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Abstract: Rapid and accurate identification of potential structural deficiencies is a crucial task in evaluating seismic 
vulnerability of large building inventories in a region. In the case of multi-story structures, abrupt vertical variations of story 
stiffness are known to significantly increase the likelihood of collapse during moderate or severe  earthquakes.  Identifying 
and retrofitting buildings with such irregularities—generally termed as soft-story buildings—is, therefore, vital in earthquake 
preparedness and loss mitigation efforts. Soft-story building identification through conventional means is a labor-intensive 
and time-consuming process.  In this study,  an automated procedure  was devised based on deep learning techniques for 
identifying soft-story buildings from street-view images at a regional scale. A database containing a large number of building 
images and a semi-automated image labeling approach that effectively annotates new database entries was developed for 
developing the deep learning model. Extensive computational experiments were carried out to examine the effectiveness of 
the proposed procedure, and to gain insights into automated soft-story building identification.
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1  Introduction

Soft-story (SS) buildings are a common archetype 
that have distinct visual characteristics, such as having a 
large opening on the ground floor, e.g., a garage (One key 
criterion of defining a soft-story building is the stiffness 
of the ground floor relative to that of the floors above. 
In  appearance, a soft-story building typically has an 
open space such as a garage on the ground floor). Such 
ample opening space can make a ground floor not as stiff 
as the higher floors, leading to the name  ‘soft-story’. 
Consequently, an SS building is vulnerable to a moderate 
or severe earthquake (see Fig. 1).  Take  Los Angeles  for 
example, in the 1994 Northridge earthquake, where two-
thirds of the approximately 49,000 destroyed or damaged 
apartment units were SS buildings (https://la.curbed.
com/2018/1/17/16871368/earthquake-apartments-safe-
northridge). Since the west coast of the United States is 
situated along the belt of high seismicity, residents and 

properties are under the constant threat of earthquakes 
(see Fig. 2). As a result, a series of building reinforcement  
and mandatory retrofit projects have been launched 
since 2009, aiming to reduce structural deficiencies 
and to improve the performance of SS buildings during 
earthquakes.

Screening, which is labor intensive and is hard to 
organize, is often the first step  of retrofit programs. 
In general, the screening process includes collecting 
buildings and evaluating structural integrity. Once the 
buildings of concern are identified, the government 
authority reports such information as building location, 
type, and status. The residents or property owners are 
then required to hire licensed professional engineers 
to conduct structural inspection and to file a report to 
the authorities. The reporting process can be costly 
and time-consuming. To reduce the economic burden 
on the residents and the time and labor cost imposed 
on government agencies, an automated building 
classification process is desirable.

The availability of street view images and recent 
advances in computer vision techniques make automated 
rapid screening of SS buildings viable. In recent years, 
street view images have attracted significant attention 
from researchers, and have emerged as a much sought 
resource because of their availability and the rich 



828                                           EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                            Vol. 19

visual information captured in the images. Studies have 
shown the potential of using the images for a variety of 
applications, ranging from predicting housing prices 
(Bency et al., 2017; Law et al., 2018) to evaluating the 
safety of neighborhoods (Naik et al., 2014; Liu et al., 
2017). Given the distinctive visual appearance of SS 
buildings, the possibility of recognizing such buildings 
from street view images is promising.

The past several years have seen significant progress 
in machine learning technologies, which have been 
widely embraced by the computer vision community. 
Deep learning (DL) techniques such as convolutional 
neural networks (CNNs) have been applied and have 
achieved impressive performance in various applications, 
such as face verification (Sun et al., 2014) and object 
detection (Girshick, 2015; Ren et al., 2015).

In this work, a DL-based framework is proposed 
for automatically recognizing a soft-story building in 
an image. The SS building identification framework 
includes three tasks: collecting street images, building 
a classification model, and analyzing the results. To be 

specific, a large-scale building database was collected 
using the Google Street View Static API (Google Street 
View Static API: https://developers.google.com/maps/
documentation/streetview/intro). Currently, the database 
contains 25K images captured from Google Street Map 
in five cities in California: Santa Monica, Oakland, 
San Francisco, San Jose, and Berkeley. The images are 
grouped by their source cities so that each set of images 
is geographically organized and representative of the 
city, and more importantly, the images can be used by 
municipal agencies or engineering companies.

Based on the database of collected images, a CNN 
model was developed to classify SS buildings. The 
classification task from street view images is not trivial. 
First of all, as illustrated in Fig. 3, street view images, 
which are captured on the roads by cameras instrumented 
on moving vehicles, are noisy. In a street view image, 
buildings may be heavily occluded by trees or cars. 
Furthermore, an image may not capture a building because 
of improper viewpoint. In addition to the noisy image 
problem, labeling a large number of images for training 

(a) A typical soft-story building (b) Examples of damaged soft-story buildings
Fig. 1  Soft-story buildings in good and bad conditions. Soft-story buildings are common in many countries. Due to specific  
            structure, such buildings are likely to collapse during a moderate or severe earthquake

Berkeley

San Francisco

Oakland Santa Monica San Jose

Lowest hazard

Fig. 2  Urgently needed soft-story retrofit programs. Soft-story buildings are especially common on the west coast of the United 
           States. As shown in the National Seismic Hazard Map released by U.S. Geological Survey (USGS) in 2014, the west coast 
           is located in a seismic belt. Displayed here are five example images from the data sets collected from five west-coast cities
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a classification model can be tedious, labor-intensive, 
and time-consuming. To address these challenges, the 
authors developed a semi-automatic labeling strategy to 
build a benchmark data set for training the classification 
model. An analysis module based on a class activation 
map was deployed to visualize the “cues” that the model 
used for the classification. The visualizations using the 
classification map can not only provide users with extra 
evidence for the predictions, but also help to diagnose the 
classification results and to improve the learning model.

The contributions of this work are three-fold: (1) 
this study represents the first effort towards developing 
a DL-based framework for automatic soft-story building 
classification; (2) a large-scale street view image database 
was compiled, accompanied with a semi-automatic data 
labeling strategy; (3) a benchmark data set was built for 
SS building to demonstrate the potential use of deep 
learning techniques in earthquake engineering and 
regional seismic vulnerability analysis. Based on the 
building inventory database collected from street view 
images, the authors conducted extensive experiments 
and produced a comprehensive analysis of the DL-based 
SS building classification framework. The rest of the 
paper is organized as follows. Section 2 reviews related 
work. Section 3 describes the proposed framework. 
Experimental details and results are presented in Section 
4, and an application example is provided in Section 5. 
Finally, the paper concludes with a brief summary and 
discussion.

2  Related work

Screening of seismic vulnerable structures such as soft-
story buildings requires comprehensive consideration of 
information from different areas of expertise, including 

the knowledge about seismic  hazards, the performance of 
buildings during major earthquakes, seismic evaluation 
and  performance assessment tools, etc. In 1988, ATC 
developed a handbook, FEMA 154 (ATC, 1988), which 
contains guidance and the technical basis for evaluating 
seismic performance of buildings using a scoring system. 
The handbook was later updated in ATC 2002 and ATC 
2015. The objective of FEMA 154 was to provide for the 
earthquake community a methodology for evaluating the 
seismic safety of a large inventory of buildings quickly 
and inexpensively, with minimum access to the buildings 
(e.g., based on the visual clues manifested at building 
exteriors), and to determine whether a building requires 
a more detailed examination. The FEMA 154 method has 
been broadly used, or used for inspiration, in many rapid 
visual screening projects in different countries (Karbassi 
and Nollet, 2007; Wallace and Miller, 2008; Srikanth et 
al., 2010; Saatcioglu et al., 2013; Perrone et al., 2015; 
Ploeger et al., 2016; Ningthoujam and Nanda, 2018).

Visual-based screening methods work because the 
seismic performance of a building to a great extent, 
depends on its structure type, geometric irregularities, 
and foundation conditions, and these attributes can 
usually be identified based on visual clues. In a building 
structure, a story is called a soft story if its stiffness is 
dramatically weaker than other stories. However, it is 
impossible to quantitatively evaluate the strength/stiffness 
of each story in an as-built building if detailed information 
(e.g., the  Building Information Model) of the building is 
not available. Fortunately, the existence of a soft story 
can often be identified using certain observable clues. 
For example, as shown in Fig. 4, if a building has an 
occupied space above a garage with limited / narrow 
wall widths on both sides of the garage opening, a large 
opening at the ground story, a story with less wall area 

Fig. 3   Challenges in classifying a soft-story building in a street view image
(a) Example images with improper viewpoints                                                (b) Example images with heavy occlusions

(a) (b) (c) (d)

Fig. 4   Soft-story buildings: buildings with severe vertical irregularity

(a) Building with occupied space over a 
garage with limited / short wall lengths 
on both sides of the garage opening

(b) Building with an open front 
at the ground story

(c) Building with one story 
taller than the others

(d) Building with one story having less 
wall or fewer columns than the others
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or fewer columns than the other stories, or a story taller 
than the others, the building may potentially be identified 
as a soft-story building. These visual cues are obvious 
to a trained observer. In other words, visual screening of 
soft-story buildings can be performed by professionals 
following the rules and methods provided in FEMA 154. 
Although visual screening has been widely adopted, 
the process can be costly and error-prone, as it can be 
labor intensive in collecting a large amount of data (i.e., 
images) on the buildings, and human evaluations can be 
subjective, which may lead to differing interpretations 
and possibly erroneous results.

This study proposes an alternative automated 
approach that collects street view images automatically 
from Google Maps and uses deep learning techniques 
to identify and classify soft-story buildings from the 
images. The proposed method has many advantages over 
traditional screening methods regarding cost efficiency, 
scalability, and consistency in the evaluation. Street 
view images are essentially photos taken on the road that 
capture such objects as buildings, trees, and cars. Such 
images have attracted much attention from researchers 
in recent years because: (1) street view images can be 
obtained easily; (2) they provide rich visual information; 
(3) computational software and hardware used to process 
images have been improved significantly. Researchers 
have demonstrated the potentials of street view images 
in many applications. Naik et al. (2014) predicted the 
perceived level of public safety by analyzing millions 
of street view images. This work shows that the visual 
appearance of urban environments can reflect the lives 
of residents in a neighborhood. Gebru et al. (2017) 
utilized the extracted information of cars to estimate 
the demographic makeup of neighborhoods. Law et 
al. (2018) used street view images to estimate housing 
prices in London, indicating a strong correlation between 
housing price and street appearance. Kang et al. (2018) 
used street view images together with satellite images 
to predict the function of a building. By leveraging the 

information contained in street view images, a variety 
of applications have been developed that can potentially 
benefit city planning and real estate marketing.

Recent years have seen significant progress in 
the field of computer vision, taking advantage of the 
advances in machine learning research, particularly on 
deep neural networks. A typical deep neural network 
consists of a stack of convolutional layers and fully 
connected layers. Each layer, except for the final layer, 
serves as a feature extractor. As opposed to traditional 
classification methods, which require the selection of an 
‘optimal’ feature representation, a deep learning neural 
network can learn and extract features from the images 
themselves. When training a deep neural network for 
object classification, an image is used as an input and 
propagates forward through the network. Furthermore, 
a ground truth label is provided for supervision. The 
difference, i.e., the error, between the ground truth and the 
prediction from the training network is then propagated 
backward from the last layer to the first layer. The 
parameters of all the layers in the network are iteratively 
updated by repeating the forward and backward 
propagation process. Deep neural networks have been 
successfully applied in many computer vision tasks, 
such as object recognition, detection, and segmentation. 
Despite the significant progress made in computer vision 
and image processing, applying deep neural network 
methods to recognize an SS building from a raw image 
remains a challenging task since the visual features of a 
soft story are local and subtle.

3   Overall workflow for classifying soft stroy 
      buildings

As shown in Fig. 5, there are three basic steps in 
the process of classifying soft-story buildings. The first 
step is to collect images of buildings and establish a 
building database for the cities of interest. Selected data 

Data collection
Data annotation

Manual

Automatic

Data annotation

Manual annotation

Automatic annotation

Classifier

Classification Results analysis

Soft-story

Others

Classification
Input

Output

Fully-connectedConvolutional

Inception V3/V4

Resnet 50/152

Fig. 5  Overall workflow of the proposed framework
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sets collected are then used for training the classification 
models. The trained models are then applied to 
predict SS buildings in the cities of concern, and the 
predicted results are evaluated, for example, by using a 
visualization aid and scoring metrics

3.1  Create a building database

In this work, five cities in California, including Santa 
Monica, Oakland, San Francisco, San Jose, and Berkeley, 
were selected for the study of the SS building classification 
problem. The process of creating a building database 
for the five cities consists of two tasks, namely, image 
collection and image annotation.

Image collection	 Firstly, building addresses of 
each city are obtained from official websites. Based on 
the building addresses, street view images of individual 
buildings are downloaded  using the Google Street View 
Static API (or “Google API” for short). Parameters 
of the API, such as field of view, pitch, and heading, 
are manually set and consistently applied to all cities. 
Altogether, as tabulated in Table 1, 25,340 images were 
collected. The data sets for Santa Monica, Oakland  and 
San Francisco contain 16,665, 1,359 and 6,921 images, 
respectively. The images collected for Berkeley and San 
Jose have only 395 images, and are therefore grouped 
together as a single data set.

Image annotation	 For model training purposes, 
the building images need to be annotated or labelled. 
Manually annotating the entire database with a large 
number of images is labor       intensive and time-consuming. 
A semi-automatic labeling strategy was developed to 
facilitate the annotation of the images. The basic idea is 
to first train a classifier on a small manually annotated 
data set and then apply the classifier to categorize the rest 
of the unlabeled images. This process can be repeated 
depending on the accuracy and the amount of data 
available and needed for annotation. In this work, an 
expert was recruited to annotate 1,302 images selected 
from the Santa Monica data set, with about half of the 
images being SS buildings. A CNN model was then 
trained and used to classify the other images in Santa 
Monica and Oakland. This labelling strategy was 
employed for annotating 18,419 images for the cities of 
Santa Monica and Oakland. Additionally, given the small 
number of images, the data set for Berkeley and San 
Jose was manually annotated and was used as a (ground 
truth) data set for testing the generalization of the trained 
model on other cities. Finally, the images for the city 

of San Francisco were left as raw data to simulate the 
application of the SS building classification model on an 
unseen location.

3.2  Training a building classifier

The goal of this work was to develop a classifier 
which could automatically recognize an SS building 
from a street view image. A convolutional neural network 
(CNN) was used as the classifier. Given an input image i, 
the network outputs a label with possibility pi, indicating 
how confident the model is about the prediction. Since 
there were only two classes, SS and non-SS buildings, a 
cross-entropy loss was used for training the model:

( )
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i i i i
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= − + − −∑
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where pi and ci are, respectively, the predicted probability 
and the ground truth label. The CNN model was first 
pre-trained on ImageNet (Deng et al., 2009) and then 
fine-tuned using the collected building data sets on the 
cities selected for the training purpose. Details of the fine 
tuning process are discussed in the experiment studies.

3.3  Visualization for interpretation of predictive 
          results

In addition to the labelling of images and the 
confidence score for model training and prediction, a 
visualization module was developed to enhance users’ 
understanding of how the CNN model makes classification 
decisions. As indicated in Zhou et al. (2016), a class 
activation map obtained from a convolutional layer 
(normally the last convolutional layer in the network) 
can be used to interpret the prediction results.

Given an input image i, the class activation map can 
be constructed as:

Map ( )c
c k kw f x, y=                       (2)

where c refers to a class,  i.e.,  soft-story or non-soft-
story building; c

kw  are the learned weights, indicating 
the contribution of the channel k to class c; and ƒk (x, y) 
represents the activation of k-th filter at location (x, y).

Mapc, which in essence is a linear combination of 
the activation maps obtained by each filter, is capable of 
showing the regions triggering the prediction of class c.

Table 1   Statistics of the building database

City  Images Annotation method
Santa Monica 16,665 Automatic

Oakland 1,359 Automatic
Berkeley & San Jose 395 Manual

San Francisco 6,921 Raw



832                                           EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                            Vol. 19

4   Experimental studies and results

This section describes the experiments conducted 
on the data collected from the five cities in California. 
First, the data sets from Santa Monica and Oakland 
are used to illustrate the machine learning approach for 
developing the soft story building classification model. 
The implementation details and the different CNN 
architectures tested are discussed. Generalization of the 
classifier is then tested using the manually labelled data 
set for the cities of San Jose and Berkeley. To illustrate 
the potential application of the machine learning model to 
a “new” city with raw and unlabelled data, the classifier is 
then applied to the data set for San Francisco. Lastly, to 
illustrate the application of the approach, the machine 
learning model is incorporated in a regional seismic 
vulnerability assessment framework to predict the 
regional distribution of soft story buildings, using the 
city of Oakland as an illustrative example.

4.1   Model development of soft story building classifier

4.1.1  Data selection	
As discussed in the previous section, the first task for 

building a predictive model is to evaluate and select of the 
data for training the model. As shown in Table 1, the data 
set collected from Santa Monica, had far more non-SS 
than SS building images, which poses a data imbalance 
problem that may lead to bias. To address this problem, 
random images were drawn from the non-SS class to 
create a training data set with 3,203 SS and 3,921 non-
SS buildings. On the other hand, the data collected from 
Oakland was well balanced with, respectively, 717 SS 
and 642 non-SS buildings. For each data set, as shown 
in Table 2, the data used for training and testing was split 
at a ratio of  9:1.
4.1.2  Implementation  

Four  well  established  convolutional  neural  
networks,  namely,  InceptionV3 (Szegedy et al., 2016), 
InceptionV4 (Szegedy et al., 2017), ResNet50 (He et al., 
2016), and ResNet152 (He et al., 2016), were employed 
in this experimental study. The four CNNs have different 
network architectures, each with a different number of 
layers (depth), and they have been applied and achieved 
excellent results on the publicly available ImageNet 
dataset. As discussed in Section 3, for each CNN, the 
initial model pretrained using the ImageNet data was 
adopted. The model was then fine-tuned using the SS 
building training data sets. During the fine-tuning, the 
number of output classifiers was changed from 1000 to 

2 (for either SS or non-SS building type). Furthermore, 
a step training strategy was adopted to first fine tune the 
last fully connected layer while keeping all prior layers 
frozen and then fine tune all layers. This training strategy 
helped speed up the convergence.

When training a model using InceptionV3/V4, the 
initial learning rate and momentum are set to be 0.01 and 
0.0004, and the RMSProp optimizer is used with weight 
decay 0.00004. When training ResNet50/152, the initial 
learning rate was set to be 0.001, and the Adam optimizer 
was employed with a weight decay of 0.0001. For training 
a model, each batch contained 64 images, and all input 
images were first resized to 256 × 256 and then randomly 
cropped to the size of 224 × 224. During training, the 
authors first fine-tuned the final fully connected layer for 
5000 iterations and then fine-tuned all layers for another 
40,000 iterations. All the experiments were implemented 
with Tensorflow and conducted on NVIDIA Titan Xp GPUs.

4.2  Performance results and analysis

4.2.1  Evaluation metrics 
In this work, the CNN classification models were 

evaluated using two metrics, namely average accuracy 
and F1 score. Average accuracy can be obtained straight 
forwardly by averaging the classification accuracies of 
each class. However, this measure is likely biased towards 
the class with more training data and does not reflect the 
real performance of the model, particularly when the 
distribution of the data is imbalanced among the output 
classes. The F1 score, also known as F-measure, was 
calculated based on precision P and recall R as follows:

F1 = 2 × P × R/(P + R)                         (3)

The F-measure avoids class bias and thus provides a 
better measurement for comparing the different models. 
The performance of all the CNN learning models are 
reported using these two metrics.

Tables 3 and 4 show the performance of the four 
CNN architectures obtained on the data sets from Santa 
Monica and Oakland, respectively. The average accuracy 
results were obtained for doing a single-crop of the image 
from a size of 256 × 256 to 224 × 224 during testing, 
where multi-crops may further boost the performance by 
1%–2%. From the results, the following can be observed:

1. Good performances were achieved for all four 
CNN models. However, the performances of  the models 
were different for the two data sets. As shown in the 
tables, ResNet50 performed the best on the Santa Monica 

Table 2   The training/test splits of the data sets

City # SS # non-SS # train # test
Santa Monica 3,203 3,921 6,421 712

Oakland 717 642 1,224 135
Berkeley & San Jose 198 197 − 395
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Table 3   Performance of four networks on Santa Monica data set

Model Average acc. P R F1
ResNet50
ResNet152 
InceptionV3 
InceptionV4

85.94%
85.03%
84.38%
83.20%

84.16%
82.32%
81.39%
80.52%

82.80%
83.12%
83.77%
80.52%

0.8347
0.8271
0.8256
0.8052

Table 4   Performance of four networks on Oakland data set

Model Average acc. P R F1

ResNet50
ResNet152 
InceptionV3 
InceptionV4

82.29%
79.69%
80.21%

84.38%

81.54 %
77.94%
80.65%

82.81%

82.81%
82.81%
78.13%

82.81%

0.8217
0.8030
0.7937

0.8281

Fig. 6   Examples of correctly classified building images. Top: SS buildings; Bottom: non-SS buildings
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data set, while InceptionV4 showed the best performance 
on the Oakland data set;

2. A deeper network does not always outperform 
a shallower counterpart, as shown in the results for 
ResNet50 vs. ResNet152.

3. ResNet50, ResNet152, and InceptionV3 performed 
better on the Santa Monica data set than on the Oakland 
data set, while InceptionV4 had opposite results.
4.2.2 Effect of semi-automatic labeling strategy 

As discussed in Section 3, a semi-automatic labelling 
strategy was used to annotate the 18,024 images from 
Santa Monica and Oakland. Initially, the labelled images 
included only 1,302 images from Santa Monica. With 
these initial labelled images, a preliminary classifier 
was trained and applied to annotate the rest of the 
images (of about 6× the labeled data). More training 
data, although being “noisy” as produced from the 
preliminary classifier, are expected to lead to a better-
performing classifier. To assess the enhancement from 
the semi-automatic labelling strategy, the performance 
of the preliminary classifier built based on the manually 
labelled 1,302 images was compared with the final 
classifier, as presented, with the 7,124 images labelled 
for the Santa Monica data set. The two classifiers, both 
using ResNet50 as the backbone model, were tested on 
the Berkeley and San Jose data sets.  As shown in Table 
6, the final classifier, taking advantage of the labelled 
images from the semi-automatic strategy, achieved higher 
accuracy and F1 score than the preliminary classifier built 
using the manually labelled 1,302 images. This result 
shows the effectiveness of the labelling strategy as well 
as the benefits of using a larger set of training data (even 
possibly with noise).

4.2.3 Visualizations of predictive results 
As discussed in Section 3, an analysis module was 

developed to visualize the class activation maps and 
to enhance interpretation of the predictive results with 
visual evidence. Figure 7 shows several examples for the 
visualization of class activation maps.

On the top row of Fig. 7, the highlighted parts 
indicate the regions where the CNN model was used to 
predict an SS building. In the middle row of the figure, the 
highlighted regions show the contributions that the model 
used for the prediction of non-SS class. It can be seen 
that, when conducting the classification task, the model 
learned to look for a building on an image, regardless of 
the size and location of the building. Interestingly, when 
deciding if an image contained a non-SS building, the 
model also attended to trees and roads (as illustrated in 
the leftmost image in the middle row of the figure). This 
result may be due to the fact that in the data set, many of 
non-SS building images have heavy occlusions such as 
trees and cars, such that the model may have taken these 
visual cues into account when classifying a building. The 
occlusions contributed to the noise of the data, which is 
a common issue in machine learning. One of the most 
efficient ways to remove noise is to  manually clean the 
data, which is recommended when funding is sufficient.

Apart from helping to interpret the decision made 
by a CNN model, the analysis module can also be used 
to diagnose and improve the model. The bottom row of 
Fig. 7 shows the case examples for misclassifications 
from the CNN model where the buildings in the images 
are non-SS buildings but are mistakenly classified as 
SS buildings. The visualizations of the activation maps 
indicate that the prediction of SS buildings is triggered 

Fig. 7  Visualizations generated by the analysis module. First and Second row: correctly classified SS and non-SS buildings; 
        Bottom row: example images which are misclassified as soft-story buildings and their corresponding class activation
             maps. All visualizations are generated by the ResNet50 model trained on Santa Monica subset
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by the garage regions, suggesting that the model may have 
mistaken the existing of a garage as a sufficient condition. 
To solve this problem, it may be necessary to broaden the 
training data set to include a more diverse set of images 
that enable the model to take into consideration both the 
holistic structure and the local details of a building.

4.3  Generalization and applications

4.3.1 Generalization of SS building classification models 
To test the generalization ability of the classification 

models, the models trained on Santa Monica were 
directly applied to classify the manually labelled (ground 
truth) images for Berkeley and San Jose data sets without 
any fine-tuning or modification. As shown in Table 5, the 
models performed very well even with the unseen image 
data from other cities.

To further illustrate generalization and application of 
the SS building classification model,  the best model with 
the Santa Monica data set, ResNet50, was tested on the 
images collected in San Francisco. Since the images are 
not labelled, the evaluation metrics are not applicable for 
analyzing the results. Here, some classification results 
of SS buildings are shown in Fig. 8. Due to its unique 
topography, the SS buildings in San Francisco look quite 
different from those of other cities. For example, SS 

buildings in SF often have conjoined terraces, such as 
the three images shown on the first row of Fig. 8.

The proposed framework for SS building classification 
can find other potential applications for rapid regional 
screening and seismic vulnerability evaluation of SS 
buildings. As discussed in the introduction, one of the 
objectives of this study is to automatically recognize 
an SS building from street view images, thereby 
potentially facilitating the screening process of building 
reinforcement projects. When city-wide images are 
available, the framework can efficiently process the 
large number of images, and the prediction results can 
then be used to generate a SS distribution map for the 
city. Knowing the distribution of seismic-sensitive 
buildings in a city provides valuable information for 
local government agencies to plan seismic reinforcement 
work.

Take the city of Oakland as an example. Oakland is 
a major port city in California, located in an area prone 
to seismic hazards. Using the 1,359 street view images 
captured for the city and the prediction results on SS 
buildings from the CNN model, a distribution map of 
SS buildings can be generated using the SimCenter 
Uncertainty Research Framework, SURF (Wang, 2019), 
which is designed and developed to analyze the spatial 
patterns of geo-tagged data sets based on random field 

 Correctly classified SS buildings

Correctly classified non-SS buildings (bad angle images included)
Fig. 8  Classification results on San Francisco data set
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theory and machine learning (Wang et al., 2017; Wang 
and Chen, 2018). Figure 9 shows a heat map produced to 
display which areas of the city are likely to be occupied 
by SS  buildings.

5  Summary and discussion

In summary, a framework to automatically identify 
soft-story buildings is proposed. Traditional approaches 
for seismic screening of soft story buildings is labor 
intensive and time consuming. One novelty of this study 
is that it takes advantage of DL techniques to automate 
the seismic screening process, which is revolutionary 
because it doesn’t require humans in the loop compared 
with the traditional approach. Though it does not intend 
to replace detailed evaluation results from numerical 
analysis, such as incremental dynamic analysis (IDA) and 
fragility analysis, the methodology can hopefully help 
reduce the burden of government agencies and residents 
during the screening step of the seismic vulnerability 
assessment process. The approach is to take advantage 
of publicly available street view images and advances in 
deep learning. The framework presented in this study 
can potentially be used for large scale rapid screening 

of soft story buildings using publicly available street 
view images. Furthermore, an effective semi-automatic 
data labeling strategy has been presented to alleviate 
the laborious and time consuming image annotation 
effort. Last but not least, the framework is demonstrated 
with raw street images and the results can potentially 
find many applications to enhance the assessment and 
planning for regional seismic vulnerability evaluation.

Both quantitative and qualitative results have been 
presented to demonstrate the effectiveness of the data 
collection and machine learning framework. To further 
enhance the methodology, several issues need to be 
addressed in future work:

1. Data Bias.  Currently, the trained model takes 
garage as a sufficient condition to classify a building as a 
soft-story structure. For example, Fig. 7 shows an image 
with a single garage and the building is thus predicted 
as having a soft story. The prediction is probably 
caused by a data bias problem that a large number of 
SS buildings in the training data set have garages. To 
address this problem, in addition to increasing the 
diversity of buildings within different characteristics in 
the training data, other approaches, such as hard mining, 
that dynamically select hard data to train the model can 
be introduced to help improve the performance.

Table 5  Performance of four networks on Berkeley/San Jose data set

Model Average acc. P R F1

ResNet50
ResNet152 
InceptionV3 
InceptionV4

86.61%
83.26%

87.72%
83.93%

84.26 %
80.37%

84.26%
81.25%

89.34%
87.31%

92.39%
91.37%

0.8670
0.8370

0.8814
0.8601

Table 6   Effect of the semi-automatic labeling strategy
Model Average acc. P R F1

Preliminary 85.06% 85.57% 84.26% 0.8491
Final 86.61% 84.26 % 89.34% 0.8670

        The performance was obtained on Berkeley and San Jose data sets; both classifiers used the ResNet-50 as the backbone.

Fig. 9   Application example: predicted soft-story building distribution in Oakland. This distribution map is generated based on the 
        outputs of the SS building classification framework. The value ranging from 0.0 to 1.0 indicate the probability of being
            identified as a soft-story building
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2. Data Noise. As shown in the top row of Fig. 10, many 
of the images collected show only part of a building, 
have no buildings, or contain several buildings. The 
images are “noisy” due to occlusions or being captured 
from an improper viewpoint. To address this problem, an 
object detection module can be introduced to first locate 
the existence of a building before feeding the image into 
the classifier.

3. Intrinsic limitations of street view images. Street 
view images used in this work only capture the front 
side of a building. However, many key visual cues, 
such as large open space, may be present on the other 
sides of the building that are not captured on the images. 
Furthermore, as shown in the bottom row of Fig. 10, 
it is difficult to detect any structural reinforcements 
located inside the building that cannot be viewed from 
the outdoor street scenes. This limitation is inherent to 
the use of publicly available street images. One solution 
is to allow images taken from multiple sides or inside 
the building, uploaded, for example, by the building 
occupants. Accordingly, the classifier can be trained 
using a multi-branch architecture, where each branch is 
designed to classify images captured from a specific view 
and then the results of all branches are fused to get the 
final classification result.
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