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Abstract—Convolutional neural networks can be trained to
assess the material quality of multicrystalline silicon wafers. A suc-
cessful rating model has been presented in a related work, which
directly evaluates the photoluminescence (PL) image of the wafer to
predict the current–voltage parameters after solar cell production.
This paper presents the results of two visualization techniques to
understand what has been learned in the network. First, we reveal
what has been learned in the PL image by visualizing the spatial
quality distribution of the wafers based on the activation maps
of the network. The method is denoted as regression activation
mapping. We compare regression activation maps with j0 images
of solar cells to show the semantically meaningful representation
of the trained features. Second, we show what has been learned
in the data by mapping the learned network representation of all
wafers into a low-dimensional subspace. Visualizations reveal the
smoothness of our representation with respect to the PL input and
measured quality. This technique can be used to detect material
anomalies or process faults for samples with high prediction
errors.

Index Terms—Convolutional neural network (CNN), densely
connected convolutional neural network (denseNet), fault detec-
tion, machine learning, material, multicrystalline silicon (mc-Si),
passivated emitter and rear cell, photoluminescence (PL), rating,
regression, regression activation mapping, solar cell, t-distributed
stochastic neighborhood embedding (t-SNE).

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) can be used
to rate the quality of multicrystalline silicon (mc-Si)

wafers based on photoluminescence (PL) images [1] with high
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Fig. 1. We introduce an end-to-end rating model, which connects PL images
as input and open-circuit voltagesVoc as output (see Section II and [1]). The net-
work representation will be used by two visualization techniques to understand
what has been learned: 1) a quality map for each wafer shows the learned quality
distribution in low resolution; and 2) a 2-D map reveals the learned similarity
of samples in the dataset.

prediction accuracy [2]. A novelty of this approach is the end-to-
end connection between input image and quality output: a CNN
can learn a direct mapping between the PL image of the wafer
and the quality of the resulting solar cell based on empirical
data only. In contrast with traditional feature engineering ap-
proaches, as proposed, e.g., in [3]–[6], a network does not rely
on a description of the wafers with human-designed features.
Yet, CNN-based efficiency predictions deviate from the mea-
sure efficiency in average about 35%rel less than the predictions
with our previous feature-engineering approach, as presented in
the first part of this study [1].

Deep learning allows the discovery of relevant features, but re-
quires additional steps for understanding what has been learned.
The features trained from a deep CNN are highly complex. On
the one hand, the learned features are purely based on the empir-
ical training data. This helps us avoid errors due to handcrafted
features, which may not be capable to address all variations of
data. On the other hand, this information is spread along the
layers of the network, and the contribution of an image region
or image feature is unclear.

This paper evaluates two techniques for visualizing, what has
been learned by the regression network for open-circuit voltage
prediction (Voc), as shown in Fig. 1. A quality map reveals what
has been learned in the image (see Sections III and V-D), and
an embedding technique shows which similarities have been
learned in the dataset (see Sections IV and V-E).

What has been learned in the image? Visualization techniques
increase the interpretability of what has been learned within the
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Fig. 2. Scheme of the convolutional regression network for Voc prediction
based on PL images of as-cut wafers. The network contains three densely con-
nected (DB) blocks and transition layers (TRANS). The feature map �F and
feature vector �f of a sample are used for data visualization.

models. These methods have been presented, for example, by
Zeiler and Fergus [7] and Yosinski et al. [8]. In most classifi-
cation problems, a specific image region is responsible for the
decision. The most decisive image regions for a classification
are revealed by mapping the activation of deep features back
to input space. Zhou et al. [9] propose to localize these regions
by analyzing the activation of the network in the final layers.
Within this work, we apply the localization method to regres-
sion tasks. Therefore, we rearrange the final feature layers and
weights to form an image of spatially resolved quality values,
which is denoted as regression activation map (RAM) [10]. The
average value of the map is equal to the regression result.

What has been learned in the dataset? The features in the
last layers of our network are a semantic representation of the
image, which can be used to analyze similarity and continuity in
our data with respect to PL input and Voc output. Similar defect
distributions in the PL images are expected to lead to similar fea-
ture values and similar open-circuit voltages. Embedding tech-
niques like the t-distributed stochastic neighborhood embedding
(t-SNE) [11] allow the structure of high-dimensional data to be
visualized in a lower dimensional space. Input images and qual-
ity data can be compared within the map, as shown, e.g., in [12].
We analyze this human-interpretable representation of the data
to see what has been learned.

II. DENSELY CONNECTED CONVOLUTIONAL NEURAL

NETWORKS FOR REGRESSION

In the following, we briefly introduce our network design
depicted in Fig. 2. The network is based on a densely connected
convolutional neural network (DenseNet) introduced by Huang
et al. [13]. Since the network was designed for classification
problems, it has to be transformed into a regression network to
predict the Voc based on the input PL images. Further details on

the feature extraction via the dense network are visualized in [1]
and described in the following.

In the first step, the PL image is downsampled to 134 × 134
pixels, due to memory constraints of the GPUs used in this exper-
iment. The augmentation step is an optional step, which trans-
forms the image to avoid an overfitting of the data to the training
set: the number of rows and columns are randomly cropped by
6 pixels, and the image is randomly rotated or flipped.

A convolutional layer with filter size 3 × 3 (Conv3×3) extracts
16 feature channels. This feature map with size 16 × 128 × 128
is the input for the dense network.

The dense network extracts image features within three
densely connected blocks. Each block contains sequences of
convolutional layers for feature extraction, batch normalization
layers to scale the data, and rectifying linear units as nonlinear
operations. Skip connections from each layer to all succeeding
layers in a dense block allow the reuse of the features and a
robust training of the model.

Transition layers connect the dense blocks. The spatial res-
olution of the features is reduced by maximum pooling for the
first two transition layers, which increases the receptive field of
each neuron. The feature channels are compressed by 1 × 1 con-
volutions, which combines the feature channels in a meaningful
way with regard to Voc prediction.

The dense network results in a feature map �Fi with 79 feature
channels c and spatial resolution in x and y of 32 × 32 pixels
for each sample i. A feature vector �fi is extracted by channel-
wise average pooling along the elements npx of each channel
according to

�fi(c) =
1
npx

∑

x,y

�F (c, x, y). (1)

The feature vector �fi ∈ R79 is used to predict the open-circuit
voltage ŷi within an inner product layer with weights �w and
offset b resulting with

ŷi =
〈
�w, �fi

〉
+ b. (2)

The network is optimized during training with stochastic gra-
dient descent minimizing the loss between the predicted quality
value ŷi and the measured yi. For the test case, we average
the prediction result for nine different cropping positions of the
sample.

III. DISCOVERING THE SPATIAL DISTRIBUTION OF THE

PREDICTED QUALITY IN THE REGRESSION ACTIVATION MAP

We apply the localization method of Zhoe et al. [9] to regres-
sion networks to visualize the spatial distribution of the predicted
quality value ŷi as an image with the same average value. The
method is applicable for regression networks, where the final
layer contains a channelwise averaging of the feature map and
a subsequent inner-product layer. The predicted value ŷi can
be computed as pixelwise average along all channels c of the
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weighted feature map by reformulating (1) and (2):

ŷi =
∑

c

�w(c) · 1
npx

∑

x,y

�Fi(c, x, y) + b (3)

=
1
npx

∑

x,y

(
∑

c

�w(c) · �Fi(c, x, y) + b

)

︸ ︷︷ ︸
�̂
Yi(RAM)

. (4)

Each feature channel of the feature map �Fi(c, x, y) is weighted
by the corresponding coefficient �w(c) of the inner-product layer.
The pixelwise averaging along all feature channels leads to a

RAM �̂
Yi with the same spatial resolution as the feature map.

IV. UNDERSTANDING THE DATA IN THE LEARNED

FEATURE SPACE

A human-interpretable visualization of the learned feature
space can be created to understand the learned similarities of
the data. The network reduces the data in the PL image to a
lower number of features �fi in the final layer. These features
presumably contain a semantic meaningful representation of the
input data with respect to the corresponding quality values. The
feature dimension, here nc = 79, is still too high for a human
interpretation of what has been learned. Therefore, the data are
visualized via a t-SNE [11] to analyze the learned network rep-
resentation.

The t-SNE approach maps each data point onto a typically
two-dimensional (2-D) manifold and preserves the local struc-
ture of these high-dimensional data: Very similar data points
in the high-dimensional space are likely to be neighbored in
the lower dimensional map. The dimension reduction algorithm
minimizes an objective function that measures the discrepancy
between local similarities in the high-dimensional data and sim-
ilarities in the map. The dimensions of the t-SNE map have
arbitrary units.

The t-SNE map allows a human observation of what has
been learned: We can visualize the similarities between differ-
ent data in the deep feature space. Therefore, PL images are
passed through the network. The high-dimensional features are
extracted for each sample and mapped into a 2-D space via
t-SNE. The mapping is computed for all data based on the final
feature vector �fi after average pooling. Each data point in the
t-SNE map corresponds to a sample with a measured PL image
and Voc. PL images can be visualized in a “Patchwork” image
for selected samples at the corresponding position in the t-SNE
map. In addition, the Voc values can be visualized according to
the t-SNE coordinates.

“Patchwork” image: An image is created, which visualizes
the input PL images at the position of the data point in the t-SNE
map with low resolution. Not all of the data can be visualized
within one image. Therefore, the 2-D t-SNE map is sampled
following a regular grid with fixed step size. For each grid point,
we are searching for the nearest sample in the map within the
region of patch. The input image of this sample will be added to
the patchwork at this position in a low resolution.

Quality distribution: The distribution of the Voc is visualized
within a scatter plot in the t-SNE map. Regions of high and
low material quality are compared with the input images at the
corresponding locations in the patchwork image.

V. EXPERIMENTAL DETAILS

A. Dataset

The dataset contains 7300 mc-Si wafers and high-
performance multicrystalline silicon (HPMC-Si) [14] wafers
with a size of 156 × 156 mm from 74 bricks and 25 boxes of ten
different manufacturers. The as-cut wafers were measured with
an inline PL system with a line-scan camera with an InGaAs
detector, as described by Höffler et al. [15] with a resolution of
1024 × 1024 pixels. The samples are processed to passivated
emitter and rear cells [16] within an industrial production line.
The current–voltage characteristics are measured after solar cell
production. For simplicity, the trained model has been optimized
for Voc prediction only.

1) Scenario 1—Testing “Unknown” Bricks: For the evalua-
tion of the activation map, a model is trained with about 2900
wafers from selected 32 bricks and seven boxes and a valida-
tion set of 425 wafers for parameter optimization. The model
is tested with about 3900 wafers from distinct 42 bricks and 18
boxes not represented in the training set.

2) Scenario 2—Testing “Unknown” Manufacturers: We in-
vestigate if a rating model can be used to evaluate new materials,
i.e., HPMC-Si wafers, from an “unknown” manufacturer with
an existing prediction model. This is relevant if we want to rate
the potential of new materials for a given solar cell production
based on PL images only. In the past, new material classes like
HPMC-Si [14], [17] have been developed, which can lead to
higher solar cell efficiency compared with previous mc-Si ma-
terials. The prediction of “unknown” materials is challenging
especially for this high-quality materials, since the measure-
ment of bulk lifetime in PL images of as-cut wafers is limited
by surface recombination.

Therefore, we evaluate the materials from the manufacturers
with HPMC-Si wafers M1, M2, and M3 separately. We create
three datasets by removing all wafers from a manufacturer from
the training set in Scenario 1 and add these samples to the test
set.

B. Implementation and Training

The network is implemented and evaluated using the deep
learning framework Caffe [18]. The input images are aligned
[19, pp. 58–59], downsampled, and normalized before the train-
ing process. The training was accomplished via stochastic gra-
dient descent with a batch size of 20 samples using Nesterov
optimization for 400k iterations. Following a graduated scheme,
the learning rate was initialized to 0.01 and halved after periods
of 50k iterations.

C. Results on Quality Prediction

The network predicts the Voc for materials from “unknown”
bricks (Scenario 1) with low mean absolute prediction errors
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Fig. 3. Measured and predictedVoc values for samples from “unknown” bricks
(Scenario 1). The color of each hexagon indicates the number of samples within
this region. In addition, the margin distribution is shown for both parameters.

TABLE I
DENSENET VOC PREDICTION FOR SCENARIO 2 (“UNKNOWN” MANUFACTURER)

mae: mean absolute error, rms: root mean squared error,
cor: Pearson correlation coefficient.
*full testset will be used for anomaly detection due to high errors.

of 2.12 mV and the Pearson correlation coefficient of 0.93, as
shown in Fig. 3. Further results of an extended multivariate re-
gression network predicting four current–voltage parameters us-
ing PL images with different resolutions are presented in [1].

The prediction errors for unknown HPMC-Si manufacturers
(Scenario 2) are low for materials from M1 and M2, but high for
materials from M3, as shown in Table I. The prediction errors
are an indicator that manufacturer M3 has samples with anoma-
lies according to the learned patterns of our network. These are
referable to process errors or material defects not visible in band-
to-band PL images, as discussed in Section IV.

D. Results on Activation Mapping

The presented activation map is implicitly learned by the
DenseNet and represents the predicted quality value with spatial
distribution. Therefore, a sample is passed forward through the
network. Then, the RAM is computed according to the activa-
tion in the final feature map of the sample and the inner-product
coefficients of the network (see Section III). The maps are given
in millivolts with the same spatial resolution of 32 × 32 pixels
as the final feature map.

We compare triplets of representative PL images, RAMs, and
images of the dark saturation current j0. Fig. 4 shows exam-
ples of computed maps (second column) from given PL images
(first column) and models for Voc prediction. The PL images are

the input for the neural network, which means that they have
been cropped and normalized. The measured Voc is shown be-
low the PL image. The average value of the RAM corresponds
to the predicted Voc for this PL image and is given for each map.
The j0 image of the corresponding solar cell (third column) is
determined according to [20] and represents the spatial distri-
bution of the defects, which are actually recombination active
in the finished solar cell and, thus, limiting Voc. In addition, the
j0 images are cropped. All images show the same region of the
wafer and cell with different spatial resolution.

The network learned that specific structures are bad. Without
previous user input, the network learned to assign a lowVoc value
to contaminated regions and dislocation structures. The predic-
tion prefers the structure of the defects over the pure intensity, as
shown, e.g., in Fig. 4(a) and (b): Although PL intensities in con-
taminated regions can be lower than PL intensities of structural
defects, they are not necessarily assigned to lower Voc values.
This is in accordance with observations in the j0 images, as the
lowest PL intensities observed in contaminated regions do not
necessarily correspond to the highest j0 values [e.g., Fig. 4(c)].

Low-quality structures in the RAMs are similar to structures
of low intensity in the PL image and high intensity in j0 im-
ages, but do not exactly match the same pattern. The position
and shape of the quality deterioration in the RAM can deviate
from the exact defect position in PL images due to the size of
the receptive field at a pixel position. Each neuron activation is
connected to a combination of convolution and pooling steps.
Although the kernel size is small for each convolution, a se-
quence of convolutions increases the receptive field of a neuron.
Nevertheless, a high similarity can be observed in almost every
example.

The RAM cannot anticipate the impact of the solar cell pro-
cess with high spatial accuracy. In particular, high-temperature
processes during the emitter diffusion and contact formation
can change the distribution of regions with reduced lifetime and,
thus, the appearance of j0 images compared with the PL images.
For example, a gettering effect for contaminated regions can be
observed in the j0 image of Fig. 4(c). This effect cannot be ob-
served with high spatial accuracy in the RAM. Nevertheless, it
can be considered to be part of the overall weighting, since pre-
diction errors are low for most of the samples with contaminated
regions in Fig. 4.

Up to a certain extent, PL imaging and surface artifacts are
considered as nonrelevant by the network. The PL image in
Fig. 4(d) shows an edge wafer with vertical stripes in the PL
image, due to saw marks or heterogeneous illumination. Most of
these line structures do not lead to strong quality deterioration in
the RAM. One vertical structure can be observed in the RAM,
which may be connected to a strong measurement or surface
artifact.

Even for a complicated PL structure with superimposed de-
fects, the network outputs RAMs in the correct quality range.
Fig. 4(e) and (f) shows examples of PL images with inverted
PL contrast in regions of low bulk lifetime, where grain bound-
aries appear as bright instead of dark structures. The open-circuit
voltages of these samples differ more than 20 mV. Fig. 4(e)
shows the high-quality sample, whose quality is only slightly
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Fig. 4. Triplets of (left) the PL image of the as-cut wafer, (center) RAM learned by the network for Voc prediction, and (right) the j0 image [20] measured at the
finished cells. The measured and predicted Voc values are annotated below the left and center image, respectively. All images within a column are scaled equally,
and all images show the same central image region according to the PL image region used by the network.

overestimated by the model. The RAM reveals a mostly homo-
geneous high-quality assignment of the model along the wafer.
Fig. 4(f) shows a low-quality wafer. Again, the PL structures are
rated similar to the quality shown in the j0 image.

E. Results on Understanding the Data in Feature Space

The network representation of the PL images is a key to under-
stand the data from a network perspective. The network learns
to describe and compress the image data by means of quality-
relevant defect features, which are represented in the last feature
vector for each quality parameter. By visualizing the learned
representation for our dataset in a 2-D space, we analyze the
smoothness of the model and visualize erroneous samples.

1) Dataset and Model: The visualization technique can be
used for error analysis. Therefore, we analyze the model with the
most faulty prediction. The presented data are based on a model
trained according to Scenario 2 (“unknown manufacturer”) with-
out samples from manufacturer M3. Following the approach in
Section IV, the deep features are extracted, and a 2-D embedding
is learned via t-SNE.

We visualize the similarity of material defects and material
quality given by the deep features. Similar material types ac-
cording to the deep feature space are expected to be placed on
similar locations in the 2-D manifold. The distribution of the

measured and predicted wafer quality, as well as the prediction
error, is shown in Fig. 5. A human accessible visualization of the
input images along the map is shown in the “Patchwork” image
in Fig. 6.

2) Material Quality and Photoluminescence Images: The
measured material quality varies smoothly along the t-SNE co-
ordinates, as shown in Fig. 5 (left). Samples represented in the
upper left region have a high material quality, and low-quality
samples are located in the quadrants on the right. The t-SNE
maps with measured Voc in Fig. 5 (left) and predicted Voc in
Fig. 5 (center) show high similarity, besides few outliers in
Fig. 5 (right). The comparison with the PL images in the “Patch-
work” image in Fig. 6 shows that very low quality wafers are
top and bottom wafers from various manufacturers. Materials
in the upper left quadrant are HPMC-Si materials. Furthermore,
low-quality clusters in the t-SNE map may be explained by ei-
ther samples with strong dislocations or contaminated regions,
which are located in similar regions of the map. For contami-
nated regions, the orientation of the samples becomes obvious
in Fig. 6. The change in orientation for neighboring samples
indicates that the network representation captures the semantic
defect information independent of sample rotation.

3) Error Analysis: We can use the network errors for
anomaly detection. PL images from M3 are highlighted in the
Patchwork image shown in Fig. 6. The green and red color
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Fig. 5. Visualization of the high-dimensional deep features for all test data within a structure-preserving 2-D t-SNE map: (left) measured Voc, (middle) predicted
Voc, and (right) the Voc prediction error of the test data. The model was trained with data from Scenario 2 without samples from manufacturer M3.

Fig. 6. Visualization of PL images according to the arrangement of the deep features of the sample after mapping them with a structure preserving projection
onto a 2-D space (same as in Fig. 5). Each patch in the “Patchwork” image shows a PL image with reduced resolution at the corresponding position of the sample
in the t-SNE map. The colored patches are HPMC-Si samples from manufacturer M3. Green and red colors indicate samples with prediction errors smaller and
larger 6 mV, respectively. Prediction errors can be used for fault or anomaly detection. (Zoom in for details.)

overlay indicates samples with errors smaller and greater
than 6 mV, respectively. Samples in the top region of bricks
from M3 have smaller x-coordinates within the t-SNE map than
the bottom wafers, which are located in the very right region of
the t-SNE map. We can observe that top wafers from M3 lead to
large prediction errors despite a high similarity to neighboring

wafers. Solely, a slight increase in dislocations can be observed
in PL images from the top region.

Based on this fault detection, the samples are investigated in
more detail. As the impurity concentration is typically higher
in the top region of brick, a back diffusion of impurities from
the very top of the brick is a possible cause for the observed
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errors. Therefore, the concentration of interstitial iron point de-
fects [21] has been determined in [1], and an increased number of
metastable defects were measured for these samples. Although
an increased concentration of point defects lowers the material
quality in the top region of the bricks, the appearance of the PL
images did not change significantly.

VI. DISCUSSION AND OUTLOOK

A. Discussion and Refinement of Regression Activation Maps

The activation mapping gives an insight into the “black box”
neural network. This can improve the acceptance of network
techniques in the photovoltaic community.

The activation map shows that the network has learned to as-
sign reasonable quality values to most of the patterns with regard
to a purely empirical approach based on a limited number of PL
images. Without human input, dislocations and contaminated re-
gions have been rated as a low-quality structure. Even low- and
high-quality samples with superimposing patterns can be distin-
guished. Yet, the absolute quality values need to be analyzed in
more detail.

Further investigations can be conducted to evaluate: 1) the ro-
bustness of the activation maps to image and surface distortions;
2) the impact of solar cell processes; and 3) material properties
invisible in PL images. Therefore, activation maps for materials
with different surface roughness or bulk defect distribution can
be compared considering different solar cell processes. Further
characterization with spatially resolved quality images of wafers
and solar cells [22] allows a more quantitative evaluation of the
mapping technique.

B. Understanding What Has Been Learned By Feature Space

Mapping the compressed feature representation of the final
network layer onto a 2-D map allows a human interpretation of
the data.

A smooth representation is an indicator for the generalizabil-
ity of the model. The defect characteristics in the PL images
and the quality data vary smoothly along the map. They are not
exclusively clustered in groups of samples from the same brick.
The smooth representation of the test data is an indicator that
our representation does not underlie an overfitting to the training
data.

The mapping can be applied for quality control: a crystal
grower can monitor the different process results by comparing
the map positions of new and previous processes. In the pre-
sented approach, failure cases for Voc prediction are identified,
which are referred to impurities in this material, as visualized
in [1].

VII. CONCLUSION

In this paper, a machine learning approach for material rating
of HPMC-Si and mc-Si wafers for solar cell production has been
introduced. A CNN was trained to predict the I–V parameters
based on PL images of as-cut wafers.

Two visualization techniques has been proposed to allow a
human interpretation of the rating models: By applying the re-
gression activation mapping, the rating model not only predicts
the material quality, but also provides a spatially resolved quality
rating. The RAM revealed the negative influence of dislocations
and contaminated regions within this application. This technique
can be applied to any regression problem and is especially help-
ful when no human expertise is given.

The second visualization technique allows a human interpre-
tation of the high-dimensional network representation of all data
by embedding the data into a 2-D map. The mapping preserves
the similarity of the data. The data visualization revealed the
continuity and smoothness of the image representation of the
model with regard to PL input and Voc output. The map allows
a detection of material anomalies or process faults in the case of
unexpectedly high prediction errors.
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