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Challenge 1: Lack Colors and Details
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Challenge 2: Shape Deformation & Style Variations
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Two-Stage Approach via Intermediate Grayscale Image
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Stage 1: Shape Translation from Sketch to Grayscale
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Stage 2: Content Enrichment from Grayscale to Color
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Sketch à Photo
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Photo à Sketch



Canny – Hand-crafted edge detector

HED – Deep-learning-based edge detector

Ours – Automatic universal sketcher

PhotoSketching – Deep-learning-based contour drawing



Application: Sketch-based Image Retrieval
Domain Query Gallery
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Application: Sketch-based Image Retrieval
Domain Query Gallery
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Our Stage 1 Model is Built upon Basic CycleGAN



CycleGAN Works Well for Simple Sketches



CycleGAN Fails with Complex Stroke Patterns



CycleGAN Fails with Noise Sketch

Noise



Stage 1: Key Sketch-Specific Technical Novelties

1. Noise sketch
composition for

data augmentation

3. Attention 
for noise area 

D

2. Self-supervision for sketch denoising
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Stage 1: Shape Translation
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Stage 1: Shape Translation

– Identity LossidentityL
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Stage 2: Content Enrichment without Reference
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Stage 2: Content Enrichment with Reference
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Stage 2: Content Enrichment with Optional Reference
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– Style LossstyleL
– Content LosscontentL

– IntensityitL

- GAN LossadvLD

(Optional: with, w/o Reference)
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Ours Are More Photo-Realistic, Sketch-Faithful, Diverse

Quality: User study on forced choice per photo quality w.r.t. sketch



1. Trained on ShoeV2, Generalize to Other Datasets
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Ablation Study: Three Insights
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Ablation Study: Three Insights
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Ablation Study: Three Insights
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