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Abstract

A typical domain adaptation approach is to adapt mod-
els trained on the annotated data in a source domain (e.g.,
sunny weather) for achieving high performance on the test
data in a target domain (e.g., rainy weather). Whether the
target contains a single homogeneous domain or multiple
heterogeneous domains, existing works always assume that
there exist clear distinctions between the domains, which
is often not true in practice (e.g., changes in weather).
We study an open compound domain adaptation (OCDA)
problem, in which the target is a compound of multiple
homogeneous domains without domain labels, reflecting
realistic data collection from mixed and novel situations.
We propose a new approach based on two technical insights
into OCDA: 1) a curriculum domain adaptation strategy
to bootstrap generalization across domains in a data-
driven self-organizing fashion and 2) a memory module to
increase the model’s agility towards novel domains. Our
experiments on digit classification, facial expression recog-
nition, semantic segmentation, and reinforcement learning
demonstrate the effectiveness of our approach.

1. Introduction

Supervised learning can achieve competitive perfor-
mance for a visual task when the test data is drawn from
the same underlying distribution as the training data. This
assumption, unfortunately, often does not hold in reality,
e.g., the test data may contain the same class of objects
as the training data but different backgrounds, poses, and
appearances [41, 46].

The goal of domain adaptation is to adapt the model
learned on the training data to the test data of a different
distribution [41, 34, 12]. Such a distributional gap is
often formulated as a shift between discrete concepts of
well defined data domains, e.g., images collected in sunny
weather versus those in rainy weather. Though domain
generalization [24, 22] and latent domain adaptation [16,

∗Equal contribution.

Figure 1: Open compound domain adaptation. Unlike
existing domain adaptation which assumes clear distinc-
tions between discrete domains (cf. the examples in gray
frames), our compound target domain is a combination of
multiple traditionally homogeneous domains without any
domain labels. We also allow novel domains to show up
at the inference time.

11] have attempted to tackle complex target domains, most
existing works usually assume that there is a known clear
distinction between domains [12, 8, 48, 30, 42].

Such a known and clear distinction between domains
is hard to define in practice, e.g., test images could be
collected in mixed, continually varying, and sometimes
never seen weather conditions. With numerous factors
jointly contributing to data variance, it becomes implausible
to separate data into discrete domains.

We propose to study open compound domain adaptation
(OCDA), a continuous and more realistic setting for domain
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Table 1: Comparison of domain adaptation settings. Domain Labels tell to which domain each instance belongs. Open
Classes refer to novel classes showing up during testing but not training. Open Domains are the domains of which no
instances are seen during training.

Domain Adaptation Setting # Target Domains Domain Labels Open Classes Open Domains
Unsupervised Domain Adaptation single known × ×
Multi-Target Domain Adaptation multiple known × ×
Open/Partial Set Domain Adaptation single known X ×
Open Compound Domain Adaptation multiple unknown × X

adaptation (cf. Figure 1 and Table 1). The task is to learn
a model from labeled source domain data and adapt it to
unlabeled compound target domain data which could differ
from the source domain on various factors. Our target
domain can be regarded as a combination of multiple tra-
ditionally homogeneous domains where each is distinctive
on one or two major factors, and yet none of the domain
labels are given. For example, the five well-known datasets
on digits recognition (SVHN [33], MNIST [21], MNIST-
M [7], USPS [19], and SynNum [7]) mainly differ from
each other by the backgrounds and text fonts. It is not
necessarily the best practice, and not feasible under some
scenarios, to consider them as distinct domains. Instead, our
compound target domain pools them together. Furthermore,
at the inference stage, OCDA tests the model not only in the
compound target domain but also in open domains that have
previously unseen during training.

In our OCDA setting, the target domain no longer has
a predominantly uni-modal distribution, posing challenges
to existing domain adaptation methods. We propose a
novel approach based on two technical insights into OCDA:
1) a curriculum domain adaptation strategy to bootstrap
generalization across domain distinction in a data-driven
self-organizing fashion and 2) a memory module to increase
the model’s agility towards novel domains.

Unlike existing curriculum adaptation methods [56,
6, 29, 25, 58, 57] that rely on some holistic measure of
instance difficulty, we schedule the learning of unlabeled
instances in the compound target domain according to their
individual gaps to the labeled source domain, so that we
solve an incrementally harder domain adaptation problem
till we cover the entire target domain.

Specifically, we first train a neural network to 1) discrim-
inate between classes in the labeled source domain and to
2) capture domain invariance from the easy target instances
which differ the least from labeled source domain data.
Once the network can no longer differentiate between the
source domain and the easy target domain data, we feed
the network harder target instances, which are further away
from the source domain. The network learns to remain
discriminative to the classification task and yet grow more
robust to the entire compound target domain.

Technically, we must address the challenge of charac-
terizing each instance’s gap to the source domain. We

first extract domain-specific feature representations from
the data and then rank the target instances according to
their distances to the source domain in that feature space,
assuming that such features do not contribute to and even
distract the network from learning discriminative features
for classification. We use a class-confusion loss to distill the
domain-specific factors and formulate it as a conventional
cross-entropy loss with a randomized class label twist.

Our second technical insight is to prepare our model
for open domains during inference with a memory module
that effectively augments the representations of an input
for classification. Intuitively, if the input is close enough
to the source domain, the feature extracted from itself
can most likely already result in accurate classification.
Otherwise, the input-activated memory features can step
in and play a more important role. Consequently, this
memory-augmented network is more agile at handling open
domains than its vanilla counterpart.

To summarize, we make the following contributions.
1) We extend the traditional discrete domain adaptation
to OCDA, a more realistic continuous domain adaptation
setting. 2) We develop an OCDA solution with two key
technical insights: instance-specific curriculum domain
adaptation for handling the target of mixed domains and
memory augmented features for handling open domains. 3)
We design several benchmarks on classification, recogni-
tion, segmentation, and reinforcement learning, and con-
duct comprehensive experiments to evaluate our approach
under the OCDA setting.

2. Related Works
We review literature according to Table 1.

Unsupervised Domain Adaptation. The goal is to retain
recognition accuracies in new domains without ground
truth annotations [41, 46, 49, 38]. Representative tech-
niques include latent distribution alignment [12], back-
propagation [7], gradient reversal [8], adversarial discrim-
ination [48], joint maximum mean discrepancy [30], cycle
consistency [17] and maximum classifier discrepancy [42].
While their results are promising, this traditional domain
adaptation setting focuses on “one source domain, one
target domain”, and cannot deal with more complicated
scenarios where multiple target domains are present.
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Figure 2: Overview of disentangling domain characteristics and curriculum domain adaptation. We separate
characteristics specific to domains from those discriminative between classes. It is achieved by a class-confusion algorithm
in an unsupervised manner. The teased out domain feature is used to construct a curriculum for domain-robust learning.

Latent & Multi-Target Domain Adaptation. The goal is
to extend unsupervised domain adaptation to latent [16, 51,
32] or multiple [11, 9, 54] or continuous [2, 13, 31, 50] tar-
get domains, when only the source domain has class labels.
These methods usually assume clear domain distinction or
require domain labels (e.g. test instance i belongs to the
target domain j), but this assumption rarely holds in the
real-world scenario. Here we take one step further towards
compound domain adaptation, where both category labels
and domain labels in the test set are unavailable.

Open/Partial Set Domain Adaptation. Another route
of research aims to tackle the category sharing/unsharing
issues between source and target domain, namely open
set [37, 43] and partial set [55, 3] domain adaptation.
They assume that the target domain contains either 1) new
categories that don’t appear in source domain; or 2) only
a subset of categories that appear in source domain. Both
settings concern the “openness” of categories. Instead, here
we investigate the “openness” of domains, i.e. there are
novel domains existing that are absent in the training phase.

Domain Generalized/Agnostic Learning. Domain gener-
alization [52, 23, 22] and domain agnostic learning [39, 5]
aim to learn universal representations that can be applied
in a domain-invariant manner. Since these methods focus
on learning semantic representations that are invariant to
the domain shift, they largely neglect the latent structures
inside the target domains. In this work, we explicitly
model the latent structures inside the compound target
domain by leveraging the learned domain-focused factors
for curriculum scheduling and dynamic adaptation.

3. Our Approach to OCDA

Figures 2 and 3 present our overall workflows. There
are three major components: 1) disentangling domain
characteristics with only class labels in the source domain,
2) scheduling data for curriculum domain adaptation, and
3) a memory module for handling new domains.

3.1. Disentangling Domain Characteristics

We separate characteristics specific to domains from
those discriminative between classes. They allow us to
construct a curriculum for increment domain adaptation.

We first train a neural network classifier using the labeled
source domain data {xi, yi}i. Let Eclass(·) denote the
encoder up to the second-to-the-last layer and Φ(Eclass(·))
the classifier. The encoder captures primarily the class-
discriminative representation of the data.

We assume that all the factors not covered by
this class-discriminative encoder reflect domain charac-
teristics. They can be extracted by another encoder
Edomain(·) that satisfies two properties: 1) Completeness:
Decoder(Eclass(x), Edomain(x)) ≈ x, i.e., the outputs of
the two encoders shall provide sufficient information for
a decoder to reconstruct the input, and 2) Orthogonality:
the domain encoder Edomain(x) shall have little mutual
information with the class encoder Eclass(x). We leave
the algorithmic details for meeting the first property to the
appendices as they are not our novelty.

For the orthogonality between Edomain(x) and
Eclass(x), we propose a class-confusion algorithm, which
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Figure 3: Overview of the memory-enhanced deep neural network. We enhance our network with a memory module
that facilitates knowledge transfer from the source domain to target domain instances, so that the network can dynamically
balance the input information and the memory-transferred knowledge for more agility towards previously unseen domains.

alternates between the two sub-problems below:

min
Edomain

−
∑
i

zirandom logD(Edomain(xi)), (1)

min
D

−
∑
i

yi logD(Edomain(xi)), (2)

where superscript i is the instance index, and D(·) is
a discriminator the domain-encoder Edomain(·) tries to
confuse. We first train the discriminator D(·) with the
labeled data in the source domain. For the data in the target
domain, we assign them pseudo-labels by the classifier
Φ(Eclass(·)) we have trained earlier. The learned domain
encoder Edomain(·) is class-confusing due to zirandom, a
random label uniformly chosen in the label space. As the
classifier D(·) is trained, the first sub-problem essentially
learns the domain-encoder such that it classifies the input
xi into a random class zirandom. Algorithm 2 details our
domain disentanglement process.

Figure 4 (a) and (b) visualize the examples embed-
ded by the class encoder Eclass(·) and domain encoder
Edomain(·), respectively. The class encoder places in-
stances in the same class in a cluster, while the domain
encoder places instances according to their common appear-
ances, regardless of their classes.

3.2. Curriculum Domain Adaptation

We rank all the instances in the compound target domain
according to their distances to the source domain, to be
used for curriculum domain adaptation [56]. We compute
the domain gap between a target instance xt and the source
domain {xms } as their mean distance in the domain feature
space: meanm(‖Edomain(xt)− Edomain(xms )‖2).

We train the network in stages, a few epochs at a time,
gradually recruiting more instances that are increasingly far
from the source domain. At each stage of the curriculum

Algorithm 1 Domain Disentanglement.

Input: The class encoder Eclass(·) and classifier Φ have
been trained using source-domain data,Deccoder(·): the
decoder, C: the number of classes, γ: a constant.
for k iterations do

Sample mini-batch {xi}.
Compute pseudo labels yipseudo ← Φ

(
Eclass

(
xi
))

.
Update the discriminator D.
Prepare random labels zirandom ∼

uniform{0, 1, ..., C − 1}.
Compute adversarial loss: Ladv ←∑
i−zirandom log

(
D
(
Edomain(xi)

))
.

Compute reconstruction loss: Lrec ←∑
i ‖Decoder

(
Eclass

(
xi
)
, Edomain

(
xi
))
− xi‖2.

Update the domain encoder Edomain with:
∇θEdomain

(Ladv + γLrec).
end for

learning, we minimize two losses: One is the cross-entropy
loss defined over the labeled source domain, and the other
is the domain-confusion loss [48] computed between the
source domain and the currently covered target instances.
Figure 4 (c) illustrates a curriculum in our experiments.

3.3. Memory Module for Open Domains

Existing domain adaptation methods often use the fea-
tures vdirect extracted directly from the input for adaptation.
When the input comes from a new domain that significantly
differs from the seen domains during training, this repre-
sentation becomes inadequate and could fool the classifier.
We propose a memory module to enhance our model; It
allows knowledge transfer from the source domain so that
the network can dynamically balance the input-conveyed in-
formation and the memory-transferred knowledge for more
classification agility towards previously unseen domains.
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Figure 4: t-SNE Visualization of our (a) class-discriminative features, (b) domain features, and (c) curriculum. Our
framework disentangles the mixed-domain data into class-discriminative factors and domain-focused factors. We use the
domain-focused factors to construct a learning curriculum for domain adaptation.

Class Memory M . We design a memory module M
to store the class information from the source domain.
Inspired by [45, 36, 28] on prototype analysis, we also use
class centroids {ck}Kk=1 to construct our memoryM , where
K is the number of object classes.
Enhancer venhance. For each input instance, we build
an enhancer to augment its direct representation vdirect
with knowledge in the memory about the source domain:
venhance = (Ψ(vdirect))

TM =
∑K
k=1 ψkck, where Ψ(·)

is a softmax function. We add this enhancer to the direct
representation vdirect, weighted by a domain indicator.
Domain Indicator edomain. With open domains, the
network must dynamically calibrate how much knowledge
to transfer from the source domain and how much to rely
on the direct representation vdirect of the input. Intuitively,
the larger domain gap between an input x and the source
domain, the more weight on the memory feature. We design
a domain indicator for such domain awareness: edomain =
T (Edomain(x)), where T (·) is a lightweight network with
the tanh activation functions andEdomain(·) is the domain
encoder we have learned earlier.
Source-Enhanced Representation vtransfer. Our final
representation of the input is a dynamically balanced ver-
sion between the direct image feature and the memory
enhanced feature:

vtransfer = vdirect + edomain ⊗ venhance, (3)

which transfers class-discriminative knowledge from the la-
beled source domain to the input in a domain-aware manner.
Operator ⊗ is element-wise multiplication. Adopting co-
sine classifiers [27, 10], we `2-normalize this representation
before sending it to the softmax classification layer. All of
these choices help cope with domain mismatch when the
input is significantly different from the source domain.

4. Experiments
Datasets. To facilitate a comprehensive evaluation on vari-
ous tasks (i.e., classification, segmentation, and navigation),
we carefully design four open compound domain adaptation
(OCDA) benchmarks: C-Digits, C-Faces, C-Driving, and
C-Mazes, respectively.

1. C-Digits: This benchmark aims to evaluate the classifi-
cation adaptation ability under different appearances and
backgrounds. It is built upon five classic digits datasets
(SVHN [33], MNIST [21], MNIST-M [7], USPS [19]
and SynNum [7]), where SVHN is used as the source
domain, MNIST, MNIST-M, and USPS are mixed as
the compound target domain, and SynNum is the open
domain. We employ SWIT [1] as an additional open
domain for further analysis.

2. C-Faces: This benchmark aims to evaluate the classifi-
cation adaptation ability under different camera poses.
It is built upon the Multi-PIE dataset [14], where C05
(frontal view) is used as source domain, C08-C14 (left
side view) are combined as the compound target domain,
and C19 (right side view) is kept out as the open domain.

3. C-Driving: This benchmark aims to evaluate the seg-
mentation adaptation ability from simulation to different
real driving scenarios. The GTA-5 [40] dataset is
adopted as the source domain, while the BDD100K
dataset [53] (with different scenarios including “rainy”,
“snowy”, “cloudy”, and “overcast”) is taken for the
compound and open domains.

4. C-Mazes: This benchmark aims to evaluate the navi-
gation adaptation ability under different environmental
appearances. It is built upon the GridWorld environ-
ment [18], where mazes with different colors are used



D
om

ai
n 

Id
en

tif
ic

at
io

n
Ra

te
 (%

)

𝑘-Nearest Neighbor
1 20 100

w/o disentanglement

w/ disentanglement

random

MNIST MNIST-M USPS SynNum

Compound Target Domain Open Domain

Baseline + Class Enhancer
+ Domain Indicator + Curriculum Training

A
cc

ur
ac

y 
(%

)

50

60

70

80

90

(a) (b) (c)

L2
 N

or
m

 o
f

th
e D

om
ai

n 
In

di
ca

to
r

Distance to Src. Domain

Figure 5: Results of ablation studies about (a) the memory-enhanced embeddings and curriculum domain adaptation, (b)
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Table 2: Performance on the C-Digits benchmark. The methods in gray are especially designed for multi-target domain
adaptation. †MTDA uses domain labels, while ‡BTDA and DADA use the open domain images during training.

SVHN SymNum

MNIST MNIST-M USPS

S

C

O
Src. Domain Compound Domains (C) Open (O) Avg.
SVHN→ MNIST MNIST-M USPS SynNum C C+O
ADDA [48] 80.1±0.4 56.8±0.7 64.8±0.3 72.5±1.2 67.2±0.5 68.6±0.7
JAN [30] 65.1±0.1 43.0±0.1 63.5±0.2 85.6±0.0 57.2±0.1 64.3±0.1
MCD [42] 69.6±1.4 48.6±0.5 70.6±0.2 89.8±2.9 62.9±1.0 69.9±1.3
MTDA† [9] 84.6±0.3 65.3±0.2 70.0±0.2 - 73.3±0.2 -
BTDA‡ [5] 85.2±1.6 65.7±1.3 74.3±0.9 84.4±2.2 75.1±1.3 77.4±1.5
DADA‡ [39] - - - - - 80.1±0.4
Ours 90.9±0.2 65.7±0.5 83.4±0.3 88.2±0.8 80.0±0.3 82.1±0.5

as the source and open domains. Since reinforcement
learning often assumes no prior access to the environ-
ments, there are no compound target domains here.

Network Architectures. To make a fair comparison with
previous works [48, 9, 39], the modified LeNet-5 [21] and
ResNet-18 [15] are used as the backbone networks for C-
Digits and C-Faces, respectively. Following [47, 58, 35],
a pre-trained VGG-16 [44] is the backbone network for C-
Driving. We additionally test our approach on reinforce-
ment learning using ResNet-18 following [18].
Evaluation Metrics. The C-digits performance is mea-
sured by the digit classification accuracy, and the C-Faces
performance is measured by the facial expression classifi-
cation accuracy. The C-Driving performance is measured
by the standard mIOU, and the C-Mazes performance is
measured by the average successful rate in 300 steps. We
evaluate the performance of each method with five runs and
report both the mean and standard deviation. Moreover, we
report both results of individual domains and the averaged
results for a comprehensive analysis.
Comparison Methods. For classification tasks, we
choose for comparison state-of-the-art methods in both
conventional unsupervised domain adaptation (ADDA [48],
JAN [30], MCD [42]) and the recent multi-target domain
adaptation methods (MTDA [9], BTDA [5], DADA [39]).
Since MTDA [9], BTDA [5] and DADA [39] are the most
related to our work, we directly contrast our results to

the numbers reported in their papers. For the segmenta-
tion task, we compare with three state-of-the-art methods,
AdaptSeg [47], CBST [58], IBN-Net [35] and PyCDA [26].
For the reinforcement learning task, we benchmark with
MTL, MLP [18] and SynPo [18], a representative work for
adaptation across environments. We apply these methods to
the same backbone networks as ours for a fair comparison.

4.1. Ablation Study

Effectiveness of the Domain-Focused Factors Disentan-
glement. Here we verify that the domain-focused factors
disentanglement helps discover the latent structures in the
compound target domain. It is probed by the domain
identification rate within the k-nearest neighbors found
by different encodings. Figure 5 (b) shows that features
produced by our disentanglement have a much higher
identification rate (∼95%) than the counterparts without
disentanglement (∼65%).

Effectiveness of the Curriculum Domain Adaptation.
Figure 5 (a) also reveals that, in the compound domain, the
curriculum training contributes to the performance on USPS
more than MNIST and MNITS-M. On the other hand, we
can observe from Figure 4 and Table 2 that USPS is the
furthest target domain from the source domain SVHN. It
implies that curriculum domain adaptation makes it easy to
adapt to the distant target domains through an easy-to-hard
adaptation schedule.



Table 3: Performance on the C-Faces benchmark. The methods in gray are especially designed for multi-target domain
adaptation. †MTDA uses domain labels during training.

C05 C19

C08 C09 C13 C14

S O

C

Src. Domain Compound Domains (C) Open (O) Avg.
C05→ C08 C09 C13 C14 C19 C C+O
ADDA [48] 46.9±0.2 36.4±0.5 39.1±0.3 65.4±0.4 71.8±0.8 47.0±0.4 51.9±0.4
JAN [30] 63.5±0.3 40.6±1.0 83.5±0.4 92.0±0.8 52.5±1.5 69.7±0.6 66.2±0.8
MCD [42] 50.4±0.5 45.8±0.2 77.8±0.1 88.0±0.1 60.4±0.9 65.7±0.2 64.6±0.4
MTDA† [9] 49.0±0.2 48.2±0.1 53.1±0.2 84.3±0.1 - 58.7±0.2 -
Ours 73.3±0.2 55.1±0.4 84.1±0.1 88.9±0.3 72.7±0.6 75.4±0.3 74.8±0.3

Table 4: Performance on the C-Driving (left) and C-Mazes benchmarks (right). “SynPo+Aug.” indicates that we equip
SynPo with proper color augmentation/randomization during training. Visual illustrations of both datasets are in Figure 6.

Source Compound (C) Open (O) Avg.
GTA-5→ Rainy Snowy Cloudy Overcast C C+O
Source Only 16.2 18.0 20.9 21.2 18.9 19.1
AdaptSeg [47] 20.2 21.2 23.8 25.1 22.1 22.5
CBST [58] 21.3 20.6 23.9 24.7 22.2 22.6
IBN-Net [35] 20.6 21.9 26.1 25.5 22.8 23.5
PyCDA [26] 21.7 22.3 25.9 25.4 23.3 23.8
Ours 22.0 22.9 27.0 27.9 24.5 25.0

Source Open(O) Avg.
M0→ M1 M2 M3 M4 O
Source Only 0±0 0±0 0±0 0±0 0±0
MTL 0±0 30±5 75±0 65±5 42.5±2.5
MLP [18] 5±5 45±10 75±5 80±10 51.2±7.5
SynPo [18] 5±5 30±20 80±5 30±5 36.3±8.8
SynPo+Aug. 0±5 40±10 95±5 45±5 45.0±6.3
Ours 80±2.5 75±10 85±5 90±5 82.5±5.6

Effectiveness of Memory-Enhanced Representations.
Recall that the memory-enhanced representations consist
of two main components: the enhancer coming from the
memory and the domain indicator. From Figure 5 (a), we
observe that the class enhancer leads to large improvements
on all target domains. It is because the enhancer from the
memory transfers useful semantic concepts to the input of
any domain. Another observation is that the domain indica-
tor is the most effective on the open domain (“SynNum”),
because it helps dynamically calibrate the representations
by leveraging domain relations (Figure 5 (c)).

4.2. Comparison Results

C-Digits. Table 2 shows the comparison performances of
different methods. We have the following observations.
Firstly, ADDA [48] and JAN [30] boost the performance
on the compound domain by enforcing global distribution
alignment. However, they also sacrifice the performance
on the open domain since there is no built-in mechanism
for handling any new domains, “overfitting” the model
to the seen domains. Secondly, MCD [42] improves the
results on the open domain, but its accuracy degrades on
the compound target domain. Maximizing the classifier
discrepancy increases the robustness to the open domain;
however, it also fails to capture the fine-grained latent struc-
ture in the compound target domain. Lastly, compared to
other multi-target domain adaptation methods (MTDA [9]
and DADA [39]), our approach discovers domain structures
and performs domain-aware knowledge transfer, achieving
substantial advantages on all the test domains.
C-Faces. Similar observations can be made on the C-Faces
benchmark as shown in Table 3. Since face representations
are inherently hierarchical, JAN [30] demonstrates com-

petitive results on C14 due to its layer-wise transferring
strategy. Under the domain shift with different camera
poses, our approach still consistently outperforms other
alternatives for both the compound and open domains.
C-Driving. We compare with the state-of-the-art semantic
segmentation adaptation methods such as AdaptSeg [47],
CBST [58], and IBN-Net [35]. All methods are tested under
real-world driving scenarios in the BDD100K dataset [53].
We can see that our approach has clear advantages on both
the compound domain (1.1% gains) and the open domain
(2.4% gains) as shown in Table 4 (left). We show detailed
per-class accuracies in the appendices. The qualitative
comparisions are shown in Figure 6 (a).
C-Mazes. To directly compare with SynPo [18], we also
evaluate on the GridWorld environments they provided.
The task in this benchmark is to learn navigation policies
that can successfully collect all the treasures in the given
mazes. Existing reinforcement learning methods suffer
from environmental changes, which we simulate as the
appearances of the mazes here. The final results are listed
in Table 4 (right). Our approach transfers visual knowledge
among navigation experiences and achieves more than 30%
improvements over the prior arts.

4.3. Further Analysis

Robustness to the Complexity of the Compound Target
Domain. We control the complexity of the compound target
domain by varying the number of traditional target domains
/ datasets in it. Here we gradually increase constituting
domains from a single target domain (i.e., MNIST) to two,
and eventually three (i.e., MNIST + MNIST-M + USPS).
From Figure 7 (a), we observe that as the number of
datasets increase, our approach only undergoes a moderate
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Figure 6: (a) Qualitative results comparison of semantic segmentation on the source domain (S), the compound target
domain (C), and the open domain (O). (b) Illustrations of the 5 different domains in the C-Mazes benchmark. Our approach
consistently outperforms existing domain adaptation methods across all compound and open target domains.
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Figure 7: Further analysis on the (a) robustness to the
complexity of the compound target domain and (b) robust-
ness to the number of open domains. “M”, “MM” and “U”
stand for MNIST, MNIST-M, and USPS, respectively, while
“SN”, “UM” and “SW” stand for SynNum, USPS-M, and
SWIT, respectively.

performance drop. The learned curriculum enables gradual
knowledge transfer that is capable of coping with complex
structures in the compound target domain.
Robustness to the Number of Open Domains. The
performance change w.r.t. the number of open domains
is demonstrated in Figure 7 (b). Here we include two
new digits datasets, USPS-M (crafted in a similar way as
MNIST-M) and SWIT [1], as the additional open domains.
Compared to JAN [30] and MCD [42], our approach is
more resilient to the various numbers of open domains.
The domain indicator module in our framework helps
dynamically calibrate the embedding, thus enhancing the
robustness to open domains. Figure 8 presents the t-SNE
visualization comparison between the obtained embeddings
of JAN [30], MCD [42], and our approach.
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Figure 8: t-SNE visualization of the obtained embeddings.
Compared to other methods, our approach is capable of
producing class-discriminative features on both compound
and open target domains.

5. Summary

We formalize a more realistic topic called open com-
pound domain adaptation for domain-robust learning. We
propose a novel model which includes a self-organizing cur-
riculum domain adaptation to bootstrap generalization and
a memory enhanced feature representation to build agility
towards open domains. We develop several benchmarks on
classification, recognition, segmentation, and reinforcement
learning and demonstrate the effectiveness of our model.
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Appendices
In this supplementary material, we provide details omit-

ted in the main text including:

• Section A: relation to other DA problems (Sec. 2
“Related Works” of the main paper.)

• Section B: more methodology details (Sec. 3 “Our
Approach” of the main paper.)

• Section C: detailed experimental setup (Sec. 4 “Experi-
ments” of the main paper.)

• Section D: additional comparison results (Sec. 4.2
“Comparison Results” of the main paper.)

• Section E: additional visualization of our approach (Sec.
4.3 “Further Analysis” of the main paper.)

A. Relation to Other DA Problems
Human vision system shows remarkable generalization

ability to see clear across many different domains, such
as in foggy and rainy days. Computer vision system, on
the other hand, has long been haunted by this domain shift
issue. Several sub-fields in domain adaptation have been
studies to mitigate this challenge.
Open/Partial Set Domain Adaptation. Another route
of research aims to tackle the category sharing/unsharing
issues between source and target domain, namely open
set [37, 43] and partial set [55, 3] domain adaptation.
They assume that the target domain contains either (1) new
categories that don’t appear in source domain; or (2) only
a subset of categories that appear in source domain. Both
settings concern the “openness” of categories. Instead, in
this work we investigate the “openness” of domains, i.e. we
assume there are unknown domains existing that are absent
in the training phase.

B. More Methodology Details
Notation Summary. We summarize the notations used in
the paper in Table 5.
Details of Class and Domain Manifold Disentanglement.
The detailed class and domain manifold disentanglement
algorithm is shown in Algorithm 2.
Time Complexity. Our approach introduces negligible
computational overhead (1.3%) to the standard deep net-
works, such as VGG [44] and ResNet [15], since only a
lightweight memory module is inserted during inference.
Methodology Highlight. Our main methodology contri-
bution is the entire neural architecture that can address
the complexity of compound domains during training and
handle the unseen domains during testing, as depicted in
Figure 9.

Table 5: Summary of notations.

Notation Meaning
x input image
y category label
zrandom random category label
Eclass(·) class encoder
Φ(·) class classifier
Edomain(·) domain encoder
Decoder(·) class decoder
D(·) class classifier after domain encoder
vdirect direct feature
M visual memory
venhance class enhancer
edomain domain indicator
T (·) network that generates edomain

vtransfer source-enhanced representation

Algorithm 2 Disentangling training. Eclass(·) and Φ has
been trained using source-domain data, Deccoder(·): the
decoder, C: number of classes, γ: a constant.

Input: Eclass(·), Edomain(·), Φ(·), D(·), Decoder(·), C,
γ
for k iterations do

Sample mini-batch x.
Compute pseudo label ypseudo ← Φ (Eclass (x)).
Update the discriminator D with:

∇θD
∑
j y

j
pseudo log

(
D
(
Edomain

(
xj
)))

.
Prepare random label zrandom ∼

uniform{0, 1, ..., C − 1}, and convert it to one-hot
vector yrandom.

Compute adversarial loss: Ladv ←∑
j y

j
random log

(
D
(
Edomain(xj)

))
.

Compute reconstruction loss: Lrec ←∑
j |Decoder

(
Eclass

(
xj
)
, Edomain

(
xj
))
− xj |.

Update the domain encoder Edomain with:
∇θEdomain

(Ladv + γLrec).
end for

Class Confusion 
Disentanglement Algorithm

Curriculum 
Scheduling Algorithm

Class Memory

Domain Indicator

Complexity of 
Compound Domains

Unfamiliarity of 
Open Domains

Algorithms Modules Challenges

Figure 9: Methodology highlight of our entire neural
architecture.

Methodology Comparisons. Table 6 summarizes the key
methodological differences between MTDA [9], BTDA [5],
DADA [39] and our OCDA.
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Figure 10: Examples of the C-Driving benchmark (GTA5 and BDD100K datasets).

Table 6: Methodology comparisons between MTDA,
BTDA, DADA and our OCDA.

MTDA [9] BTDA [5] DADA [39] OCDA
Feature

Disentangle
entropy

minimization × mutual
information

class
confusion

Domain
Invariance adversarial adversarial adversarial memory+

adversarial
Latent Domain

Discovery × clustering × domain
indicator

Latent Domain
Ranking × × × curriculum

C. Experimental Setup

C.1. OCDA Datasets and Benchmarks

C-Digits. The C-Digits dataset is consist of 5 digit datasets:
SVHN [33], MNIST [21], MNIST-M [7], USPS [19], and
SynNum [7]. SVHN is a dataset of street view housing
numbers. MNIST and USPS are two datasets of hand-
written numbers. MNIST-M and SynNum are two datasets
of synthetic numbers. We choose SVHN as the source
domain, MNIST, MNIST-M, and USPS as target domains
that can be accessed during training, and SynNum as
the open domain, which is only accessible during testing.
Images from all domains are scaled to 32×32 and converted
to RGB format. We follow the origin training/testing split
of each dataset. The SVHN dataset is balanced across the
classes, following [17]. Besides, no further pre-processing
is applied to the data.
C-Faces. We choose images of 6 different view angles from
the We choose images of 6 different view angles from the
Multi-PIE dataset [14]: C051, C080, C090, C130, C140,
and C190. 6 facial expressions are treated as classification
categories: neutral, smile, surprise, squint, disgust, and
scream. We use images of view angle C051 as the source
domain in our experiment, C080, C090, C130, and C140

as target domains that can be accessed during training, and
C190 as the open domain. All the images are aligned
according to the face landmarks and cropped around the
facial areas into 224× 224 images.

C-Driving. For semantic segmentation on driving scenar-
ios, we adopt the GTA5 [40] dataset as the source domain,
and the BDD100K [53] dataset as the Compound and open
domains. Examples of these datasets are illustrated in
Figure 10.

GTA5 is a virtual street view dataset generated from
Grand Theft Auto V (GTA5). It has 24966 images of
resolution 1914 × 1052. The domain categories and
statistics of the BDD100K dataset are provided in Table 7.
We use the Rainy, Snowy, Cloudy, and Overcast domains
in the training set of BDD100K in our experiments. The
Overcast domain is used as the open domain while the rest
are used as the Compound domains. Other domains of the
original BDD100K dataset like Clear and Foggy are not
used. Among these data, a small fraction with annotations
is used as the validation set, while the rest are used as the
training set for adaptation. The results in our experiments
are reported on the validation set.

C-Mazes. This is a reinforcement learning dataset which is
consist of mazes with different colors. The mazes are gener-
ated following [18], where agent is asked to collect treasure
spots from the mazes by different orders. For simplicity,
we only use one scene (i.e. maze with one topology) and
two tasks (i.e. two different treasure collection orders) for
the experiments. We randomly generated 5 combinations
of colors to construct the domains (which are illustrated in
Figure 11). The colors of agent and five treasures are the
same across the domain. We use Domain 0 as the source
domain, and the rest of the 4 domains are target domains.



Table 7: Statistics of BDD100K dataset in our Open Compound Domain Adaptation (OCDA) setting.

Compound (C) Open
Domains Rainy Snowy Cloudy Overcast Total
training set w/o label 4855 5307 4535 8143 22840
validation set w/ label 215 242 346 627 1430

Figure 11: Illustrations of the five different domains in the C-Mazes benchmark.

C.2. Training Details

C-Digits. The backbone model for this experiment is a
LeNet-5 [21], following the setups in [17]. There are
two stages in the training process. (1) In the first stage,
we train the network with discriminative centroid loss for
100 epochs as a warm start for the memory-enhanced deep
neural network. (2) In the second stage, we further fine-
tune the networks with curriculum sampling and memory
modules on top of the backbone network, where a domain
adversarial loss [48] is incorporated and the weights learned
in the first stage are copied to two identical but independent
networks (source network and target network). Only
weights of the target network are updated during this stage.
Centroids of each class (i.e. constituting elements in the
class memory) are calculated in the beginning of this stage,
and the classifiers are reinitialized. The model is trained
without the discriminative centroid loss in stage 2. Some
major hyper-parameters can be found in Table 8.
C-Faces. Experiments on the C-Faces dataset are similar to
experiments on the C-Digits dataset. However, the back-
bone model is ResNet18 [15] with random initialization,
instead of a LeNet-5. Some major hyper-parameters can
also be found in Table 8.

Table 8: The major hyper-parameters used in our experi-
ments. “LR.” stands for learning rate.

Dataset Initial LR. Epoch betas for ADAM
C-Digits (stage 1) 1e-4 100 (0.9, 0.999)
C-Digits (stage 2) 1e-5 200 (0.9, 0.999)
C-Faces (stage 1) 1e-4 100 (0.9, 0.999)
C-Faces (stage 2) 1e-5 200 (0.9, 0.999)

C-Driving. Our implementation mainly follows [47]. We

use DeepLab-VGG16 [4] model with synchronized batch
normalization and the batch size is set to 8. The initial
learning rate is 0.01 and is decreased using the ”poly”
policy with 0.9 power. The maximum iteration number
is 40k and we apply early stop at 5k iteration to reduce
overfitting. The GTA5 and BDD100K images are resized to
1280× 720 and 960× 540 for training respectively. For the
IBN-Net [35] baseline, we replace the batch normalization
layers after the {2, 4, 7}-th convolution layers with instance
normalization layers. For the AdaptSeg [47] baseline, we
use the Adam optimizer [20] and 0.005 initial learning rate
for the discriminator.

In our method, we use dynamic transferable embedding
and curriculum training in addition to adversarial adaptation
[47]. The visual memory here also comprises of a set of
class centroids, which is an aggregation of local features
belonging to the same category. Inspired by [58], the
curriculum learning procedure is further designed to include
the averaged probability confidence of each image as a
guidance. Specifically, the samples that are easier, i.e.,
have higher confidence, are firstly fed into the model
for adaptation. Since domain encoder is not accessible
here, we only use class enhancer for dynamic transferable
embedding.

C-Mazes. The experiments for C-Mazes are also conducted
in two-stages. In the first stage, We follow the setups in [18]
to train a randomly initialized ResNet-18 policy network.
We only use one single topology and two different tasks
for the experiments. The total episodes is set to 16000.
The initial learning rate is set to 0.001. Then in the second
stage, we use the pre-trained model to calculate state feature
centers for each actions and use memory module to fine-
tune the model.



D. Additional Results
C-Digits. We have experimented with mnist, mnist-m or
usps as the source domain. On average, the performance
gain of our approach is 8.1% over the baseline method
JAN [30] and 8.9% over MCD [42]; Likewise, the average
performance gain with Multi-PIE as the source domain is
36.5% and 14.4% over the baselines.
C-Driving. Figure 13 shows example results on the GTA5
and BDD100K dataset. Our method produces more accu-
rate segmentation results on the compound domains and the
open domain compared to ’source only’ and AdaptSeg [47].
Per-category results are provided in Table 9, and ablation
study of dynamic transferable embedding and curriculum
training are shown in Figure 12.
Office-Home [49]. We had some preliminary results on
Office-Home [49], where our approach outperforms base-
line methods (JAN [30] and MCD [42]) by 15.3% and 7.9%,
respectively.

E. More Visualizations
t-SNE Visualization. Here we show t-SNE visualizations
of the learned dynamic transferable embedding on the C-
Digits, C-Faces, and C-Mazes testing data (Figure 14 -
16), among various methods. The dynamic transferable
embedding on the C-Mazes benchmark are state features
of each actions. Our approach generally learns a more
discriminative feature space thanks to the proposed disen-
tanglement and memory modules.
Confusion Matrices. Here we show visualizations of class
confusion matrices on the C-Digits and C-Faces testing data
in Figure 17 and Figure 18. Compared to MCD [42] and
JAN [30], our approach performs better on the discrimina-
tive accuracies of each class.



Table 9: Per-category IoU(%) results on the C-Driving Benchmark. (BDD100K dataset is used as the real-world target
domain data.) The ’train’ and ’bicycle’ categories are not listed because their results are close to zero.
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IBN-Net [35] 58.1 19.5 51.0 4.3 16.9 18.8 4.6 9.2 44.5 11.0 69.9 20.0 0.0 39.9 8.4 15.3 0.0 20.6
Ours 63.0 15.4 54.2 2.5 16.1 16.0 5.6 5.2 54.1 14.9 75.2 18.5 0.0 43.2 9.4 24.6 0.0 22.0

Snowy

Source only 50.8 4.7 45.1 5.9 24.0 8.5 10.8 8.7 35.9 9.4 60.5 17.3 0.0 47.7 9.7 3.2 0.7 18.0
AdaptSeg [47] 59.9 13.3 52.7 3.4 15.9 14.2 12.2 7.2 51.0 10.8 72.3 21.9 0.0 55.0 11.3 1.7 0.0 21.2
CBST [58] 59.6 11.8 57.2 2.5 19.3 13.3 7.0 9.6 41.9 7.3 70.5 18.5 0.0 61.7 8.7 1.8 0.2 20.6
IBN-Net [35] 61.3 13.5 57.6 3.3 14.8 17.7 10.9 6.8 39.0 6.9 71.6 22.6 0.0 56.1 13.8 20.4 0.0 21.9
Ours 68.0 10.9 61.0 2.3 23.4 15.8 12.3 6.9 48.1 9.9 74.3 19.5 0.0 58.7 10.0 13.8 0.1 22.9

Cloudy

Source only 47.0 8.8 33.6 4.5 20.6 11.4 13.5 8.8 55.4 25.2 78.9 20.3 0.0 53.3 10.7 4.6 0.0 20.9
AdaptSeg [47] 51.8 15.7 46.0 5.4 25.8 18.0 12.0 6.4 64.4 26.4 82.9 24.9 0.0 58.4 10.5 4.4 0.0 23.8
CBST [58] 56.8 21.5 45.9 5.7 19.5 17.2 10.3 8.6 62.2 24.3 89.4 20.0 0.0 58.0 14.6 0.1 0.1 23.9
IBN-Net [35] 60.8 18.1 50.5 8.2 25.6 20.4 12.0 11.3 59.3 24.7 84.8 24.1 12.1 59.3 13.7 9.0 1.2 26.1
Ours 69.3 20.1 55.3 7.3 24.2 18.3 12.0 7.9 64.2 27.4 88.2 24.7 0.0 62.8 13.6 18.2 0.0 27.0

Overcast

Source only 46.6 9.5 38.5 2.7 19.8 12.9 9.2 17.5 52.7 19.9 76.8 20.9 1.4 53.8 10.8 8.4 1.8 21.2
AdaptSeg [47] 59.5 24.0 49.4 6.3 23.3 19.8 8.0 14.4 61.5 22.9 74.8 29.9 0.3 59.8 12.8 9.7 0.0 25.1
CBST [58] 58.9 26.8 51.6 6.5 17.8 17.9 5.9 17.9 60.9 21.7 87.9 22.9 0.0 59.9 11.0 2.1 0.2 24.7
IBN-Net [35] 62.9 25.3 55.5 6.5 21.2 22.3 7.2 15.3 53.3 16.5 81.6 31.1 2.4 59.1 10.3 14.2 0.0 25.5
Ours 73.5 26.5 62.5 8.6 24.2 20.2 8.5 15.2 61.2 23.0 86.3 27.3 0.0 64.4 14.3 13.3 0.0 27.9
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Figure 12: Ablation study of memory-enhanced neural network and curriculum training on the C-Driving benchmark (GTA5
and BDD100K datasets).
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Figure 13: Qualitative results comparison of semantic segmentation on the source domain (S), the compound domains
(C), and the open domain (O).



Figure 14: t-SNE of the C-Digits features of MCD [42], JAN [30], and our approach.



Figure 15: t-SNE of the C-Faces expression features of MCD [42], JAN [30], and our approach.



Figure 16: t-SNE of the C-Maze action features of MLP [18], MTL, SynPo [18], and our approach.



Figure 17: Confusion matrices visualizations on the C-Digits benchmark for MCD [42], JAN [30], and our approach.



Figure 18: Confusion matrices visualizations on the C-Faces benchmark for MCD [42], JAN [30], and our approach.


