, because deep learning suc-
cess is derived from balanced training datasets (for example, 
ImageNet37). For the Gorongosa dataset, a traditional deep learn-
ing approach resulted in only 60% accuracy for a category with 
only 41 images (serval) versus 88.8% performance for a species 
with 17,938 images (waterbuck). This is a major issue, because 
animals of particular conservation concern are typically rare38, 
producing fewer images and therefore worse classification accu-
racy than for common species. If such species are always misclas-
sified, the practical benefits of AI are limited.

An iteratively updating recognition system. To overcome these 
two major issues of (1) changing species community composition 
and (2) long-tailed species distributions, we designed a deep learn-
ing recognition framework that is updated iteratively using lim-
ited human intervention. Human annotation is needed whenever 
images of species novel to the AI model appear in the data. Our goal, 
therefore, becomes to minimize the need for human intervention  

as much as possible by applying human annotation solely on dif-
ficult images or novel species, while maximizing the recognition 
performance/accuracy of each model update procedure (that is, the 
update efficiency).

Traditionally, a deep learning model is applied to new batches of 
unannotated data collected during each time period to predict spe-
cies classes. In our approach, we actively flag images that our model 
predicts with low confidence as novel or unknown species. These 
low-confidence predictions are then selected for human annota-
tion, while high-confidence predictions are accepted as accurate 
and used as pseudo-labels for future model updates. The model is 
then updated (that is, retrained) based on both human annotations 
and pseudo-labels. To accommodate changing species communi-
ties, this procedure of active annotation and model update repeats 
each time new data are added to the collection (Fig. 1). In terms 
of long-tailed distribution, we use the open long-tailed recognition 
(OLTR)7 method to balance the learning between abundant and 
scarce species. This component can reduce the number of predic-
tions with low confidence from scarce species.

As a case study, using this new method we trained a model on 
a camera-trap dataset collected from Gorongosa National Park, 
Mozambique (details are provided in the Methods), and produced 
substantially improved model update efficiency over traditional 
transfer learning approaches. Specifically, using our approach, more 
than 80% human effort was saved on annotating new data, without 
sacrificing classification performance.

The dynamic nature of our algorithm maximizes learning and 
recognition efficiency by taking the best from both humans and 
machines within a synergistic collaboration, providing a framework 
that can be practically deployed for long-term camera-trap moni-
toring studies.

Iterative human and automated identification
In this section, we introduce the overview of our algorithm, data 
specification and experiment settings.

Algorithm overview. Our approach has two major components: (1) 
active selection with humans in the loop and (2) model update using 
active data annotations. For each time period when new data are 
collected, categories of images are predicted by deep learning mod-
els trained from previous periods with corresponding confidence 
levels. The model actively picks out low-confidence predictions for 
human annotation, while we accept high-confidence predictions as 
accurate, without further human verification. These predictions are 
used as pseudo-labels and included in the final dataset for further 
model updates or ecological analyses. The model is then updated 
(retrained) using both pseudo-labels and the newly acquired human 
annotations (implementation details are provided in the Methods).

After updating the model, we evaluate the model update efficiency 
and sensitivity to novel categories on a validation set. Specifically, 
we examine (1) the overall validation accuracy of each category 
after the update (that is, update performance), (2) the percentage 
of high-confidence predictions on validation (that is, saved human 
effort for annotation), (3) the accuracy of high-confidence predic-
tions and (4) the percentage of novel categories that are detected 
as low-confidence predictions (that is, sensitivity to novelty). The 
optimization of the algorithm aims to minimize human efforts (that 
is, to maximize the high-confidence percentage) and to maximize 
model update performance and high-confidence accuracy.

Data specifications. Data categories. We manually identified a total 
of 55 categories (that is, species) in our data, including non-animal 
categories such as ‘ghost’ (misfired images lacking animals), ‘setup’ 
(images with a human setting up the cameras) and ‘fire’. There were 
630,544 images in total. A full list of these categories is provided in 
Extended Data Fig. 1, along with the number of images associated 

Table 1 | Classification performance comparisons on validation 
sets of periods 1 and 2

Periods Methods Class 
average 
accuracy (%)

Class average 
accuracy on new 
classes (%)

1 Off-the-shelf model 81.2 –

2 Traditional transfer learning 
with full human annotation

75.8 63.9

Our framework without 
semi-supervision and OLTR

69.2 61.2

Our framework (semi-OLTR) 77.2 68.1

Bold indicates higher performance on the same inference set.
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with each category. Some vague categories that human annotators 
were unable to label accurately because of the varying quality of 
camera-trap images were also present, such as ‘unknown antelope’ 
and ‘unknown bird’.

Two groups of training and validation sets. To ensure sufficient train-
ing and validation data, we initially identified 41 of the most abun-
dant categories in our camera-trap dataset. The remaining 14 of the 
55 categories were all tagged as ‘unknown’ and used to improve and 
validate the model’s sensitivity to novel and difficult samples. We 
randomly split the 41 categories (by trigger events) into two groups 
of training and validation sets (26 categories in the first group of 
data and 41 in the second group) to mimic periodic data collection 
from two sequential time periods. Detailed training and validation 
split information is provided in the Methods.

Detailed pipeline for experiments. For experimental purposes, we 
separated our identification pipeline into two steps representing two 
time periods of data collection and the two groups of data curated 
in this project (Extended Data Fig. 3). The evaluation is focused on 
the second period when model update occurs. There are three major 
technical components in the framework: (1) energy-based loss39, 
which improves the sensitivity to possible novel and difficult samples 
for active selection, (2) a pseudo-label-based semi-supervised proce-
dure40 for efficient model update from limited human annotations and 
(3) OLTR7, which balances the learning of a long-tailed distribution.

Period 1. In the first period, we pre-trained an off-the-shelf model 
(ResNet-50 model41) using the first group of data. After training, 
we adopted the energy-based loss39 and data from the 14 ‘left-out’ 
categories to fine-tune the classifier so it was more sensitive to novel 
and difficult samples.

Period 2. In the second period, we first used the fine-tuned model 
from period 1 to produce high- and low-confidence predictions 
from group 2 training data, which were considered to be ‘newly 
collected’. The confidence was calculated based on the Helmholtz 
free energy (details are provided in the Methods) of each predic-
tion39. Novel and difficult samples were distinguished using a preset 
energy threshold. Then, low-confidence predictions were annotated 
by humans, while high-confidence predictions were accepted as 
pseudo-labels.

To update the model, we applied semi-supervised learning 
and OLTR, using both human annotations and pseudo-labels. 
Pseudo-label-based semi-supervised approaches iteratively update 
both the model and pseudo-labels until the best performance on 
the validation sets is achieved40. The use of pseudo-labels also 
enables the model to learn from the whole dataset instead of human 
annotated data only. On the other hand, OLTR approaches bal-
ance the learning between abundant and scarce categories through 
an embedding-space memory-based mechanism, where embed-
ding memories of abundant categories are utilized to enhance the  

distinguishability of scarce categories that do not have enough 
samples to otherwise provide discriminative features7. The Methods 
provides details of these methods.

After the model was updated, the training sample from the 14 
‘left-out’ categories was added to fine-tune the model’s sensitivity to 
novel and difficult samples using energy-based loss as in period 1.

Future periods. Because the framework is designed to aid long-term 
data collection and monitoring projects, the framework does not 
stop at period 2. As time progresses, new data are collected. Users 
simply have to repeat the steps in period 2 to pick out and annotate 
difficult/novel samples to update the model. In addition, because 
the framework is fully modular, when new techniques are devel-
oped, parts of the framework can be easily replaced for better 
performance. For example, if there are better methods for novel cat-
egory detection, energy-based loss and confidence calculation can 
be replaced with no effect on the conceptual framework.

Results
Period 1. In the first period, the model achieved an 81.2% average 
class accuracy on the validation set of group 1 (Table 1), 79.5% of 
the image predictions were high-confidence and, of these predic-
tions, the accuracy was 91.1% (Table 2). In terms of novel categories, 
in the validation phase, the model successfully detected 90.1% of the 
novel samples belonging to the 14 categories that were left out of the 
training phase. In other words, 90.1% of the novel samples were pre-
dicted with low confidence. By contrast, direct softmax confidence 
(the most conventional way of calculating prediction confidence42) 
achieved a similar high-confidence accuracy as our model (91.5%), 
but only detected 59.3% novel samples.

Period 2. On group 2 training data, the model pre-trained from period 
1 predicted 78.7% of images with high confidence, where the accu-
racy was 92.4%, while 75.7% of the new categories in group 2 train-
ing data were detected as low-confidence predictions (Table 2). As 
high-confidence predictions are trusted, 78.7% of human effort was 
saved in annotating group 2 training data because high-confidence 
predictions were accepted as accurate in our framework.

To update the model, group 2 training data that had been pre-
dicted with low confidence were checked by human experts and 
provided with manual annotations, and high-confidence samples 
were assigned model-predicted pseudo-labels. Overall, on the vali-
dation set of group 2, the model updated on both human annota-
tions and pseudo-labels had an average class accuracy of 77.2% over 
the 41 categories. Compared to our method without human anno-
tation (69.2%; Table 1), there was an 8% improvement. The model 
produced 72.2% high-confidence predictions at 90.2% accuracy 
in the high-confidence predictions of the validation set (Table 2) 
(see Table 3 for detailed per-category performances). In addition, 
it produced an 82.6% novel sample detection rate (that is, flagged 
as low-confidence predictions) from the validation data of the 14 
left-out categories (last column of Table 1).

Table 2 | Active selection performances of periods 1 and 2 with and without energy-based function

Periods Inference sets Confidence metrics High-confidence ratio  
(%)

High-confidence accuracy 
(%)

Novel detection ratio 
(%)

1 Group 1 validation Softmax 80.9 91.5 59.3

Group 1 validation Energy (ours) 79.5 91.1 90.1

2 Group 2 training Energy (ours) 78.7 92.4 75.7

Group 2 validation Softmax 71.2 90.1 70.5

Group 2 validation Energy (ours) 72.2 90.2 82.6

Bold indicates higher performance on the same inference set.
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Comparison with traditional transfer learning. Our model 
(Tables 4 and 5) was substantially more data-efficient (that is, fewer 
data were required for the same performance) than traditional 

transfer learning methods in several respects (Fig. 2). Compared to 
traditional transfer learning, which uses full human annotations of 
group 2 training data, our method only involves human annotation 

Table 3 | Classification performance comparisons of period 2 by category between our method and fully annotated transfer learning

Traditional transfer learning with full human 
annotation

Our framework (semi-OLTR)

Species No. of human annotations Accuracy (%) No. of human annotations Accuracy (%)

Exist in groups 1 and 2 Ghost 20,500 96.2 4,248 90.2

Waterbuck 17,938 88.8 2,079 82.4

Baboon 15,660 87.3 2,335 81.1

Warthog 17,400 87.4 4,224 79.7

Bushbuck 6,622 84.5 2,179 72.3

Impala 7,153 84.0 1,306 77.1

Oribi 3,832 83.8 966 76.7

Elephant 2,471 88.2 470 85.1

Genet 1,976 85.5 888 84.0

Nyala 1,569 73.9 434 75.1

Setup 1,229 87.4 389 86.0

Bushpig 1,040 83.1 377 83.1

Porcupine 1,152 83.9 300 88.3

Civet 699 82.9 123 83.9

Vervet 739 73.2 263 81.0

Reedbuck 740 65.8 203 75.3

Kudu 556 70.9 161 77.2

Buffalo 479 89.0 63 84.8

Sable_antelope 323 85.2 48 86.1

Duiker_red 370 86.8 116 89.6

Hartebeest 394 91.2 63 84.6

Wildebeest 303 83.5 44 82.4

Guineafowl_helmeted 304 64.6 250 74.4

Hare 214 78.8 166 80.8

Duiker_common 194 62.7 92 80.4

Fire 160 100.0 14 100.0

Exist in group 2 only Mongoose_marsh 343 70.6 287 71.8

Aardvark 235 77.6 128 81.0

Honey_badger 234 60.3 190 63.8

Hornbill_ground 203 80.0 161 72.0

Mongoose_slender 165 68.0 157 72.0

Mongoose_bushy_
tailed

161 74.0 106 72.0

Samango 99 58.0 48 70.0

Mongoose_white_
tailed

84 52.0 79 64.0

Mongoose_banded 70 38.0 62 52.0

Mongoose_large_
grey

63 44.0 54 48.0

Bushbaby 39 36.0 31 50.0

Guineafowl_crested 46 95.0 35 100.0

Eland 44 90.0 31 70.0

Lion 42 70.0 32 75.0

Serval 41 45.0 32 60.0

Bold indicates higher performance.
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of 21.3% of the group 2 samples. Even with less human annotation, 
our method still achieved a better overall class average accuracy 
(77.2% versus 75.8% for traditional transfer learning; Table 1). Our 
model also performed better than direct transfer learning for clas-
sifying the 15 new categories from group 2 (with an average of 4.2% 
accuracy improvement; Table 3).

Practical deployment. Our new framework showcases the power-
ful potential of deep learning for long-term ecological applications 
while employing a novel practical approach that greatly reduces 
the manual annotation burden. To validate the practical benefits, 
we deployed the model to classify a new set of data gathered from 
the same camera-trap monitoring sites (Gorongosa National Park, 
Mozambique) after group 1 and 2 datasets were collected (details 
are provided in the Methods). The new dataset is unannotated, 
unanalysed and contains 623,333 images in total. Images were pre-
dicted with the same active selection procedure, and 78.7% of the 
predictions were considered high-confidence. Thus, only 21.3% of 
these newly collected data required human annotation (or 78.7% of 
the human effort; ultimately, annotation cost was saved).

To validate the robustness of the model performance, two 
experts (K.M.G. and M.S.P.) confirmed the accuracy of 1,000 ran-
domly selected high-confidence predictions (that is, those that were 
accepted as accurate). Our model predictions are 88.6% accurate 
with respect to expert classifications. Statistically, ~88% automatic 
accuracy is already sufficient to help alleviate the data bottleneck 
encountered in typical camera-trap monitoring projects compared 
to expert accuracy.

In terms of future model updates, the model can be further 
updated and validated on the new dataset using the same procedure 
as for period 2, where a new validation set can be created using a 
mix of previous validation sets (validation of groups 1 and 2) and 
the newly acquired human annotations. In addition, the same  

random verification by human experts on high-confidence pre-
dictions can be applied to avoid performance corruptions (that is, 
increased misclassifications in high-confidence predictions).

Invasive and recolonizing species. One of the nontable advances 
made by our framework is the ability to flag new or rare species 
that may have particular conservation importance. Our new data-
set contained two novel species (leopard and African wild dog) to 
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efficiencies of all categories existing in the group 2 training and validation set. The blue bars represent our model’s label efficiencies for each category. The 
orange bars represent baseline efficiencies for comparison, where full annotations were used with the traditional transfer learning method (that is, no. of 
training annotationsi/no. of full annotationsi = 1). The blue and orange lines are annotation counts of each category, where orange represents full annotations 
and blue represents actually used human annotations in our period 2 model update procedure. For categories that exist in both the group 1 and 2 training 
sets (that is, known categories; on the left, with a blue background), the efficiency is substantially higher than the baselines across all categories. For 
categories that only exist in group 2 datasets (that is, they were absent in the group 1 training and validation set and are novel categories; on the right, with 
an orange background), the model is designed to use as much training data as possible because of the novelty of these categories. In other words, the no. of 
training annotationsi/no. of full annotationsi of these categories is close to 1. Our model still has relatively higher efficiency than the full annotation transfer 
learning model across all the novel categories because our model had higher validation accuracy with a similar amount of training annotations.

Table 4 | List of the augmentation methods and corresponding 
parameters we used on our training data

Augmentations Parameters Values

Random resize crop Dimension 224 × 224

Range of crop scale ~0.08–1.0

Range of crop aspect ratio ~0.8–1.2

Random grey scale Probability 0.1

Random horizontal flip Probability 0.5

Random rotation Probability 0.5

Rotation degree 45

Colour jittering Brightness jittering 0.4

Contrast jittering 0.4

Saturation jittering 0.4

Hue jittering 0.1

Normalization Mean [0.485, 0.456, 
0.406]

Std [0.229, 0.224, 
0.225]
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test the model’s sensitivity to novel categories. The former naturally 
recolonized the study area and the latter were reintroduced as a part 
of ongoing conservation efforts. There were 24 and 5 images for 

African wild dogs and leopards, respectively. The model success-
fully detected 20 (83.3%) African wild dog images and four (80.0%) 
leopard images, demonstrating its capacity to recognize important 
novel species in continuous monitoring periods.

Discussion
Failure cases. Two types of failure occur in our framework:  
(1) low-confidence predictions that are not novel species and  
(2) high-confidence predictions that differ from human-supplied 
annotations (Fig. 2).

There are several ways in which our model was unable to accurately 
identify samples from known species with high confidence (Fig. 3a).  
A common reason for low-confidence predictions was difficulty dis-
tinguishing animals from the background. For example, Fig. 3a(i) 
depicts an antelope obscured by darkness at night, making it difficult 
for the model to classify with confidence. However, rather than mak-
ing a misclassification as would occur in traditional AI approaches41, 
our model considers the low accuracy of the prediction and flags the 
image for review or similar. In our approach, these difficult samples 
are flagged as low-confidence predictions for further human evalu-
ation (annotation) rather than assigned random labels — a practice 
that can potentially bias further data analysis and inference.

In the second type of model failure, images predicted with high 
confidence differ from the original annotations (Fig. 3b). We note 
that these images were originally classified by volunteers who were 
trained but may not have correctly annotated all samples as accu-
rately as wildlife experts. Surprisingly, most of the confident predic-
tions are proven to be correct after reevaluation by human experts 
(K.M.G. and M.S.P.). For example, Fig. 3b(iv) was originally labelled 
as a warthog, although there is no warthog present. However, there 
is a vervet monkey in the lower left of the frame that was missed by 
the human classifiers. The model not only detects the previously 
unobserved animal but also correctly identifies the species.

Thus, these ‘failures’ actually demonstrate the robustness and 
flexibility of our framework. As both human annotations and 
machine predictions can be wrong, a mutual interaction between 
human and machine can benefit the long-term performance of the 
recognition system. For example, picking out low-confidence sam-
ples like those in Fig. 3b prevents the production of low-quality pre-
dictions that can cause bias in camera-trap analyses. Furthermore, 
applying validated human annotations on these samples can help 
improve the identification capacity of the model as it needs to rec-
ognize more difficult samples during model updates. On the other 
hand, when the model is highly confident, it can be more accurate 
than average human annotators, as evidenced by the examples given 
in Fig. 3b(ii),(iv),(v). In other words, some of the human mistakes 
are prevented, such that the annotation quality for future model 
update and camera-trap analyses is improved. On the other hand, 
as we acknowledge in some cases the model will make incorrect 
high-confidence classifications, we can apply periodic random veri-
fication by human experts on high-confidence predictions (similar 
to what we did in the ‘Practical deployment’ section) to ensure that 
these errors do not propagate through repeated training.

The need for humans in the loop. Our framework demonstrates the 
unique merit of combining machine intelligence and human intel-
ligence. As Fig. 3c illustrates, machine intelligence, when trained 
on large datasets to distil visual associations and class similarities, 
can quickly match visual patterns with high confidence37. Human 
intelligence, on the other hand, excels at being able to recognize 
fragmented samples based on prior experience, context clues and 
additional knowledge. Increasingly, we are moving towards apply-
ing computer vision systems to real-world scenarios, with unknown 
classes7, unknown domains8 and constantly updating environments. 
It is therefore crucial to develop effective algorithms that can handle 
dynamic data streams. Humans in the loop provide a natural and 

Table 5 | List of hyperparameters of our framework used in the 
two-period experiments

Period Parameters Values

Period 1: 
Training

Baseline architecture ResNet-50

Training epochs 40

Batch size 64

Initial learning rate (feature) 0.001

Initial learning rate (classifier) 0.01

Learning rate decay epochs 10

Learning rate decay ratio 0.1

Momentum 0.9

Weight decay 0.0005

Period 1: Energy 
fine-tuning

Training epochs 10

Batch size 96

Known:unknown ratio 1:2

Energy loss weight 0.01

Initial learning rate (feature) 0.00001

Initial learning rate (classifier) 0.0001

Confidence threshold (τ) 13.7

Energy temperature 1.5

Period 2: 
Updating

Baseline architecture ResNet-50 + OLTR

Semi-repeats 3

Epochs in each repeat 30

Batch size 64

Pseudo-label (%) 50

Initial learning rate of each 
repeat (feature)

0.0001

Initial learning rate of each 
repeat (classifier)

0.01

Initial learning rate of each 
repeat (memory)

0.0001

Learning rate decay epochs 10

Learning rate decay ratio 0.1

Momentum 0.9

Weight decay 0.0005

Period 2: 
Energy 
fine-tuning

Training epochs 10

Batch size 96

Known:unknown ratio 1:2

Energy loss weight 0.01

Initial learning rate (feature) 0.000001

Initial learning rate (classifier) 0.00001

Initial learning rate (memory) 0.000001

Confidence threshold (τ) 6.7

Energy temperature 0.06

Nature Machine Intelligence | VOL 3 | October 2021 | 885–895 | www.nature.com/natmachintell 891

http://www.nature.com/natmachintell


Articles NATuRE MACHinE InTElligEnCE

effective way to integrate the two types of perceptual ability (that 
is, human and machine), resulting in a synergism that improves the 
efficiency and the overall recognition system.

Extensions and future directions. Our framework is fully modular 
and can be easily upgraded with more sophisticated model designs. 
For example, models with deeper networks can be employed 

a

(i) (ii) (iii) (iv) (v)

b
(i) (ii) (iii) (iv)

(viii)(vii)(vi)(v)

(i)

(ii)

c

Label: Baboon
Predict: Ghost
Actual: Ghost

Label: Unknown antelope
Predict: Hartebeest
Actual: Hartebeest

Label: Unknown
Predict: Elephant
Actual: Elephant

Label: Warthog
Predict: Vervet
Actual: Vervet

Label: Baboon
Predict: Warthog
Actual: Ghost

Label: Helmeted guineafowl
Predict: Warthog
Actual: Helmeted guineafowl

Label: Unknown antelope
Predict: Baboon
Actual: Baboon + Waterbuck

Label: Unknown antelope
Predict: Bushbuck
Actual: Bushbuck

Waterbuck (high-confidence accuracy: 91.3%)

Mongoose_banded (high-confidence accuracy: 61.1%)
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for better classification generalization, more sophisticated 
semi-supervised training protocols can be adopted for better learn-
ing from pseudo-labels, and better novelty detection techniques can 
be used for better active selection.

Future directions include extending our framework to handle 
multi-label and multi-domain scenarios. The current approach 
was developed for single-label recognition (that is, each image only 
represents one single species). In real-world camera-trap set-ups, it 
would be desirable to recognize multiple species within the same 
view. Furthermore, our framework is expected to be deployed in 
diverse locations with different landscapes. Therefore, our method-
ology can be more scalable with the ability to handle multiple envi-
ronmental domains than existing methodologies. In addition, our 
method will be incorporated in a user-friendly interface, such that 
users without knowledge of Python can use it.

Methods
Data collection and annotation. The camera-trap data came from the WildCam 
Gorongosa long-term research and monitoring programme in Gorongosa National 
Park, Mozambique (18.8154° S, 34.4963° E)43. The data used in this study are from 
2016–2019. Cameras were located in a mix of grassland, open woodland and 
closed forest habitats. K.M.G. placed 60 motion-activated Bushnell TrophyCam 
and Essential E2 cameras in a 300-km2 area in the southern area of the 3,700-km2 
park. Each camera was mounted on a tree within 100 m of the centre of a 5-km2 
hexagonal grid cell, facing an animal trail or open area with signs of animal activity. 
Cameras were set in shaded, south-facing sites that were clear of tall grass to reduce 
false triggers. Cameras took two photographs per detection (henceforth called a 
‘trigger event’) with an interval of 30 s between trigger events. There were 630,544 
images in total. The data distribution with respect to categories is reported in 
Extended Data Fig. 1. In terms of the data split for experimental purposes, detailed 
distributions of both group 1 and 2 are reported in Extended Data Fig. 2.

Data split. The dataset was randomly split into two groups of training and 
validation sets to mimic periodic data collection from two sequential time periods, 
along with an additional ‘unknown’ set for improving and validating the model’s 
sensitivity to novel and difficult samples. Because we set the cameras to capture 
one pair of images for each trigger event, image pairs within the same event were 
usually similar in appearance. To reduce bias, we split the dataset based on camera 
trigger events, such that both images in a paired trigger event were either in the 
training or testing set. The training–testing split did not account for camera 
locations (that is, images from a given camera were present in both testing and 
training sets). For large-scale, long-term projects, it is more likely that the camera 
locations are stable. In our study, the cameras cover most of the landscapes in the 
monitoring area and include a diversity of background types that change seasonally 
throughout the year. Possible distribution shifts in our dataset solely come from 
temporal animal community changes instead of spatial landscape/ecosystem 
changes.

The first group contained the 26 most abundant categories, and the second 
period contained all 41 categories. We randomly divided each period into training 
(80% of samples) and validation (20% of samples) sets. For scarce categories that 
had fewer than 80 images (for example, crested guineafowl, eland, lion and serval), 
we randomly selected 20 samples instead of 20% of the data to ensure the quality of 
validation. The labels and distributions of these two groups of data are illustrated 
in Extended Data Fig. 2.

Within the 14 categories that are tagged ‘unknown’, we randomly selected 80% 
of data to fine-tune the model’s sensitivity to novel and difficult samples. We then 
used the rest of the sample from the 14 categories as an extra validation set to 
evaluate the model’s novel image detection capacity.

Implementation details. In this section, we report the implementation details 
of our method. It was developed with Python as the programming language with 
PyTorch44 as the deep learning framework. The detailed experimental pipeline is 
illustrated in Extended Data Fig. 3.

Data pre-processing. All of the images used in this project were first resized to 
dimensions of 256 × 256. For training inputs, these images were randomly cropped 
and resized to 224 × 224. For validation and inference inputs, images were centre 
cropped to 224 × 224. Table 4 presents the list of data augmentations used for 
training and corresponding hyperparameters.

Period 1 and baseline model training. There are two steps in this period: (1) baseline 
model training on group 1 data and (2) classifier fine-tuning using the 14 left-out 
categories for better sensitivity to novel and difficult samples.

For the baseline model we used ResNet-5041. This was pre-trained on ImageNet37, 
a generalized object oriented dataset for model weight initialization. The pre-trained 
model was then trained on group 1 training data, which had 26 categories. All the 
hyperparameters are provided in Table 5. Model weights with the best validation 
performance on group 1 validation data were saved as the best model.

After training on group 1 data, we used energy-based loss39 and the 14 left-out 
categories (tagged as ‘unknown’) to fine-tune the classifier for better sensitivity to 
novel and difficult samples. The energy-based loss was calculated as

Lenergy = Exknown∼Dtrain
known

(max (0, E(xknown) − mknown)
2

+Exunknown∼Dtrain
unknown

(max (0, munknown − E(xunknown))2
(1)

E(x) = −T log
N∑

i
e(f(xi)/T) (2)

where E is expectation and xknown and xunknown are samples from group 1 and samples 
from 14 unknown categories, respectively. Dtrain

known and Dtrain
unknown represents 

datasets of group 1 and 14 unknown categories. E(⋅) is the Helmholtz free energy, 
calculated as the log sum of outputs from the network. f(·) : RD×D

→ R
K  is the 

network that maps D × D images to K-dimensional vectors. T is the temperature 
that regularizes the energy. mknown and munknown are two margins applied on known 
and unknown energy.

Fig. 3 | Failure cases. a, Examples of low-confidence predictions. In most cases, the model has low confidence on images with distorted, partially visible 
(ii–v) or obscured animals (i). It can be incredibly difficult, if not impossible, for either humans or machines to accurately identify the animal species. 
 b, Examples of high-confidence predictions that did not match the original annotations. Many high-confidence predictions that were flagged as incorrect 
based on validation labels (provided by students and citizen scientists) were in fact correct upon closer inspection by wildlife experts (K.M.G. and M.S.P.). 
For example, in (i), an empty image, originally mislabelled as baboon, was correctly classified by our method as empty. In (ii), although the animal is 
distant from the camera in a dark environment, the model successfully identifies hartebeest, while the human-supplied label is ‘unknown antelope’. In 
(iii), the model successfully identifies the elephant only based on the trunk and leg, while human volunteers originally classified the image as ‘unknown’. 
In (iv), a vervet monkey is correctly detected and classified in an image originally (incorrectly) labelled as warthog by human annotators. Panel (v) was 
originally classified as unknown by human annotators, but, based on the body shape and white markings on the rear, the model can correctly recognize 
the animal as bushbuck. Panel (vi) is an example where multiple species are in the same scene. Although the model does not have the capacity to deal 
with multi-species samples, as baboon is obviously the major component of this image, the prediction is reasonable. On the other hand, these examples 
above do not mean that the model always makes correct predictions when highly confident. Panels (vii) and (viii) are two typical examples where the 
model makes mistakes due to the obscured nature of these images. Red text indicates wrong and green text indicates correct. c, Two examples of image 
retrieval based on feature space similarity. Machine intelligence largely depends on visual similarity associations learned from large-scale datasets to 
classify animal species. These two examples illustrate image retrieval based on the Euclidean distances of the feature vectors (that is, outputs of the global 
average pooling layer of the ResNet model used in the project, which is of dimension 2,048 in Euclidean space). For each anchor image (the leftmost 
image of each row), we show the five closest (that is, most similar) samples in terms of Euclidean distance within the validation set of group 2. Green 
colour means correct predictions and red means wrong predictions (based on the original annotations). For example, in sequence (i), samples with similar 
visual appearance are usually from the same species (waterbuck). However, in sequence (ii), the two most similar images (according to our model) to the 
banded mongoose anchor image are actually not banded mongoose but slender mongoose. The model misclassified these two samples based on their 
similarities to the other banded mongoose images.
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During fine-tuning, both cross-entropy loss and energy-based loss are tuned. 
Equation (3) is the final loss, where w is the weight applied on energy-based loss:

L = Lcross_entropy + w Lenergy (3)

All hyperparameters are reported in Table 5.

Period 2 and model update. Active selection and confidence calculation. Following 
ref. 39, confidence for active selection is calculated based on the Helmholtz free 
energy (equation (2)). Based on a preset energy threshold τ, predictions are 
separated into high- and low-confidence categories. In other words, predictions are 
considered confident if −E(x) > τ and vice versa. Based on prediction confidence, 
low-confidence predictions are assigned human annotations and high-confidence 
predictions are utilized as initial pseudo-labels for semi-supervised learning.

Pseudo-labels and semi-supervised learning. Pseudo-label semi-supervision 
utilizes both human annotations and pseudo-labels to update the model. In the 
original approach, where models are randomly initialized, pseudo-labels are 
updated throughout training iterations40. In other words, at each iteration, the 
model predicts samples without human annotations and uses these predictions as 
pseudo-labels to train the same samples with a stronger set of data augmentations. 
In our approach, as the pseudo-labels usually have higher quality than random 
predictions, we set three semi-update repeats and only update the pseudo-labels 
at the beginning of each repeat using the best model from the last repeat. 
Specifically, within each semi-update repeat, the model is updated with a fixed set 
of pseudo-labels and a number of training epochs. Model weights with the best 
validation performance are saved, and at the end of the repeat, the best model 
is used to predict samples without human annotations to produce a new set of 
pseudo-labels, and a new repeat is started. Only model weights with the best 
validation performance throughout the three repeats are saved, and the number 
of repeats is a hyperparameter that can be tuned using validation data. Other 
hyperparameters are provided in Table 5.

OLTR. OLTR is an additional component in our framework targeting the 
long-tailed distribution of classes in the datasets. Generally speaking, it uses 
embedding-level memory of each category to enhance the distinguishability of 
scarce categories. It is based on the idea that a lot of the mid-level visual features 
(that is, feature embedding) are shared between similar categories (for example, 
most of the antelopes share similar body shapes). Because the model can usually 
learn high-quality feature embedding from abundant species, through memory 
selection techniques the model is able to select relevant feature embedding to help 
improve the distinguishability of scare categories. We directly apply OLTR into our 
framework. For a detailed explanation of OLTR, see ref. 7.

Comparison to unsupervised and self-supervised learning. Although 
unsupervised learning and self-supervised learning have recently made substantial 
progress45,46 in learning without human annotations, these learning methods still 
have difficulties handling novel categories and categories with trivial differences 
(that is, fine-grained categories)47. This is because current unsupervised 
and self-supervised learning methods rely on human-defined random data 
augmentation (for example, cropping and rotation) to mimic intra- and interclass 
variations, while real-world novel and fine-grained categories often possess 
complex intra- and interclass distributions. In this work we advocate the use of 
humans in the loop to provide valuable supervision in a data-efficient manner. 
Together with semi-supervised learning, our framework can reliably recognize new 
species with only sparse human annotations.

Additional results. Detailed results of model update performance are listed by 
category in Table 3.
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Extended Data Fig. 1 | The distribution of images across species in the entire camera trap data set. There are 55 categories in total. 14 categories were 
tagged as “unknown” (colored in orange) and used to improve and validate our model’s sensitivity to novel and difficult samples.
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Extended Data Fig. 2 | The distribution of species across the two groups of data. We split the data set into two groups to mimic two sequential data 
collection seasons. In the first group, there are 26 categories (colored in blue). The second group has 41 categories. Group 1 is used in the first period 
experiment to train a baseline model, and Group 2 is used in the second period experiment to test and update the model.
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Extended Data Fig. 3 | The overall experimental workflow of our framework. In the first time step, a baseline model is trained using group 1 training 
data with only 26 categories. Next, the classifier is fine-tuned using the 14 unknown categories and energy-based loss to increase the sensitivity to 
out-of-distribution categories. After the classifier is fine-tuned, the classifier is then used to predict classifications for group 2 training data. Here, 
high-confidence predictions are trusted while low-confidence predictions are flagged for human annotation. In the final step, both machine- and 
human-annotations are used to update the previous model with OLTR and semi-supervised techniques. Once the model is updated, the classifier is 
fine-tuned using energy-based loss again for out-of-distribution sensitivity.
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