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Synopsis
MR Fingerprinting is an emerging attractive candidate for multi-contrast imaging since it quickly generates reliable tissue parameter maps. However,
contrast-weighted images generated from parameter maps often exhibit artifacts due to model and acquisition imperfections. Instead of direct
modeling, we propose a supervised method to learn the mapping from MRF data directly to synthesized contrast-weighted images, i.e., direct contrast
synthesis (DCS). In-vivo experiments on both volunteers and patients show substantial improvements of our proposed method over previous DCS
method and methods that derive synthetic images from parameter maps.

Introduction
Multi-contrast images generated from a single scan have the tremendous potential to streamline and shorten overall exam times. Magnetic Resonance
Fingerprinting (MRF) is an emerging attractive candidate for multi-contrast imaging since it has been shown to generate reliable quantitative tissue
parameter maps . Although tissue quanti�cation can be useful for diagnosis, clinicians typically prefer qualitative, contrast-weighted images. With MRF,
these images can be synthesized from the quantitative maps by simulating the MRI physics (e.g. Synthetic MR ). Unfortunately, contrast-weighted images
generated from parameter maps often exhibit artifacts due to model imperfections (e.g. �ow, partial voluming). To overcome these limitations, deep
learning has recently been used to map acquisition data directly to contrast-weighted images . One approach used a pixel-wise network to �t the MRF
time series to a qualitative contrast weighting at each pixel . However, the method did not leverage the spatial and structural information. Here, we
propose a spatial-convolutional supervised method for direct contrast synthesis (DCS). We employ a Generative Adversarial Network (GAN)  based
framework, where MRF data can be used to synthesize T1-weighted, T2-weighted, and FLAIR images, which are common contrasts used in diagnostic
imaging. Figure 1 summarizes the three di�erent approaches of producing synthetic, multi-contrast images, out of which Figure 1.c is our proposed
method. In-vivo experiments on both volunteers and patients show substantial improvements in image quality compared to previous DCS method and
Synthetic MR from parameter maps.

Methods
Network Design: 
We designed two GAN-based networks (1-DCSNet and N-DCSNet) for direct contrast synthesis from MRF data. Each network follows a standard
conditional GAN framework with one generator  and one discriminator  (Figure 2). The generator is a U-Net  based convolutional network, which
consists of one encoder and a single (1-DCSNet) or multiple decoders (N-DCSNet), while the discriminator is a Residual Network . The output of the
discriminator predicts whether the images are real (ground truth) or fake (synthesized images). The N-DCSNet uses a joint encoder with independent
decoders to synthesize multi-contrast images, with the idea that contrast images share mutual information. All of the networks are trained with the
learning rates 0.0001/0.0005 (Generator/Discriminator) for 100 epochs with batch size 4.  
Loss function: 
As shown in Figure 2, the loss function is a combination of the , the  loss between the synthesized the ground truth images, adversarial loss ,
as determined by the discriminator, and the perceptual loss , which is calculated as the  loss between the feature maps outputted by pre-trained
VGG Net . Therefore, the total loss can be written as

where  are the weights for di�erent losses. The addition of the adversarial and perceptual losses creates more realistic synthetic results. In
order to make the training invariant to the input data scaling, we use a scaling invariant loss , where we multiply a scalar  to the output synthetic
images  and use  to compute the losses.  is easily computed by solving a least square problem:

where  is the ground truth image. All of the networks were implemented in Pytorch  and trained using GeForce TITAN Xp GPUs. 
Dataset and preprocessing:  
All scans were performed with IRB approval and informed consent. 
Volunteers: We scanned 21 volunteers between ages 29 to 61 years using a 1.5T Philips Ingenia scanner. 17 of the subjects were scanned twice, resulting
in 38 datasets with 10 slices per sample. 36 samples are used as a training set while the other 2 are used as the test set. 

Patients: A total of 30 patients (12 slices each) with di�erent brain lesions (Parkinsons, Epilepsy, Tumor, Infarcts, etc.) were included in the study. All scans
were conducted on a 3T Philips Achieva TX scanner. 26 out of 30 samples are used for training while the other 4 are used for testing. 

For each sample in volunteers and patients, four MR examinations were conducted: T1w Spin Echo, T2w Turbo Spin Echo, FLAIR and a spiral MRF with
variable �ip angles (Captions in Figure 3 and 4 show the di�erent sequence parameters for Volunteers and Patients). All the slices were normalized by
the intensity of the white matter prior to training and testing. As the �eld strength and MRF parameters di�ered, separate networks were trained for the
volunteers and patients' data.

Results
Figure 3 (Volunteers) and Figures 4 and 5 (Patients) display comparisons between di�erent methods on three di�erent synthesized contrasts in the test
set. The high diagnostic quality of 1-DCSNet and N-DCSNet contrast images from MRF data is eminent, showing more structural details, higher peak
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signal-to-noise ratio (PSNR) and higher Structural Similarity Index (SSIM) compared to our implementation of PixelNet and Synthetic MR from parameter
maps, even in the presence of large o�-resonance artifacts.

Discussion and Conclusion
Our proposed direct contrast synthesis method demonstrates that multi-contrast MR images can be synthesized from a single MRF acquisition with
sharper contrast, minimal artifacts, and a high PSNR on both volunteers and patients. Additionally, N-DCSNet also implicitly learns some spiral
deblurring. By directly training a network to generate contrast images from MRF, our method does not use any model-based simulation steps and
therefore can also avoid any reconstruction errors due to simulation.
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Figures

Figure 1. Three possible pipelines for synthetic multi-contrast images: a) through dictionary matching and sequence simulation (Bloch simulation,
Extended Phase Graph Algorithm ). b) pixel-wise time-domain convolutional neural network . c) our proposed spatial-convolution GAN-based direct
contrast synthesis method.
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Figure 2. Network architectures of the proposed method. a) the 1-DCSNet: A conventional U-Net composes the generator where the input is 500-time
points MRF data and the output is one synthesized contrast-weighted image. Pre-trained VGG 16  and ResNet 18  (the discriminator) are used as the
backbone to compute the perceptual loss and the adversarial loss. b) the N-DCSNet: A modi�ed Multi-decoders U-Net is used for the generator where
the outputs are multiple contrast-weighted images. Di�erent contrast-weighted images are concatenated as the input of VGG 16 and the discriminator.

Figure 3. Comparison between di�erent methods on three di�erent synthesized contrasts for Volunteer data. Zoom-in details are displayed on the side
of each image, which shows a better cortex to white matter contrast and improved SNR in 1-DCSNet and N-DCSNet. Sequence parameters for the tru
scan: 1) T1w SE with TE = 15ms, TR = 450ms, FA = 69; 2) T2w TSE with TE = 110ms, TR = 1990-2215 ms, ETL=16, FA = 90; 3) FLAIR with TE = 120ms, TR =
8500ms, TI=2500ms,ETL=41, FA = 90. 4) MRF spoiled gradient each (FISP) sequence with 500 time points, constant TE = 3.3ms and TR = 20ms with variable
�ip angles.

Figure 4. Comparison between di�erent methods on three di�erent contrasts for Patients data. This patient has been diagnosed with Parkinson disease.
Some white matter lesions can be seen in the true acquisition. Zoom-in details show better white matter contrast and improved SNR in N-DCSNet.
Scanning parameters: 1)T1w SE: TE = 13.4 ms, TR=520ms, FA = 90; 2) T2w TSE: TE = 80ms, TR = 1758 ms, ETL=15, FA = 90; 3) FLAIR: TE = 140ms, TR =
12000ms, TI=2850ms,ETL=40, FA = 90. 4) MRF spoiled gradient each (FISP) sequence with 500 time points, constant TE = 4ms and TR = 20ms with variable
�ip angles.
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Figure 5. Comparison between di�erent methods on three di�erent synthesized contrasts for Patients data. This patient has been diagnosed with a brain
tumor, where massive tumor can be seen on the images. Zoom-in details show sharper structures and improved SNR in N-DCSNet. Without training on a
large tumor datasets, N-DCSNet can still recover the structure of the tumor, but with a soft contrast and blur edges compared to the true acquisition. The
scanning parameters are the same as in Figure 4.
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