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Challenge 1: Lack Colors and Details

Photo Sketch

>
more abstract



Challenge 2: Shape Deformation & Style Variations

Photo Sketch

>
more abstract
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Unsupervised Sketch to Photo Synthesis

input sketch  output photo



Two-Stage Approach via Intermediate Grayscale Image
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Stage 1: Shape Translation from Sketch to Grayscale
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Stage 2: Content Enrichment from Grayscale to Color
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Synthesized Photo Given A Reference
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Sketch = Photo
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Sketch €< Photo




Photo = Sketch
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Canny — Hand-crafted edge detector
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HED — Deep-learning-based edge detector

PhotoSketching — Deep-learning-based contour drawing
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Ours — Automatic universal sketcher
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Application: Sketch-based Image Retrieval
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Application: Sketch-based Image Retrieval
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Application: Sketch-based Image Retrieval
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Application: Sketch-based Image Retrieval
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Application: Sketch-based Image Retrieval

Domain Query Gallery
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Our Stage 1 Model is Built upon Basic CycleGAN
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CycleGAN Works Well for Simple Sketches




CycleGAN Fails with Complex Stroke Patterns
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CycleGAN Fails with Noise Sketch

ICHE




Stage 1: Key Sketch-Specific Technical Novelties
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t 2. Self-supervision for sketch denoising
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Noise Sketch Composition

random patch original sketch composed sketch



Self-Supervised Objective
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Attention - Ignore Distractions

Feature map Attention Feature map Without With
before re-weight mask after re-weight attention attention



Stage 1: Shape Translation

Ladv - GAN Loss
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Stage 1: Shape Translation
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Stage 2: Content Enrichment without Reference
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Stage 2: Content Enrichment with Reference
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Stage 2: Content Enrichment with Optional Reference

(Optional: with, w/o Reference)
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Ours Are More Photo-Realistic, Sketch-Faithful, Diverse

ShoeV2 ChairV2
Model FID | Quality + LPIPST || FID| Quality T LPIPS 1
Pix2Pix" 65.09 27.0 0.071 177.79 13.0 0.096
CycleGAN | 79.35 12.0 0.0 124.96 20.0 0.0
MUNIT [ 9221 | 145 0.248 || 16881 | 6.5 0.264
UGATIT | 76.89 21.5 0.0 107.24 19.5 0.0
Ours [48.73 ] 50.0| [ 0146 [[[100.51 | 50.0 [ 0.156 |

Quality: User study on forced choice per photo quality w.r.t. sketch



1. Trained on ShoeV?2, Generalize to Other Datasets
Sketchy TU-Berlin Quick Draw
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2. Trained on ShoeV?2, Test on Other Categories

Training Testing
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2. Trained on ShoeV?2, Test on Other Categories

Training Testing
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2. Trained on ShoeV2, Test on Other Categories

Training Testing
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Ablation Study: Three Insights

Alternative Our Choice
Architecture Choice One-Stage Two-Stage v
140 124.96

120 109.46

100.51 FID: Lower is better

W CycleGAN(1-stage)
® CycleGAN(2-stage)
M Ours
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Ablation Study: Three Insights

Alternative Our Choice
Architecture Choice One-Stage Two-Stage v
Intermediate Synthesis Goal | Edge-Map Grayscale v
250 236.38

200

150

96.58 M Edge Map
100

48.73
50
0

ShoeV?2 ChairV2

M Grayscale(Ours)




Ablation Study: Three Insights

Alternative Our Choice
Architecture Choice One-Stage Two-Stage v
Intermediate Synthesis Goal | Edge-Map Grayscale v
Training Setting Paired Unpaired v
180 164.01

160
140
120

100 75.84
80

60 48.3 46.46
40
20

0

ShoeV?2 ChairV2

FID of Stage 1

B Pix2Pix
M Vanilla
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Code / Model / Demo

http://sketch.icsi.berkeley.edu/
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