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Abstract—This paper investigates deep convolutional neural net-
works (CNNs) for the assessment of defects in multicrystalline
silicon (mc-Si) and high-performance mc-Si wafers for solar cell
production based on photoluminescence (PL) images. We identify
and train a CNN regression model to forecast the I–V parameters
of passivated emitter and rear cells from given PL images of the
as-cut wafers. The presented end-to-end model directly processes
the PL image and does not rely on the human-designed image fea-
ture. Domain knowledge is replaced by a model based on a huge
variety of empirical data. The comprehensive dataset allows for
the evaluation of the generalizability of the model with test wafers
from bricks and manufacturers not presented in the training set.
We achieve mean absolute prediction errors as low as 0.11%abs in
efficiency for test wafers from “unknown” bricks, which improves
handcrafted feature-based methods by 35%rel at simultaneously
lower computational costs for prediction. Samples with high pre-
diction errors are investigated in detail showing an increased iron
point defect concentration.

Index Terms—Convolutional neural network (CNN), densely
connected neural network (DenseNet), high-performance mul-
ticrystalline silicon (HPM-Si), machine learning, material qual-
ity, multicrystalline silicon (mc-Si), passivated emitter and
rear cell (PERC), photoluminescence (PL), rating, regression,
solar cell.

I. INTRODUCTION

THE incoming control for solar cell production of mul-
ticrystalline silicon (mc-Si) requires a rapid assessment

of the wafer quality in terms of the expected solar cell effi-
ciency, which can be implemented based on photoluminescence
(PL) imaging [1] and modern pattern recognition techniques.
Since the incoming control for solar cell production takes place
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directly after wafering, a prediction based on lifetime images of
passivated wafers [2] and bricks [3] is not available. By measur-
ing the radiative recombination of the excess charge carriers via
PL imaging, crystallization-related defect patterns, which are
recombination active, can be observed in as-cut wafers already.
The quantity of these defect structures correlates with solar cell
performance [4]. Due to the low acquisition time and high spa-
tial resolution of PL imaging, we introduce a rating model based
on PL images.

Since the material rating of as-cut samples is challenging
for high-quality materials and high-quality solar cell processes,
such as the passivated emitter and rear cell (PERC) process [5],
the models need to be evaluated on these data. An incoming
control requires a rapid investigation of samples without pas-
sivating the surface layer. In this early process step, surface
recombination limits the measurement of the bulk lifetime of
the excess charge carriers. This effect is challenging for the
rating of high-quality material and for solar cells with higher
efficiency potential. In particular, the development of a predic-
tion model for the PERC has been shown to be more challenging
than for solar cells with aluminum back-surface field [6]. We ac-
cept this challenge within our investigation: our dataset contains
different material types of p-type mc-Si wafers from standard
to high performance multicrystalline silicon (HPMC-Si) [7], [8]
wafers, which are processed to PERCs.

Traditional rating approaches use human feature engineering
to quantify defect features from complex defect patterns. An
example for a domain-based sorting metric compares PL inten-
sities at grain boundaries and within grains as criteria for en-
hanced gettering processes [9]. Other domain-relevant features
are regions of reduced lifetime due to crucible contamination,
grain boundaries, or dislocation clusters, which are typically de-
tected and quantified based on handcrafted filters and thresholds
followed by a regression analysis [6], [10]–[13].

The degree of pattern complexity can be increased by fol-
lowing the bag-of-features paradigm: images are described by
a collection of local image descriptors, which represent proto-
typical structures. In previous investigations, the image of the
dark saturation current based on these prototypical PL struc-
tures [14] or even the global Voc based on the distribution of
these PL structures [15] has been predicted. Although super-
vised and unsupervised learning steps are applied, the kind of
descriptor is still selected manually.

The quantification of defects with handcrafted solutions is
difficult.
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Fig. 1. Rating and visualization based on PL images of as-cut wafers. The two
visualization techniques are presented in the second part of our study in [28].

1) Lifetime reducing defects, e.g., contamination from the
crucible and structural defects, are not mutually exclusive
and reduce PL intensity.

2) They interact during the solar cell process, e.g., when the
enhancement of phosphorous diffusion gettering depends
on the dislocation density [16]–[21].

3) The spatial distribution of defect patterns plays an impor-
tant role for Voc prediction [22], [23].

A human expert can hardly oversee the variety of patterns
and will lose information using handcrafted methods for feature
extraction.

Deep learning allows complex features to be learned in a
completely data-driven fashion, which is feasible within our
large dataset. Triggered by the successful object classification
of the ImageNet database [24], convolutional neural networks
(CNNs) have redeemed feature engineering approaches in most
computer vision applications. Based on a large amount of em-
pirical data, the network learns to minimize a loss function via
gradient-based optimization. The learned representation is ca-
pable of considering a large receptive field in the input image
and describing complex patterns. The abundance in material
variation within our experiment allows efficient and accurate
assessment on the performance of material via a data-driven
deep learning approach.

In contrast with physical device simulations (e.g., [25]),
CNNs are often treated as “blackbox.” Yet, a deeper under-
standing of what has been learned is crucial for the acceptance
of CNNs in the photovoltaic community. In addition to high
prediction accuracy, CNNs can be used to localize the reasons
for changes in performance by analyzing the activation of the
network [26]. Furthermore, CNNs can learn a semantic repre-
sentation of the data during the training process. The network
learns to compress the PL images in a meaningful way for the
prediction of solar cell performance. This semantic representa-
tion can be extracted from the network and used to analyze the
similarity of the dataset in terms of defect occurrence and solar
cell performance. Visualization techniques [27] can be used to
reveal the similarity of the data learned by the network. Both
methods are discussed in [28] for the same dataset.

As shown in Fig. 1, we present an end-to-end rating model
for material assessment and visualization, where PL images
and I–V parameters are used as input and output, respectively.
In Section II, we explain how we adapt a densely connected
CNN [29] to solve the multivariate regression task to forecast

four I–V parameters, namely, efficiency, open-circuit voltage,
short-circuit current, and fill factor, in one network. The final
regression step is based on learned features only. Results on “un-
known” bricks and manufacturers are shown in Sections IV-A
and IV-B, respectively. A detailed analysis of the prediction
errors is given in Section IV-C. Details and results on quality
mapping and data visualization are presented in the second part
of this study [28].

II. OUR CNN ARCHITECTURE FOR REGRESSION

For an introduction to CNNs, we refer the reader to the work
of Krizhevsky et al. [24] and briefly describe this network struc-
ture in the following. In this early CNN called AlexNet, the
data are passed sequentially through the network. In subsequent
layers, feature information is extracted via convolutional filters,
the filter results are normalized, nonlinearly transformed, and
downsampled. With increasing depth of the network, the number
of filter channels, as well as the receptive field of each feature,
increases. Three fully connected layers complete the network.
For a regression task, the result of the final fully connected layer
returns the predicted value.

With deeper network architectures, training becomes harder.
In recent years, network architectures with fully convolutional
design [30], [31] and an increasing number of layers became
more successful like the visual geometry group (VGG)
network [32]. In CNNs, such as AlexNet and VGG, all of
the information content relevant to the final output must pass
through every single layer. This representational challenge is ex-
acerbated, as the depth of the network increases. This can be ad-
dressed by using skip connections, as presented in ResNet [33].

Training such a very deep network is still complicated, due
to the vanishing-gradient problem. This problem can appear
when the gradient of the error function is backpropagated
through the network. Following the chain rule, small values
may be multiplied in each layer and, thus, vanish before they
reach earlier layers of the network.

Densely connected neural networks (DenseNets) are intro-
duced as easily trainable networks. Huang et al. [29] propose
to improve the learning process with a DenseNet by adding
additional skip connections to the network: for each layer, all
previous feature maps are concatenated as input. The resulting
network requires less parameters than, e.g., AlexNet or ResNet
because of feature reuse. In addition, the dense connections are
beneficial for the training process, since the error gradients flow
directly from later to earlier layers of the network.

Besides this robust training procedure, the visualization via
the activation mapping technique [26] is a good reason for the
usage of this network: The DenseNet allows the output of a
quality map within few computational steps, as introduced in
the second part of this study [28].

Our network structure with three densely connected blocks is
visualized in Fig. 2. A dense block is composed of three basic
elements:

1) convolutional layers with kernel size 3 × 3 × nc

(Conv3×3) to extract image features (nc is the number
of input channels);
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Fig. 2. Scheme of the CNN for multivariate regression of I–V parameters based on PL images of as-cut wafers with a resolution of 134 × 134 pixels.

2) a batch normalization (BN) step;
3) a rectifying linear unit (ReLU) as nonlinear transforma-

tion.
As shown in the right scheme of Fig. 2, all previous feature

maps are concatenated as input of the current layer. The tran-
sition from block to block contains: 1) a convolutional layer
(Conv1×1) for feature compression; and 2) an average pooling
layer (PoolAVG) to downsample the data.

Within a walking tour, we describe the forward pass through
the network. Our input data have a resolution of 264 × 264 or
134 × 134 pixels due to GPU memory constraints. During the
training, an optional data augmentation step can be performed:
the images are randomly cropped at both borders, flipped, and
rotated. The augmentation step aims for a robust prediction
model and avoids overfitting to the training set. Nevertheless,
every region of the wafer contributes to the quality of the solar
cell. Thus, for the test case, the image is cropped systemati-
cally at different positions. Each patch is passed through the
network. Finally, the predictions are averaged to consider all
image regions for the prediction.

The first convolution step of the first dense block contains 16
channels with a resolution of 128 × 128 for an input image with
size 134 × 134 pixels and cropping size of 6 pixels. The feature
map grows by 12 feature channels for each of the four subse-
quent layers in a dense block. After passing the first and second
dense blocks, the data are compressed to approximately 40% of
the channel size and downsampled by 50% in spatial resolution,
respectively. This results in feature maps with a dimension of
26 × 64 × 64 after the first and 31 × 32 × 32 after the second
dense block.

Up to now, the different quality prediction values share the
same feature maps. At this point, the model will be split: for
each of the output values (a) efficiency η, (b) open-circuit volt-
age Voc, (c) short-circuit current Jsc, and (d) fill factor FF , an
individual third dense block k ∈ {a, b, c, d} will be applied. The
final feature map Fk,i(c, x, y) of a sample i contains nc = 79
channels and a spatial resolution of 32 pixel in x- and y-
directions. Each of these four dense blocks concludes with a

channelwise average pooling step of the final feature map ac-
cording to

�fk,i(c) =
1

npx

∑

x,y

�Fk,i(c, x, y) (1)

with �fk,i ∈ R79 and npx = 1024 elements in each channel c.
The final regression step is accomplished by an inner product
layer with weights �wk and offset bk for the prediction of one the
four I–V parameters ŷk with

ŷk ,i =
〈

�wk , �fk,i

〉
+ bk . (2)

During the training, loss between predicted quality value ŷk ,i

and the measured yk,i can be computed as �1-loss, �2-loss or
weighted mean of both losses.

III. EXPERIMENTAL APPROACH

A. Materials and Solar Cell Production

1) Material Selection: The dataset was collected within a
comprehensive material survey. The presented material selec-
tion contains about 7300 wafers from ten different manufac-
turers taken from different bricks of at least 74 bricks with
varying brick positions within 18 blocks. Most of the wafers
were sampled from different positions of the brick at regular
step sizes, e.g., at each fifth or tenth wafer position from inner,
edge, and corner bricks. Material from one of the manufactur-
ers was carefully sampled at two positions from 25 different
boxes. The dataset contains HPMC-Si materials from at least
three different manufacturers with known brick positions.

2) Measurements and Solar Cell Production: The wafers are
laser-marked with a data matrix code to track the samples during
the experiment. PL images are measured by a commercially
available inline PL system with a line-scan camera with an
InGaAs detector, as described by Höffler et al. [34]. The wafers
have a size of 156 × 156 mm and the PL images a resolution of
1024 × 1024 pixels. The wafers are processed to PERCs within
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an industrial production line. The I–V data were measured after
solar cell production.

3) Reference Measurement: The concentration of iron point
defects is determined by combining PL images at defined
states [35]: 1) after storage in the dark, where the defect is
present as iron–boron pairs; and (2) after illumination, where
the defect is present as interstitial iron. The calculation follows
the approach of Zoth and Bergholz [36] and is described in detail
in [37].

4) Predicted Parameters: The quality rating aims at predict-
ing the solar cell efficiency, which depends on Voc, Jsc, and FF ;
therefore, the prediction accuracy for all three parameters has to
be investigated. Voc depends the strongest on material quality,
namely, the recombination current J0, according to the one-
diode equation Voc = Vth · ln Jsc/J0 with the thermal voltage
Vth. Jsc depends on recombination, but is sensitive on diffusion
length variations in the range of and below wafer thickness.
Finally, FF only depends on recombination indirectly via Voc .
Therefore, the prediction quality will decrease from Voc via Jsc

to FF .

B. Definition of Training and Test Sets

To test the generalizability of our approach, the data are split
into three disjoint sets for training, validation, and testing of
the algorithm. The validation set is used to tune the parameters
of the machine learning algorithm. We investigate two scenar-
ios, which are relevant for the application within an incoming
control. In the first scenario, we want to predict the quality of
materials, which are similar to materials of a crystallization,
which has been used for the training of the model. In the second
scenario, we analyze material from an “unknown” manufacturer.
Therefore, we split the training and test data on brick (box) and
manufacturer level, respectively. For each set, no two wafers are
from the same brick or manufacturer.

1) Scenario 1, Testing Unknown Bricks: The training set
contains about 2900 wafers from 32 bricks and seven boxes and
the test set 4325 wafers from 42 bricks and 18 boxes, which
are distinct to the training set with regard to the brick origin. A
validation set of 424 wafers was randomly selected and removed
from the test set for parameter optimization.

2) Scenario 2, Testing Unknown Manufacturers: A predic-
tion model can be used for the performance evaluation of wafers
from a new manufacturer with materials never processed within
the specific production line, which is addressed in this scenario.

In Scenario 2, a prediction of HPMC-Si wafers is of special
interest: HPMC-Si material will displace regular mc-Si material
in the future, due to higher solar cell performance. Additionally,
a PL-based rating of as-cut wafers gets more challenging for
this material class. The measurement of high bulk lifetimes is
limited by the surface recombination in as-cut wafers. Therefore,
Scenario 2 focuses on the evaluation of HPMC-Si materials.

We define different training and test datasets for each of
the three manufacturers (M1, M2, and M3) with HPMC-Si
material. Every manufacturer is evaluated individually as “un-
known.” For each of the three configurations, all wafers from
the respective manufacturer are removed from the training set

defined in Scenario 1. The training set for the prediction of
materials from the respective “unknown” manufacturer con-
tains selected bricks from nine other manufacturers according
to Scenario 1 excluding its own material. A DenseNet for Voc

prediction is trained based on this training set. The test errors
are evaluated for the HPMC-Si bricks of the respective manu-
facturer Mi. The numbers of ingots, bricks, and wafers in the
test set are indicated in Table II.

C. Implementation and Training

The deep learning framework Caffe [38] from the Berkeley
Artificial Intelligence Research Lab was used to model the net-
work. The PL data are aligned [39, pp. 58–59], downsampled,
and normalized before the training process. The PL images are
analyzed with a resolution of 264 × 264 pixels and 134 × 134
pixels before the random cropping step with cropping regions of
8 and 6 pixels, respectively. In addition, a group without random
cropping was evaluated at a resolution of 264 × 264 pixels.

The models were trained using stochastic gradient descent
for 400k iterations with a batch size of 20 images using
Nesterov optimization, which corresponds to 2666 epochs for
predicting unknown bricks (training set 1) and slightly more
epochs for the prediction of unknown manufacturers (training
set 2). In machine learning, the number of epochs indicates
how often all training data have been used for training. The
learning rate was evaluated on a validation set and initialized
to 0.01 and is stepwise lowered by two times after 50 000
iterations, which corresponds to 330 epochs in training set 1.
The large number of epochs was selected to compensate the
small batch size due to GPU memory constraints. During our
evaluations, training runs were performed with NVIDIA Tesla
K20 and Titan Xp with 5- and 12-GB memory, respectively.
For the latter, each iteration took about 150-ms computation
time for image resolutions of 256 × 256 pixels.

D. Reference Method With Designed Features

The deep learning results are compared with our previous
feature-based approach [6]. Within this reference method, de-
signed features are calculated from PL images with a resolution
of 1024 × 1024 pixels. The features quantify the average PL
intensity, recombination active structures, and regions of re-
duced lifetime due to crucible contamination. In addition, the
area fraction of regions with different amount of structural de-
fects and PL intensities is distinguished. All features are used
as input to train four distinct regression models to predict one
of the four I–V parameters each. The regression models are
trained with and without a regularization term to reduce feature
activation [40].

IV. RESULTS ON LEARNING QUALITY PREDICTION

A. Scenario 1: I–V Prediction for Unknown Bricks

The deep neural network is trained to predict η, Voc, Jsc,
and FF based on PL images of as-cut wafers within one
network. The results for the training and test split according
Scenario 1 (see Section III-A) are presented in Table I.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DEMANT et al.: LEARNING QUALITY RATING OF AS-CUT Mc-Si WAFERS via CONVOLUTIONAL REGRESSION NETWORKS 5

TABLE I
(SCENARIO 1) I–V PREDICTION FOR TEST WAFERS FROM BRICKS NOT

IN THE TRAINING SET

mae: mean absolute error, rms: root mean squared error,
corr: Pearson correlation coefficient,
wd: weight decay/regularization to reduce feature activation.

The highest prediction quality in terms of correlation coeffi-
cient is achieved for the prediction of Voc, followed by η or Jsc,
and, finally, FF for all test cases.

1) Designed Features: Considering the broad test spectrum,
the designed feature approach from Section III-D achieves high
prediction quality for Voc and η with mean absolute errors
(MAEs) of 2.73 mV and 0.16%abs, respectively, for a model with
weight decay. Adding weight regularization during the training
of the regression model slightly improves the prediction qual-
ity, as the model complexity is reduced to avoid an overfitting
to the training set. The results for Jsc and FF show larger
errors.

2) DenseNet: The proposed end-to-end approach improves
the traditional feature-engineering approach for the prediction
of all four parameters. For “unknown” test bricks (Scenario 1),
the MAE for the prediction of the Voc and η is as low as 2.05 mV
and 0.11%abs for PL image resolutions of 264 × 264 pixels and
random cropping.

Without random cropping, the prediction quality slightly re-
duces to 2.12 mV and 0.12%abs for Voc and η prediction, respec-
tively.

Interestingly, a reduction of the image resolution to 134 ×
134 pixels still leads to a high prediction quality. The MAE for
Voc prediction slightly increased to 2.15 mV and for η prediction
to 0.12%abs. Applying weight decay, errors increase to 2.33 mV
for Voc and 0.13%abs for η.

The correlation graphs for PL images with a resolution of
134 × 134 pixels and without weight decay are shown for every
other test wafer in Fig. 3.

B. Scenario 2: Voc Prediction for Unknown Manufacturers

The prediction results for each of three HPMC-Si manufac-
turers (M1, M2, and M3) are heterogeneous, as presented in
Table II. During the training of Scenario 2, the models are op-
timized for Voc prediction only. The PL image resolution was
134 × 134 pixels with random cropping of 6 pixels.

Fig. 3. Measured and predicted solar cell parameters (Scenario 1) based on
PL images with a resolution of 134 × 134 pixels. (a) Efficiency. (b) Open-circuit
voltage. (c) Short-circuit current. (d) Fill factor.
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TABLE II
(SCENARIO 2) DENSENET VOC PREDICTION FOR HPMC-Si MANUFACTURERS

NOT IN THE TRAINING SET

∗contains wafers from the very top and bottom brick regions.

Fig. 4. Development of measured Voc values along brick height for HPMC-Si
wafers from manufacturers M1 and M3. Prediction errors (colors) correspond
to models trained without data from the shown manufacturer. The wafer number
does not indicate the same absolute height in the ingot for wafers from different
bricks, due to variations of the cropping height for each brick. (a) HPMC-Si
manufacturer (M1). (b) HPMC-Si manufacturer (M3).

The MAE is as low as 1.87 mV for M1 and 1.64 mV for
M2, but very high for M3 with the MAE of 5.09 mV. The
very high root-mean-squared (rms) error for M3 indicates a
strong variation in prediction accuracy for the samples of this
manufacturer.

We analyze the errors for samples from M1 and M3 with
respect to wafer brick position. Fig. 4(a) and (b) shows the
measured Voc as a function of the wafer number beginning from
the bottom of the brick after cropping. The absolute prediction
error is given by the color value.

The investigated PERC process is sensitive to contamination
from the crucible, as shown in Fig. 4(a). Three different streams
with different development in material quality can be observed
for corner, edge, and inner bricks. The Voc is low for corner
bricks, higher for edge and very high for inner bricks.

1) Errors for M1 [see Fig. 4(a)]: Errors for samples from
M1 are located near steep quality changes for few high-quality
samples, for samples of corner bricks, and for samples at the
top region of the brick. For all bricks of M1, we observe a steep
increase in material quality in the first part of the brick. The
highest Voc values are achieved for inner bricks after wafer po-
sition 100. Especially, within the upper part of this strong slope,
the model underestimates the material quality up to 10 mV.

2) Errors for M3 [see Fig. 4(b)]: Errors for samples from
M3 can be observed in the very bottom regions of the bricks.
Selected bricks from M3 were intentionally cropped near the
bottom of the ingot leading to measured Voc values as low as
590 mV. The samples are classified as low-quality material by
the model with predicted Voc values around 600 mV. Considering
the very low quality in this brick region, the comparable large
numerical error can be neglected for these outliers. Assuming
a sorting of wafers within an incoming control, samples within
this quality range are likely to end up in the lowest quality bin.

High prediction errors can be found in the top region of each
brick from M3. In opposite to samples from M1, a steep quality
decline can be observed in the top region of each brick from
M3. Errors are especially high for wafers from this region due
to an overestimation of the material quality by the model, which
will be discussed in the following section.

C. Prediction Errors Due to Impurities

As shown in Fig. 4(b), a steep quality decline is observed for
materials from the top region of bricks from M3. Interestingly,
the PL intensities and PL structures do not change significantly
for these samples, as shown in Fig. 5. The PL images in the
left column are taken from different brick heights from the top
region of the brick and show a slight increase in dislocations
from sample position 375 (first row) up to position 445 (third
row), which is the topmost sample of the brick.

We have a look at the measured and predicted Voc values,
which are annotated above each PL image. In accordance with
the additional defect structures in sample 445 compared with
sample 375, the predicted Voc decreases by 5.5 mV. In contrast
with our prediction, the measured Voc decreases actually by
18.7 mV from 636.1 to 617.4 mV for these samples, leading to
high prediction errors.

The deterioration may be referred to back diffusion of impu-
rities during crystallization. For a closer look on these defects,
we determine the iron point defect concentration according to
Schubert et al. [37]. As shown in the right column of Fig. 5,
the interstitial iron concentration Fei increases with the brick
height. The mean value Fei,mean is annotated above each sam-
ple. It increases from 4.1e10 cm−3 for sample at position 375
to 8.8e10 cm−3 for the topmost sample of this brick at position
445. The increase in metastable defects is not observed in these
band-to-band PL images only, which can explain the prediction
errors. In addition, an increase of the doping concentration in
the top region of the brick has been observed. As the PL signal
depends on the n · p product, the increased doping concentration
can explain a higher PL intensity despite metastable defects.
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Fig. 5. Pairs of (left) PL image of the as-cut wafer and (right) the image of the
iron point defect concentration [37] measured at the finished cell. The samples
are selected from different regions near the top of the brick up to the topmost
sample in the last row. The measured and predicted Voc values, as well as the
mean interstitial iron concentration Fei , are annotated. Note the different scales
of the Fei maps.

V. DISCUSSION AND OUTLOOK

Both prediction methods, i.e., the feature-based approach de-
scribed in Section III-D and the network model from Section II,
achieve high prediction quality considering the broad material
spectrum.

The network approach improves previous feature-based ap-
proaches to predict the quality of silicon wafers for PERC solar
cells. The CNN is capable to predict the quality of samples from
unknown bricks, as well as samples from an unknown manufac-
turer with very high accuracy within only a few microseconds.

The model can be extended by adding complementary mea-
surements to improve the prediction quality. So far, an error-free
detection cannot be expected, as the PL measurements, used
as input data, primarily reveal structural crystallization defects
and provide only limited information on the electrical quality
in the bulk of the grains. This is because the PL signal in
as-cut wafers is strongly limited by surface recombination.
Multiple complementary measurements are available for wafer
inspection, e.g., the bulk lifetime measured on bricks [3] or
spatially resolved grain boundary information [13]. Single
parameters or even images can be integrated in the network
with few modifications only.

Despite downsampling and cropping of PL images, high-
quality predictions can be achieved. The PL images are down-
sampled before they are feed into the network due to memory

constraints of the GPU. The network uses only a part of the
information given by most commercially available PL systems.
Nevertheless, PL images with very low image resolution show
better performance than the feature-engineering approach. In
addition, the augmentation step removes information during the
training. Yet, models with cropping lead to better prediction
results than models without cropping. The random cropping
avoids an overfitting of the model to the training data.

The prediction error increases for Jsc and FF , as these pa-
rameters show a stronger dependence on quality parameters of
various steps in the solar cell process, e.g., texturing, contact
definition, and geometry. Nevertheless, material properties can
influence the quality of process steps, e.g., structural defects
have impact on the texturing result [41], and surface rough-
ness can influence contact formation [42]. For a validation of
the single-model outputs, we compare the directly predicted ef-
ficiency with a calculated efficiency based on the product of
predicted Voc, Jsc, and FF . The comparison shows an excel-
lent agreement with Pearson’s correlation coefficient of 0.99
between both quantities.

For human-designed features, all four regression models are
based on the same feature set. The feature coefficients can
be compared according to the relevance for the prediction re-
sult [13]. Due to the knowledge about the underlying physical
defect, these can be interpreted by crystal growers and solar
cell manufacturers similar to the analysis in [43]. For a physical
interpretation of the deep neural features, further effort is neces-
sary. The presented visualization techniques in [28] analyze the
data in more detail. For example, activation maps [26] reveal the
spatial distribution of the learned prediction value. They show
that regions of reduced Voc correspond to regions with crystal-
lographic defect structures. These techniques are a step toward
a transparent learning model for material rating.

VI. CONCLUSION

In this paper, a machine learning approach for material rating
of HPMC-Si and mc-Si wafers for solar cell production has
been introduced. A CNN has been trained to predict the I–V
parameters based on PL images of as-cut wafers. Our end-to-
end model improves existing feature engineering methods for
the prediction of the solar cell performance. For materials of
“unknown” bricks, the Voc and η were predicted with MAEs as
low as 2.05 mV and 0.11%, respectively. The models perform
well even for PL images with lowered resolution.

Even a prediction of materials from “unknown” manufactur-
ers showed excellent results for two of three manufacturers with
HPM materials. High prediction errors are observed for one
manufacturer with high concentration of iron point defects.

In contrast with previous methods, our approach does not rely
on human-designed features. Instead, a huge variety of materials
formed the database for the successful rating.

Despite the high prediction quality, CNNs are observed as
less transparent than human-designed methods. We overcome
this perceived “blackbox” behavior: Our network design allows
the visualization of what has been learned by the model, which
is presented in a second part of this research in [28].
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