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Abstract— Deep learning approaches are widely explored in
safety-critical autonomous driving systems on various tasks.
Network models, trained on big data, map input to probable
prediction results. However, it is unclear how to get a measure
of confidence on this prediction at the test time.

Our approach to gain this additional information is to
estimate how similar test data is to the training data that the
model was trained on. We map training instances onto a feature
space that is the most discriminative among them. We then
model the entire training set as a Gaussian distribution in that
feature space. The novelty of the test data is characterized by
its low probability of being in that distribution, or equivalently
a large Mahalanobis distance in the feature space.

Our distance metric in the discriminative feature space
achieves a better novelty prediction performance than the state-
of-the-art methods on most classes in CIFAR-10 and ImageNet.
Using semantic segmentation as a proxy task often needed for
autonomous driving, we show that our unsupervised novelty
prediction correlates with the performance of a segmenta-
tion network trained on full pixel-wise annotations. These
experimental results demonstrate potential applications of our
method upon identifying scene familiarity and quantifying the
confidence in autonomous driving actions.

I. INTRODUCTION

Many complex deep learning methods, developed on
image-based tasks, are applied nowadays on camera data
in autonomous driving. Increasingly high task performance
is achieved by using neural networks on videos e.g. for
object detection or image segmentation [1]. However, in this
domain, additional information about the expected perfor-
mance of a neural network is needed to satisfy high safety
requirements [2]. Generalization, robustness and reliability
in new situations is often judged by testing on more or
augmented data [3]. However, collection and annotation
of test data is costly and can never cover all possible
configurations of the world. One solution is to determine
performance indicators while driving, so that control can
be handed over to the driver if the expected performance
of the network model degrades. After training on fixed
training data, neural network based approaches can give
high numerical activations for their chosen output in a new
environment, but this does not necessarily correlate with
task performance in the understanding of the designer of the
task [4]. For example, a detected pedestrian, mirrored in the
reflection of a car window can lead to high recognition scores
when the network did not learn to associate the context of
the scene.
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Fig. 1: Our proposed unsupervised network learns a similar-
ity metric across all instances and calculates the similarity of
novel driving input data compared to a fixed set of training
data. To quantify the impact of novelty detection, the method
is applied to a segmentation task showing it can approximate
the performance of the segmentation network.

Recognizing this limitation, extensive work aims to clas-
sify unfamiliar environments as anomalies, compared to data
considered normal. Successful detection of anomalies, used
as input to a network, provides information on its expected
performance, as it gives insight into its decision basis.

We approach the task of predicting a network’s perfor-
mance by quantifying the degree of similarity of novel
data. In detail, we present a framework to calculate the
similarity of novel camera input data compared to a fixed
set of training data. This is done by using unsupervised
feature learning to encode the input into a feature space in
such a way that visually similar camera images are mapped
close to each other. In the second step, we calculate the
Mahalanobis distance from the feature vector of new input



to the distribution of our large-scale training data efficiently
and in real-time.

To measure the general performance of the approach,
we compare against other state-of-the-art work in anomaly
detection. For a comparison within the autonomous driving
domain, we show how our approach distinguishes camera
data by appearance better than a baseline [5] which uses an
autoencoder. Finally, we investigate how well we can approx-
imate the performance of networks by comparing results on
a segmentation task. The basic idea of our proposed method
is illustrated in Figure 1.

In summary, our contributions are:
• A framework to estimate the similarity of new driving

data to fixed training data, based on anomaly detection.
• Competitive performance on the aspect of anomaly

detection with other state-of-the-art methods.
• Our approach scales to large video datasets for au-

tonomous driving and can distinguish different environ-
ment conditions in data.

• We investigate how our network approximates the ex-
pected performance of SegNet [6] on a segmentation
task.

II. RELATED WORK

In the following, we first review more traditional methods
to detect unfamiliar environments using anomaly detection.
Then, we review previous literature on metric learning before
introducing the main research this paper builds upon.

Anomaly Detection. Encountering unfamiliar environments
has always been an issue when using neural networks for
autonomous driving as the performance of the model de-
grades substantially. A major current research direction is
unsupervised anomaly detection to identify these situations.
Most methods fall into one of three approaches – conven-
tional algorithms, autoencoders, and more recently, metric
learning. While all three are able to isolate the anomaly, they
have shortcomings in complex environments that prevents
application in real world scenarios.

Conventional Methods. Methods such as One-Class SVM
[7] and Isolation Forest [8] often show low performance in
high dimensional data rich cases. To rectify this, conventional
methods often require additional feature engineering such as
dimensionality reduction to improve performance. They also
require knowledge about the complete dataset before being
able to identify anomalies, unapplicable to real world driving
where novel scenarios may be encountered constantly.

Autoencoders. Autoencoders [9] have become the predom-
inant approach to anomaly detection. These artificial neural
networks learn a compressed representation of the data and
try to minimize the reconstruction error [10], [5], [11].
Their performance differs on known and unknown data, thus
making them a suitable proxy for anomaly detection. We
compare against an approach used for safe robotic navigation
[12] in Section IV-B. More advanced techniques, such as
[13] use the compressed representation at the bottleneck
to estimate a Gaussian mixture model. Autoencoders have

a simple network structure, are easy to implement and
remain computationally efficient with decent performance on
smaller datasets. However, they do not scale well to large
scale, high-res driving data where the performance degrades
and exploitable differences between mapped anomalies and
training data dissapear. Similarly, AnoGAN [14] used a GAN
to generate samples of training data, and search for a point
in the generator’s feature space, which can generate a sample
corresponding to given test sample. The reconstruction error
is applied to define an anomaly score. AD-GAN [15] is also a
GAN-based network that relies on an assumption; points that
are badly represented in the latent space of the generator are
likely to be anomalous. These approaches have difficulties
distinguishing the training distribution and anomalies via the
reconstruction error as crucial information may already be
lost during the deconvolution layers or max pooling in the
network.

Recent research has focused on the anomaly detection
problem without reconstructing the data. Deep SVDD [16] is
a network whose weights are optimized by a loss resembling
the SVDD objective. [17] proposed an unsupervised learning
scheme via utilizing local maxima as an indicator function.

Metric Learning. While the anomaly detection methods
above can be used on simpler datasets, they are not suitable
for complex real world driving environments. As an alter-
native, we examine several metric learning methods in this
work. Metric learning aims to map data into a feature space,
structured to minimize distance between similar instances. It
has been widely used in many tasks such as face recognition
[18] and image retrieval [19]. Other works use hand-crafted
features with clustering methods [20]. However, this ap-
proach is not effective as the number of inputs grow and the
dimensions increase. A number of works [21], [22] sample
patches from images and yield the patches as supervision.

This paper mainly builds on research done by [23] on
unsupervised instance level discrimination using a non-
parametric softmax. Instead of classifying input images into
certain classes, this method treats each instance image as
its own class and the classifier is trained to identify each
individual class. During training, the model will then learn
a similarity metric across all instances and group visually
similar instances closer together. This approach does not rely
on labels which enables application on real world datasets
without time-consuming labeling. It scales well to more data
and deeper networks by using noise-constrastive estimation
(NCE) to handle the computation cost, other approaches
struggled with.

III. NOVELTY PREDICTION METHOD

Consider a training dataset X = {x1, x2, . . . , xn} ⊂ X ,
for some input space of images X 1. The objective is to
quantify the similarity between a new input data point x ∈ X
and the training data X . For a low similarity score, such data
points could be considered novel. This information can then

1The input space could in theory contain any kind of data but this work
will focus on images in particular.



Fig. 2: The proposed unsupervised framework. We train
the CNN backbone model which encodes images into 256-
dimensional feature vectors. We then model the training data
distribution in the feature space as a unimodal gaussian.
Finally, we estimate the distance of individually mapped test
images in the feature space.

be used to predict whether other functions using the same
input data operate within an environment similar to which
they were trained on.

Traditionally, such problems can be solved by providing
labeled out-of-distribution data, which reduces it down to a
classification problem. However, for tasks like autonomous
driving, such data is not easily generated. This problem can
instead be solved by learning a feature embedding function
f : X 7→ Rd, mapping images to a feature space of
dimension d. The aim is to construct the feature embedding
in such a way that similar images end up close to each
other. A distance measure can then be introduced as an
estimate of similarity between new data points and the
training distribution.

A. Unsupervised Feature Learning

The feature embedding is constructed from a convolutional
neural network, fθ parameterized by θ. To achieve the
desired property of having similar images close to each other,
we adopt instance-level discrimination to train the network,
based on previous work by [23]. Each image in the training
dataset X is considered to be a distinct class and the feature
outputs of the network are used to differentiate between each
image instance.

The model is trained using a non-parametric softmax,
rather than the more traditional parametric version, on the
output features. The probability of an image x belonging to

the i:th class is then given by

P (i|v) =
exp (fθ(xi)fθ(x)/τ)∑n
j=1 exp (fθ(xj)fθ(x)/τ)

(1)

where τ is the parameter to control the density of the data
distribution. The learning objective is then simply given by
minimizing the log-likelihood,

arg min
θ
−

n∑
i=1

logP (i|fθ(xi)). (2)

B. Distance Estimation

Using the feature embedding, the distance between two
points in the feature space can be used as a metric of
similarity. We can then measure the distance between a new
data point and the training distribution by calculating the
Mahalanobis distance. This is done by first mapping all of
the training data X to features V = {v1, v2, . . . , vn} and
then calculating the empirical mean µ̂ = 1

n

∑n
i=1 fθ(xi) and

covariance Σ̂ = 1
n

∑n
i=1(fθ(xi) − µ̂)(fθ(xi) − µ̂)T . The

Mahalanobis distance between the new data point x and the
training distribution is then given by,

M(x) = (fθ(x)− µ̂)T Σ̂−1(fθ(x)− µ̂) (3)

Finally this distance is used as a measurement of novelty
of the input data, since a greater distance would imply less
similarity. This is further illustrated in Figure 2 where a
schematic of the full pipeline is given.

Anomaly detection. When validation data is available, the
accuracy can be further increased by extracting additional
features from intermediate layers. This is especially useful in
classification tasks, as shown in Section IV-A. In this case, a
collection of features is gathered V1, V2, ..., VN where Vl =
{fl,θ(x1), fl,θ(x2), . . . , fl,θ(xL)} and fθ = fl,θ ◦fl,θ ◦ . . .◦
fl,θ, for the training data X . The Mahalanobis distance is
then calculated as above but for each layer Ml, i.e. between
the set of intermediate feature Vl of the training data and the
intermediate feature vl = fl,θ of the input data. Applying a
similar strategy as in [24], the validation data is used to tune
a weighted average M =

∑L
l=1 wlMl, where each weight

wl is gained through a logistic regression model. The full
similarity estimation is illustrated in Algorithm 1.

IV. EXPERIMENTS

In the following, we show three experiments to demon-
strate the proposed method. In the first experiment, we
compare our method against commonly used algorithms for
anomaly detection. For the second experiment, the same
method is tested on training data sets containing real world
driving scenes in order to estimate similarity in new envi-
ronments. Finally, we compare the performance profile of a
segmentation network with our distance calculations.



Algorithm 1: Distance estimation
input : Training data X = {x1, x2, . . . , xn}, feature

embedding fθ, input image x, weights wl
output: M
Initialize [M1, M2, . . . , ML];
for l = 1, ..., L do

Calculate empirical mean µ̂l = 1
n

∑n
i=1 fl(xi);

Calculate empirical covariance
Σ̂l = 1

n

∑n
i=1(fl(xi)− µ̂)(fl(xi)− µ̂)T ;

Calculate Mahalanobis distance
Ml(x) = (fl(x)− µ̂)Σ̂−1(fl(x)− µ̂);

Estimate similarity as the weighted average
M =

∑L
l=1 wlMl

A. One Class Novelty Prediction

From CIFAR-10 [25], one class was considered as in
distribution and the rest as anomalies. The feature learning
was done on data from one class and the corresponding
Gaussian distribution was estimated in the feature space.
Eight baselines were used in comparison.

Baseline Methods. We compare our method to state-of-the-
art deep learning approaches and a few classic methods.

• One-Class SVM [7] - The one-class support vector ma-
chine (OC-SVM) learns a closed set in the input space,
where the objective function learns to find a maximum
margin hyperplane in the feature space that separates the
mapped data from the origin. Samples which are located
outside of the closed set are regarded as anomalies. The
OC-SVM hyperparameters (the inverse length scale γ
and ν) are adopted from the original paper in order to
report the best result.

• Deep Convolutional AutoEncoder [5] - Deep autoen-
coders are neural networks using convolutional layers
as the backbone architecture which learn a distribution
of samples with an encoder that outputs a representation
of reduced dimension. A decoder is employed symmet-
rically in the network structure in order to reconstruct
samples accurately.

• AnoGAN [14] - In this method, one first trains a GAN-
based network which generates samples according to the
training data. Given a test sample, AnoGAN then finds a
point in the generator’s latent space which can generate
a sample that is similar to the given test sample. An
anomaly score is defined via the reconstruction error of
sample. We incorporate the same architecture used by
the original paper in our experiment.

• DAGMM [13] - This is an autoencoder-based approach
that uses a Gaussian mixture model to perform density
estimation on the representation of training samples
generated by the autoencoder. Note that the architecture
of the autoencoder is the same as the one in Deep
Conv AutoEncoder [5] but with linear activation in the
representation layer.

• AD-GAN [15] - Using a GAN-based model, this net-

work learns a mapping from a low-dimensional normal
distribution to the training data distribution. Given a test
sample, the model estimates the inverse mapping from
the image to low-dimensional feature, which is then
used to generate a sample to compare with the original
given one. Our experiment adopts the same DCGAN
architecture [26] used in the original paper.

• One-Class Deep SVDD [16] - The one-class deep
SVDD uses an objective similar to classic SVDD to
learn a network while minimizing the volume of a
hypersphere that maps the training data samples to the
center of the sphere.

• Local Maxima [17] - This approach assumes the local
maxima of each data point for some unknown value
function. It then trains an indicator function and a com-
parator function, comparing the maximum values of the
value function, in parallel to achieve an unsupervised
one-class classifier for anomaly detection.

• Latent Space Autoregression [27] - This framework
is composed of a deep autoencoder with a parametric
density estimator. It uses the autoregressive procedure
to learn the probability distribution underlying its latent
representations. We follow the original paper by using
ResNet-50 [28] as the backbone, either with an pre-
trained model on Imagenet or CIFAR-10.

Experimental Protocol. We follow a similar experiment
design used by [16] in deep anomaly detection using one-
class classification benchmarks. For each experiment, we
compare a set of images against the total dataset to detect
the anomaly. The dataset is split into N classes for a total
of N experiments. At each experiment, we assign a subset
of class N(n ⊆ N) to be the class of normal images,
without any anomalies, in which the model builds a Gaussian
distribution. The distance is then computed for images in
the test set (all N classes), both normal and anomalous,
which can then be used to evaluate the model’s performance.
Instead of determining the appropriate threshold to detect an
anomaly, we use the area under the ROC (AUC) curve metric
to evaluate the performance of the models. Note, however,
that we need full knowledge of the ground truth labels of
the test set in order to compute the AUC curve.

Hyperparameters and Optimization Functions. We adopt
ResNet-18 [28] as backbone network and encode the output
as 256-dimensional vectors in all of our experiments. We
train using SGD with momentum 0.9 with batch size of
32 and set the weight decay hyperparameter to 4× 10−5.
The learning rate is initialized to 0.01 and dropped by a
factor 0.1 every 30 epochs after 80 epochs. We found the
best performance already at epoch 90 after only one drop in
learning rate.

Results on CIFAR-10. In Table I, ten experiments are shown
using CIFAR-10. The first row contains results where the
normal class is airplane (class 0 in CIFAR-10), and the
anomalous instances are images from all other classes in
CIFAR-10 (classes 1-9). In each row, we can see the average
AUC results (over 10 runs) for all baseline methods. The



Fig. 3: Examples of most normal in-class samples determined
by Local Maxima (left) and our method (right) for some
CIFAR-10 classes (automobile, ship, truck) where Local
Maxima performs the best.

results of our method and the percentage gain against the
baseline methods are shown in the rightmost column. Our
method shows a significant increase in performance against
both conventional and deep learning state-of-the-art methods.
In the case of bird (class 2 in CIFAR-10) and cat (class
3 in CIFAR-10), we obtain the best performance amongst
the compared methods with 79.0% and 74.5% AUC. We
outperform the most recent method, LSA [27], by 10.0%
and 20.3% AUC.

For the classes automobile, ship, and truck (class 1, 8, 9 in
CIFAR-10) we note that Local Maxima [17] performs better
than our method. Figure 3 shows examples of most normal
in-class samples according to Local Maxima [17] and our
approach respectively. We extract the top examples using the
highest probability of prediction to use during evaluation as
the normal class. In examples where Local Maxima performs
the best, especially in examples of ship (class 8 in CIFAR-
10), the images all seem to have a similar global structure
in the background (i.e. examples of ship all have blue sky
or ocean as background).
Results on CIFAR-100. CIFAR-100 [25] represents a more
significant challenge, as given by the low performances of
most models, which is potentially due to the visual clutter
between the large amount of classes. In each experiment, the
100 classes in CIFAR-100 are grouped into 20 super-classes,
and the model is trained on the single “normal” class (i.e.
class 0), and tested against all other classes (i.e. class 1-
19). Our method outperforms other baselines and improves
the AUC by 10% on average. Results can be found in the
supplementary material.
Results on ImageNet-20. In addition to CIFAR, results are
given for ImageNet-20. Images from ImageNet are grouped
into 20 semantic concepts as in [29], where each concept has
around 2800 images. The experiments are then carried out in
the same way as the two previous setups. Our method beats
autoencoders with 7% and current state of the art method
CoRA [29] by 1.3%.

B. Driving Scene Novelty Detection

In the second experiment, we use the distance estimation
as a measure of similarity to compare the training data to
different driving scenes. Rather than using a fixed threshold
for a binary classifier, it is defined as a continuous measure-
ment on the novelty of input data. A subset of the images are
picked out for training, such as images collected during the
daytime with clear weather. The rest of the data containing

Fig. 4: Examples of driving scenes from each of the subsets
of BDD100k and KITTI under daytime, night and different
weather conditions.

various weather scenes can then be used for evaluation, to
show that we can identify novel scenes.

Driving Datasets. We consider two common driving datasets
in our experiments: KITTI [30], and BDD100k [31], which
are described below. Note that all images are resized to 224
x 224, and the pixel values are normalized to [-1, 1].

• KITTI: The KITTI dataset is an outdoor dataset ac-
quired entirely in the city of Karlsruhe, Germany. The
original image size is 1,242 x 376. The sub-dataset in
KITTI meant for object tracking is used. It consists of
8,008 training and 7,518 testing frames. Some examples
of images from KITTI can be found in Figure 4.

• BDD100k: The BDD100k benchmark has 100k images
(1,280 x 720 px) and is collected in the United States,
mostly in San Francisco and New York, under a wide
variety of driving circumstances. Attributes include time
of day, weather conditions and location (highway, city,
parking lot, etc.). The full dataset contains 70,000
training, 20,000 test, and 10,000 validation images.
Examples of BDD100k can be found in Figure 4.

Experiment Setup. Previously, autoencoders have been sug-
gested for novelty detection in simple driving scenes [12].
We conduct the experiments in comparison to DCAE [5],
using the originally proposed structure. This included three
modules consisting of 128, 64 and 32 x (5 x 5 x 3)-filters
in the encoder, where the decoder is created symmetrically
while replacing max-pooling with upsampling. The model is
trained for 250 epochs with MSE loss, using a batch size of
32 and a fixed weight decay hyperparameter of 10−6.

The baseline is compared to our network which uses the
same network structure as in Section IV-A. We divide the
BDD100k dataset according to the attribute information in
the annotation file [31]. In particular, we consider weather
and the time of day attributes, further dividing the clear
daytime subset into a training and testing set which can be
seen in Table II. Training both our model and the DCAE
on the clear daytime dataset, the models’ performance is



OC-SVM DCAE ANO-GAN DAGMM AD-GAN DEEP
SVDD

Local
Maxima LSA Ours Gain

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

61.6
63.8
50.0
55.9
66.0
62.4
74.7
62.6
74.9
75.9

59.1
57.4
48.9
58.4
54.0
62.2
51.2
58.6
76.8
67.3

67.1
54.7
52.9
54.5
65.1
60.3
58.5
62.5
75.8
66.5

41.4
57.1
53.8
51.2
52.2
49.3
64.9
55.3
51.9
54.2

64.9
39.0
65.2
48.1
73.5
47.6
62.3
48.7
66.0
37.8

61.7
65.9
50.8
59.1
60.9
65.7
67.7
67.3
75.9
73.1

74.0
74.7
62.8
57.2
67.8
60.2
75.3
68.5
78.1
79.5

73.5
58.0
69.0
54.2
76.1
54.6
75.1
53.5
71.7
54.8

76.6
69.6
79.0
74.5
71.9
72.0
77.9
70.3
77.4
76.9

2.6%
-

10.0%
15.4%

-
6.3%
2.6%
1.8%

-
-

TABLE I: Average AUCs in % (over 10 runs) of anomaly detection methods on CIFAR-10. Our method achieves the best
performance against both conventional and deep learning baselines on most CIFAR-10 classes. We also show our gain in
% compared against the best baseline.

BDD subset # frames Description
Clear training: 11,000 weather: clear
Daytime test: 1,453 time: daytime

Night 27,970
weather: all
time: night

Non-clear
Daytime 24,273

weather: cloudy
rainy, foggy, snowy

time: daytime

TABLE II: The subsets we used in the experiment. The num-
ber of frames and description of each subset are included.

evaluated on the ability to distinguish the novel environments
from the testing data. For DCAE, this is done by using the
reconstruction error of the images.

Results. Results are illustrated in Figure 5, where the
similarity estimation is compared between the BDD clear
daytime training dataset and each other subset. Our method
distinguishes well between the training data and the novel
environments. Furthermore, the KITTI data lies closer to
the training data than the BDD non-clear daytime subset.
This is because the KITTI data mainly consists of clear
daytime environments which is more similar to the BDD
clear daytime training data than the foggy, rainy and snowy
images in the BDD non-clear daytime subset. Finally, the
BDD night subset is the furthest distance away as it contains
the lowest similarity to the clear daytime images. The same
results can be seen for training on KITTI as well.

The DCAE model struggles to differentiate the datasets
as seen in Figure 5. As [12] addresses, autoencoders may
not work as well for highly varied datasets of unique images
since the network needs to capture complicated structures
in the data rather than learning pixel-copy representation.
However, it still shows a marginal gap in reconstruction loss
between the day and night datasets.

C. Segmentation Task Performance Prediction

As the final experiment, we illustrate how novelty detec-
tion can be used as confidence measure in an exemplary
network for an autonomous vehicle pipeline, inspired by
[12]. We investigate a basic segmentation network, SegNet
[6] which is often applied in autonomous driving tasks [32],
[33], and the reliability of its predictions based on the novelty
of the testing data. Both networks are trained on the same
training data and the similarity estimation of our model acts
as a proxy for the performance of the segmentation network.

(a)

(b)

Fig. 5: Histogram of the distance (our method) and recon-
struction loss (DCAE) based on training (a) BDD clear-
daytime subsets, (b) KITTI training set, and test both (a) and
(b) on BDD clear daytime test, BDD non-clear, KITTI test,
and BDD night subsets. The results of (a) and (b) clearly
show that our method differentiates several environments
effectively, while our compared baseline, DCAE does not.

Experiment Setup. We show that segmentation loss can be
modeled by the similarity of the input images compared to
the training data. We use the BDD10k subset which contains
segmentation labels. Of the 10,000 images only 2972 contain
both a segmentation mask, weather and time information.
Of these 829 have clear weather and were taken during the
daytime. 729 of these were used for training and 100 were
added to the rest of the images for testing.

Results. Results are found in Figure 6 where the scatterplot
illustrate the similarity estimated from our network and
segmentation loss from SegNet. Although SegNet tends to
generalize well, a decrease in performance can be seen for
test data of low similarity. In particular, this is evident for
the night time images. Furthermore, the high variance may
be due to some scenes having better lighting conditions to
others, even during the night time images. Results for other
conditions can be found in the supplementary material.



Fig. 6: Segmentation loss plotted against similarity for the
100 clear daytime testing images combined with 115 night-
time testing images. Night time images both show higher
segmentation loss and less similarity.

V. SUMMARY

We introduce a framework to estimate the similarity of
new data to a fixed training set. The method is compared to
regular state-of-the-art anomaly detection algorithms where
our method outperforms the majority of the classes on
CIFAR-10, CIFAR-100 and ImageNet-20. Furthermore, we
show that the method scales to large datasets for autonomous
driving by applying it to the KITTI and BDD100k dataset,
where we successfully estimate the similarity of driving
scenes. For an autonomous vehicle, this can be used to
predict whether it is driving in an environment similar to
its training data. Finally, we show an example of such
application where we predict the performance profile of a
segmentation network as it encounters novel scenes. Our
proposed approach can significantly contribute to the field of
autonomous driving as it provides an indicator of expected
performance of a driving module in novel environments.
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